organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Nitro-N^2^-(pyridin-4-ylmethyl­idene)benzene-1,2-di­amine

aCollege of Science, Nanjing University of Technology, Xinmofan Road No.5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: guocheng@njut.edu.cn

(Received 20 May 2013; accepted 4 June 2013; online 12 June 2013)

In the title compound, C12H10N4O2, the dihedral angle between the aromatic rings is 43.18 (16)°. The nitro group is rotated from its attached ring by 7.8 (2)° and a short intra­molecular N—H⋯N contact occurs. In the crystal, the mol­ecules are linked by N—H⋯N and C—H⋯O hydrogen bonds, generating a three-dimensional network.

Related literature

For the synthesis, see: Luo et al. (2009[Luo, T. T., Wu, H. C. & Jao, Y. C. (2009). Angew. Chem. 48, 9461-9464.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N4O2

  • Mr = 242.24

  • Monoclinic, C 2/c

  • a = 21.324 (4) Å

  • b = 9.1480 (18) Å

  • c = 12.950 (3) Å

  • β = 116.36 (3)°

  • V = 2263.5 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.970, Tmax = 0.990

  • 2128 measured reflections

  • 2070 independent reflections

  • 1247 reflections with I > 2σ(I)

  • Rint = 0.038

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.175

  • S = 1.01

  • 2070 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N4i 0.86 2.42 3.091 (3) 135
N2—H2B⋯N3 0.86 2.42 2.751 (3) 103
C10—H10A⋯O1ii 0.93 2.49 3.156 (5) 128
Symmetry codes: (i) [-x+1, y+1, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994)[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]; cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009)[Spek, A. L. (2009). Acta Cryst. D65, 148-155.].

Supporting information


Related literature top

For the synthesis, see: Luo et al. (2009).

Experimental top

The title compound, (I), which may have applications as a metal fluoresence probe, was prepared by the literature method (Luo et al., 2009). Yellow blocks were obtained by dissolving (I) (0.18 g, 1.0mmol) in ethanol (25 ml) and evaporating the solvent slowly at room temperature.

Refinement top

H atoms were positioned geometrically and refined as riding groups, with N—H = 0.86 and C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.2 for aromatic H, and x = 1.5 for other H.

