organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-(Disulfanedi­yl)dianilinium dichloride dihydrate

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000, Algeria, and bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 5 June 2013; accepted 5 June 2013; online 12 June 2013)

In the title hydrated mol­ecular salt, C12H14N2S22+·2Cl·2H2O, the dihedral angle between the benzene rings in the dication is 9.03 (17)° and the C—S—S—C torsion angle is 96.8 (2)°. The crystal packing can be described as alternating organic and anionic water layers lying parallel to (100), which are linked by N—H⋯Cl and N—H⋯O hydrogen bonds. O—H⋯Cl hydrogen bonds and aromatic ππ stacking inter­actions [centroid–centroid separation = 3.730 (3) Å] are also observed.

Related literature

For related structures and background to di­sulfides, see: Benmebarek et al. (2012[Benmebarek, S., Boudraa, M., Bouacida, S. & Daran, J.-C. (2012). Acta Cryst. E68, o3207.], 2013[Benmebarek, S., Boudraa, M., Bouacida, S. & Merazig, H. (2013). Acta Cryst. E69, o432.]). For related structures, see: Tang et al. (2011[Tang, J.-M., Feng, Z.-Q. & Cheng, W. (2011). Acta Cryst. E67, o1197.]); Goh et al. (2010[Goh, J. H., Fun, H.-K., Babu, M. & Kalluraya, B. (2010). Acta Cryst. E66, o292-o293.]); Song & Fan (2009[Song, M. & Fan, C. (2009). Acta Cryst. E65, o2835.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14N2S22+·2Cl·2H2O

  • Mr = 357.32

  • Orthorhombic, P n a 21

  • a = 17.826 (7) Å

  • b = 13.358 (5) Å

  • c = 7.120 (3) Å

  • V = 1695.4 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 150 K

  • 0.16 × 0.13 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 10760 measured reflections

  • 3584 independent reflections

  • 2409 reflections with I > 2σ(I)

  • Rint = 0.097

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.134

  • S = 1.05

  • 3584 reflections

  • 195 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.47 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1369 Friedel pairs

  • Flack parameter: −0.12 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1Wi 0.89 1.83 2.723 (6) 178
N1—H1B⋯Cl2i 0.89 2.24 3.108 (4) 166
N1—H1C⋯Cl1i 0.89 2.25 3.103 (4) 160
N2—H2A⋯O2Wii 0.89 1.84 2.727 (6) 177
N2—H2B⋯Cl2iii 0.89 2.26 3.111 (4) 160
N2—H2C⋯Cl2 0.89 2.30 3.157 (4) 163
O2W—H4W⋯Cl2 0.86 (5) 2.36 (5) 3.157 (5) 155 (5)
O2W—H3W⋯Cl1iv 0.85 (5) 2.23 (5) 3.078 (4) 171 (6)
O1W—H1W⋯Cl1v 0.85 (5) 2.27 (5) 3.096 (5) 167 (5)
O1W—H2W⋯Cl1iv 0.86 (5) 2.27 (5) 3.127 (5) 176 (7)
Symmetry codes: (i) [-x+2, -y, z+{\script{1\over 2}}]; (ii) x, y, z-1; (iii) [-x+2, -y, z-{\script{1\over 2}}]; (iv) x, y, z+1; (v) [-x+2, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

As part of our ongoing studies on the synthesis, structures and biological activity of organometallic complexes based in sulfur (Benmebarek et al. 2012 and Benmebarek et al. 2013), we have synthesized and determined the crystal structure of the title compound (I), (Fig. 1). In the cation the S—S bond length is 2.061 (2)°, indicating the single bond character similar to that found in 4,4'-diaminophenyldisulfide (Tang et al., 2011; Goh et al. 2010). In the diprotoned 2,2'-dithiodianiline moiety, the dihedral angle between the benzene rings is 9.03 (17)°; different to that found in [67.82 (9)°] 1,2-Bis(2-nitrophenyl)disulfane (Song & Fan, 2009) and [39.9 (2)°]4,4'- diaminophenyldisulfide (Tang et al., 2011). The crystal packing can be described as alternating layers parallel to (100) plane, wich are linked toghether by N—H···Cl and N—H···O interactions involving molecule of water and anions chloride. O—H···Cl hydrogen bond and ππ stacking are observed.

Related literature top

For related structures and background to disulfides, see: Benmebarek et al. (2012, 2013). For related structures, see: Tang et al. (2011); Goh et al. (2010); Song & Fan (2009).

Experimental top

2-Aminobenzenethiol (0.1 mmol) was added to concentrated HCl (2 ml) and transfered into a 23 ml teflon-lined stainless steel autoclave and heated at 120° C for 3 days. Then the autoclave was cooled to room temperature at 10°/h. Colourless prisms were collected, washed with ethanol and dried in air at room temperature.

Refinement top

Approximate positions for all H atoms were first obtained from the difference electron density map. However, the H atoms were situated into idealized positions and the H-atoms have been refined within the riding atom approximation. The applied constraints were as follow: Caryl—Haryl = 0.93 Å and Nammonium—Hammonium = 0.89 Å. Uiso(Haryl) = 1.2Ueq(Caryl). Uiso(Hammonium) = 1.5Ueq(Cammonium). Except for H1W, H2W, H3W and H4W (of water molecule) were located in a difference Fourier map and refined isotropically with Uiso(H) = 1.5Ueq(O).

Structure description top

As part of our ongoing studies on the synthesis, structures and biological activity of organometallic complexes based in sulfur (Benmebarek et al. 2012 and Benmebarek et al. 2013), we have synthesized and determined the crystal structure of the title compound (I), (Fig. 1). In the cation the S—S bond length is 2.061 (2)°, indicating the single bond character similar to that found in 4,4'-diaminophenyldisulfide (Tang et al., 2011; Goh et al. 2010). In the diprotoned 2,2'-dithiodianiline moiety, the dihedral angle between the benzene rings is 9.03 (17)°; different to that found in [67.82 (9)°] 1,2-Bis(2-nitrophenyl)disulfane (Song & Fan, 2009) and [39.9 (2)°]4,4'- diaminophenyldisulfide (Tang et al., 2011). The crystal packing can be described as alternating layers parallel to (100) plane, wich are linked toghether by N—H···Cl and N—H···O interactions involving molecule of water and anions chloride. O—H···Cl hydrogen bond and ππ stacking are observed.