Structure description top

For the synthesis, see: Luo et al. (2009).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title molecule.
4-Nitro-N2-(pyridin-4-ylmethylidene)benzene-1,2-diamine top
Crystal data top
C12H10N4O2Dx = 1.422 Mg m3
Mr = 242.24Melting point: 449.65 K
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 21.324 (4) ÅCell parameters from 25 reflections
b = 9.1480 (18) Åθ = 10–13°
c = 12.950 (3) ŵ = 0.10 mm1
β = 116.36 (3)°T = 293 K
V = 2263.5 (8) Å3Block, yellow
Z = 80.30 × 0.20 × 0.10 mm
F(000) = 1008
Data collection top
Enraf–Nonius CAD-4
diffractometer
1247 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
Graphite monochromatorθmax = 25.4°, θmin = 2.1°
ω/2θ scansh = 025
Absorption correction: ψ scan
(North et al., 1968)
k = 011
Tmin = 0.970, Tmax = 0.990l = 1514
2128 measured reflections3 standard reflections every 200 reflections
2070 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.175 w = 1/[σ2(Fo2) + (0.090P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2070 reflectionsΔρmax = 0.19 e Å3
164 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0052 (12)
Crystal data top
C12H10N4O2V = 2263.5 (8) Å3
Mr = 242.24Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.324 (4) ŵ = 0.10 mm1
b = 9.1480 (18) ÅT = 293 K
c = 12.950 (3) Å0.30 × 0.20 × 0.10 mm
β = 116.36 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1247 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.038
Tmin = 0.970, Tmax = 0.9903 standard reflections every 200 reflections
2128 measured reflections intensity decay: 1%
2070 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.01Δρmax = 0.19 e Å3
2070 reflectionsΔρmin = 0.18 e Å3
164 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.32477 (14)0.2795 (3)0.0542 (3)0.0521 (8)
H1A0.32290.21450.11080.062*
N10.23039 (15)0.4169 (4)0.2041 (3)0.0792 (10)
O10.18599 (16)0.5126 (4)0.2272 (3)0.1194 (12)
N20.42131 (15)0.3378 (3)0.2557 (2)0.0666 (8)
H2A0.42190.39800.30720.080*
H2B0.44990.26520.27540.080*
C20.27963 (16)0.3970 (4)0.0840 (3)0.0596 (9)
O20.23537 (15)0.3379 (4)0.2766 (3)0.0991 (10)
N30.42154 (12)0.1420 (2)0.09465 (19)0.0461 (6)
C30.28139 (17)0.4952 (4)0.0015 (4)0.0714 (11)
H3B0.25060.57400.02230.086*
C40.32854 (17)0.4753 (3)0.1102 (4)0.0664 (10)
H4A0.32970.54140.16560.080*
N40.53086 (14)0.3605 (2)0.1282 (2)0.0546 (7)
C50.37562 (15)0.3574 (3)0.1443 (3)0.0526 (8)
C60.37257 (14)0.2579 (3)0.0586 (2)0.0455 (7)
C70.40423 (15)0.0216 (3)0.0405 (2)0.0472 (7)
H7A0.35970.01410.02050.057*
C80.45009 (14)0.1054 (3)0.0682 (2)0.0440 (7)
C90.52046 (15)0.1025 (3)0.1456 (2)0.0475 (8)
H9A0.54200.01480.17890.057*
C100.55786 (15)0.2301 (3)0.1725 (2)0.0501 (7)
H10A0.60500.22580.22470.060*
C110.46362 (17)0.3624 (3)0.0523 (3)0.0578 (9)
H11A0.44350.45130.01940.069*
C120.42246 (16)0.2395 (3)0.0201 (3)0.0541 (8)
H12A0.37590.24640.03410.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0439 (16)0.0497 (17)0.0602 (19)0.0008 (14)0.0209 (15)0.0038 (15)
N10.0479 (17)0.081 (2)0.093 (3)0.0097 (17)0.0174 (18)0.035 (2)
O10.0750 (18)0.108 (2)0.143 (3)0.0420 (18)0.0195 (18)0.053 (2)
N20.0734 (19)0.0603 (17)0.0600 (18)0.0034 (15)0.0241 (15)0.0172 (14)
C20.0397 (16)0.056 (2)0.075 (2)0.0068 (15)0.0181 (16)0.0182 (17)
O20.0711 (19)0.129 (3)0.072 (2)0.0121 (17)0.0095 (15)0.0210 (18)
N30.0456 (14)0.0417 (14)0.0456 (14)0.0029 (11)0.0154 (11)0.0011 (11)
C30.0437 (18)0.047 (2)0.118 (3)0.0074 (15)0.031 (2)0.014 (2)
C40.057 (2)0.0462 (19)0.102 (3)0.0031 (16)0.041 (2)0.0124 (19)