For related structures and background to disulfides, see: Benmebarek et al. (2012, 2013). For related structures, see: Tang et al. (2011); Goh et al. (2010); Song & Fan (2009).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Diagram packing of (I) viwed via c axis showing hydrogen bonding in alterning layers.
2,2'-(Disulfanediyl)dianilinium dichloride dihydrate top
Crystal data top
C12H14N2S22+·2Cl·2H2OF(000) = 744
Mr = 357.32Dx = 1.4 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2698 reflections
a = 17.826 (7) Åθ = 2.3–28.5°
b = 13.358 (5) ŵ = 0.63 mm1
c = 7.120 (3) ÅT = 150 K
V = 1695.4 (12) Å3Prism, colourless
Z = 40.16 × 0.13 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
2409 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.097
Graphite monochromatorθmax = 28.8°, θmin = 2.8°
φ and ω scansh = 2423
10760 measured reflectionsk = 1818
3584 independent reflectionsl = 98
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0595P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3584 reflectionsΔρmax = 0.58 e Å3
195 parametersΔρmin = 0.47 e Å3
6 restraintsAbsolute structure: Flack (1983), 1369 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.12 (12)
Crystal data top
C12H14N2S22+·2Cl·2H2OV = 1695.4 (12) Å3
Mr = 357.32Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 17.826 (7) ŵ = 0.63 mm1
b = 13.358 (5) ÅT = 150 K
c = 7.120 (3) Å0.16 × 0.13 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
2409 reflections with I > 2σ(I)
10760 measured reflectionsRint = 0.097
3584 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.063H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.134Δρmax = 0.58 e Å3
S = 1.05Δρmin = 0.47 e Å3
3584 reflectionsAbsolute structure: Flack (1983), 1369 Friedel pairs
195 parametersAbsolute structure parameter: 0.12 (12)
6 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl20.98060 (6)0.10914 (8)1.19390 (17)0.0269 (3)
S10.86675 (9)0.10667 (11)1.3286 (2)0.0412 (4)
Cl10.99242 (8)0.36455 (10)0.7389 (2)0.0411 (4)
S20.85864 (8)0.15845 (11)1.0567 (2)0.0395 (4)
O2W0.9096 (2)0.1819 (3)1.5764 (6)0.0381 (10)
H3W0.935 (3)0.233 (3)1.609 (9)0.057*
H4W0.937 (3)0.150 (4)1.497 (7)0.057*
N20.8933 (2)0.0331 (3)0.8354 (6)0.0267 (9)
H2A0.89910.08310.75420.04*
H2B0.92080.0190.79890.04*
H2C0.90820.05280.94890.04*
C210.7911 (3)0.0781 (4)0.9473 (8)0.0286 (12)
O1W1.0599 (3)0.4223 (3)1.3483 (6)0.0534 (12)
H1W1.043 (4)0.476 (3)1.302 (9)0.08*
H2W1.039 (4)0.406 (4)1.453 (6)0.08*
N10.9146 (2)0.2839 (3)1.5749 (6)0.0282 (10)
H1A0.92420.32841.66470.042*
H1B0.93880.22711.59960.042*
H1C0.92980.30791.46470.042*
C260.8140 (2)0.0039 (3)0.8427 (7)0.0218 (10)
C140.7102 (3)0.3103 (4)1.6647 (8)0.0317 (12)
H140.67820.35091.73420.038*
C120.7275 (3)0.1730 (4)1.4523 (8)0.0332 (13)
H120.70730.12121.38110.04*
C250.7627 (3)0.0625 (3)0.7478 (8)0.0272 (11)
H250.77870.11680.67680.033*
C150.7858 (3)0.3249 (3)1.6726 (7)0.0268 (11)
H150.80550.37531.74820.032*
C110.8050 (3)0.1876 (3)1.4566 (7)0.0255 (11)
C230.6638 (3)0.0391 (4)0.8641 (8)0.0395 (14)
H230.61280.05260.87410.047*
C240.6876 (3)0.0396 (4)0.7590 (8)0.0345 (12)
H240.65280.07840.69430.041*
C160.8335 (3)0.2645 (3)1.5676 (7)0.0237 (10)
C130.6811 (3)0.2350 (4)1.5534 (8)0.0381 (13)
H130.62940.22621.54680.046*
C220.7156 (3)0.1002 (4)0.9572 (8)0.0354 (13)
H220.69920.15541.02550.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl20.0198 (5)0.0332 (6)0.0276 (7)0.0025 (5)0.0034 (6)0.0026 (5)
S10.0445 (9)0.0428 (7)0.0364 (8)0.0186 (7)0.0119 (8)0.0133 (6)
Cl10.0422 (8)0.0424 (7)0.0388 (9)0.0023 (5)0.0125 (7)0.0027 (6)
S20.0429 (8)0.0445 (7)0.0310 (8)0.0133 (6)0.0111 (8)0.0111 (6)
O2W0.040 (2)0.043 (2)0.031 (3)0.0078 (17)0.002 (2)0.0002 (18)
N20.029 (2)0.030 (2)0.021 (2)0.0051 (16)0.001 (2)0.0027 (17)
C210.034 (3)0.032 (3)0.019 (3)0.001 (2)0.004 (3)0.007 (2)
O1W0.072 (3)0.051 (3)0.038 (3)0.019 (2)0.003 (3)0.003 (2)
N10.030 (2)0.030 (2)0.025 (3)0.0031 (17)0.000 (2)0.0016 (18)
C260.022 (2)0.028 (2)0.015 (3)0.0005 (18)0.003 (2)0.0089 (19)
C140.028 (3)0.044 (3)0.023 (3)0.007 (2)0.002 (3)0.004 (2)
C120.038 (3)0.035 (3)0.027 (3)0.004 (2)0.002 (3)0.006 (2)
C250.030 (3)0.030 (2)0.021 (3)0.005 (2)0.003 (3)0.006 (2)
C150.033 (3)0.026 (2)0.021 (3)0.0076 (19)0.000 (3)0.0043 (19)
C110.030 (3)0.028 (2)0.019 (3)0.008 (2)0.002 (2)0.006 (2)
C230.026 (3)0.062 (4)0.030 (4)0.006 (3)0.002 (3)0.015 (3)
C240.027 (3)0.046 (3)0.030 (3)0.005 (2)0.008 (3)0.008 (2)
C160.024 (2)0.027 (2)0.020 (3)0.0046 (18)0.001 (2)0.010 (2)
C130.024 (3)0.052 (3)0.038 (4)0.000 (2)0.009 (3)0.017 (3)
C220.030 (3)0.049 (3)0.028 (3)0.008 (3)0.005 (3)0.003 (2)
Geometric parameters (Å, º) top
S1—C111.792 (5)C14—C151.364 (6)
S1—S22.061 (2)C14—C131.380 (8)
S2—C211.791 (5)C14—H140.93
O2W—H3W0.86 (2)C12—C131.375 (8)
O2W—H4W0.86 (2)C12—C111.396 (7)
N2—C261.468 (6)C12—H120.93
N2—H2A0.89C25—C241.375 (7)
N2—H2B0.89C25—H250.93
N2—H2C0.89C15—C161.391 (7)
C21—C221.380 (7)C15—H150.93
C21—C261.386 (7)C11—C161.391 (7)
O1W—H1W0.852 (19)C23—C241.358 (8)
O1W—H2W0.858 (19)C23—C221.399 (8)
N1—C161.469 (6)C23—H230.93
N1—H1A0.89C24—H240.93
N1—H1B0.89C13—H130.93
N1—H1C0.89C22—H220.93
C26—C251.380 (7)
C11—S1—S2103.43 (17)C13—C12—H12120
C21—S2—S1104.74 (18)C11—C12—H12120
H3W—O2W—H4W106 (6)C24—C25—C26119.4 (5)
C26—N2—H2A109.5C24—C25—H25120.3
C26—N2—H2B109.5C26—C25—H25120.3
H2A—N2—H2B109.5C14—C15—C16119.9 (5)
C26—N2—H2C109.5C14—C15—H15120
H2A—N2—H2C109.5C16—C15—H15120
H2B—N2—H2C109.5C16—C11—C12118.5 (4)
C22—C21—C26118.9 (5)C16—C11—S1120.7 (4)
C22—C21—S2120.3 (4)C12—C11—S1120.8 (4)
C26—C21—S2120.6 (4)C24—C23—C22120.4 (5)
H1W—O1W—H2W114 (3)C24—C23—H23119.8
C16—N1—H1A109.5C22—C23—H23119.8
C16—N1—H1B109.5C23—C24—C25120.5 (5)
H1A—N1—H1B109.5C23—C24—H24119.7
C16—N1—H1C109.5C25—C24—H24119.7
H1A—N1—H1C109.5C15—C16—C11120.7 (4)
H1