N40.0548 (16)0.0442 (15)0.0627 (17)0.0053 (12)0.0242 (14)0.0004 (12)
C50.0489 (17)0.0417 (17)0.070 (2)0.0083 (14)0.0285 (17)0.0072 (15)
C60.0416 (15)0.0404 (15)0.0510 (17)0.0003 (13)0.0174 (14)0.0020 (13)
C70.0415 (15)0.0455 (17)0.0451 (16)0.0009 (13)0.0106 (13)0.0002 (13)
C80.0461 (16)0.0438 (17)0.0389 (15)0.0014 (13)0.0160 (13)0.0006 (12)
C90.0471 (17)0.0437 (17)0.0465 (17)0.0015 (13)0.0159 (14)0.0017 (13)
C100.0442 (16)0.0512 (18)0.0503 (17)0.0023 (14)0.0170 (13)0.0015 (14)
C110.064 (2)0.0414 (18)0.063 (2)0.0051 (16)0.0235 (17)0.0064 (15)
C120.0486 (17)0.0504 (19)0.0527 (17)0.0013 (15)0.0129 (14)0.0052 (15)
Geometric parameters (Å, º) top
C1—C61.375 (4)C4—H4A0.9300
C1—C21.379 (4)N4—C111.331 (4)
C1—H1A0.9300N4—C101.338 (3)
N1—O11.225 (4)C5—C61.414 (4)
N1—O21.226 (4)C7—C81.457 (4)
N1—C21.450 (5)C7—H7A0.9300
N2—C51.347 (4)C8—C121.383 (4)
N2—H2A0.8600C8—C91.386 (4)
N2—H2B0.8600C9—C101.368 (4)
C2—C31.384 (5)C9—H9A0.9300
N3—C71.269 (3)C10—H10A0.9300
N3—C61.414 (3)C11—C121.372 (4)
C3—C41.359 (5)C11—H11A0.9300
C3—H3B0.9300C12—H12A0.9300
C4—C51.405 (4)
C6—C1—C2120.4 (3)C4—C5—C6118.1 (3)
C6—C1—H1A119.8C1—C6—C5119.7 (3)
C2—C1—H1A119.8C1—C6—N3123.3 (3)
O1—N1—O2123.7 (4)C5—C6—N3117.0 (2)
O1—N1—C2117.7 (4)N3—C7—C8123.8 (3)
O2—N1—C2118.6 (3)N3—C7—H7A118.1
C5—N2—H2A120.0C8—C7—H7A118.1
C5—N2—H2B120.0C12—C8—C9116.8 (3)
H2A—N2—H2B120.0C12—C8—C7119.4 (2)
C1—C2—C3120.9 (3)C9—C8—C7123.7 (3)
C1—C2—N1118.7 (4)C10—C9—C8119.3 (3)
C3—C2—N1120.3 (3)C10—C9—H9A120.4
C7—N3—C6118.5 (2)C8—C9—H9A120.4
C4—C3—C2119.3 (3)N4—C10—C9124.1 (3)
C4—C3—H3B120.4N4—C10—H10A118.0
C2—C3—H3B120.4C9—C10—H10A118.0
C3—C4—C5121.7 (3)N4—C11—C12123.2 (3)
C3—C4—H4A119.2N4—C11—H11A118.4
C5—C4—H4A119.2C12—C11—H11A118.4
C11—N4—C10116.5 (2)C11—C12—C8120.2 (3)
N2—C5—C4120.9 (3)C11—C12—H12A119.9
N2—C5—C6121.0 (3)C8—C12—H12A119.9
C6—C1—C2—C30.0 (5)N2—C5—C6—N32.8 (4)
C6—C1—C2—N1179.5 (3)C4—C5—C6—N3178.6 (2)
O1—N1—C2—C1172.5 (3)C7—N3—C6—C132.3 (4)
O2—N1—C2—C17.6 (5)C7—N3—C6—C5149.7 (3)
O1—N1—C2—C38.0 (5)C6—N3—C7—C8179.3 (2)
O2—N1—C2—C3171.9 (3)N3—C7—C8—C12167.2 (3)
C1—C2—C3—C40.3 (5)N3—C7—C8—C99.4 (4)
N1—C2—C3—C4179.2 (3)C12—C8—C9—C101.7 (4)
C2—C3—C4—C50.0 (5)C7—C8—C9—C10175.0 (3)
C3—C4—C5—N2178.9 (3)C11—N4—C10—C91.1 (4)
C3—C4—C5—C60.4 (4)C8—C9—C10—N40.2 (4)
C2—C1—C6—C50.4 (4)C10—N4—C11—C120.7 (5)
C2—C1—C6—N3178.3 (3)N4—C11—C12—C80.9 (5)
N2—C5—C6—C1179.1 (3)C9—C8—C12—C112.0 (4)
C4—C5—C6—C10.6 (4)C7—C8—C12—C11174.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N4i0.862.423.091 (3)135
N2—H2B···N30.862.422.751 (3)103
C10—H10A···O1ii0.932.493.156 (5)128
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H10N4O2
Mr242.24
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)21.324 (4), 9.1480 (18), 12.950 (3)
β (°) 116.36 (3)
V3)2263.5 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.970, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
2128, 2070, 1247
Rint0.038
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.175, 1.01
No. of reflections2070
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.18

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N4i0.862.423.091 (3)135
N2—H2B···N30.862.422.751 (3)103
C10—H10A···O1ii0.932.493.156 (5)128
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Center of Test and Analysis, Nanjing University, for support.

References

First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLuo, T. T., Wu, H. C. & Jao, Y. C. (2009). Angew. Chem. 48, 9461–9464.  CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds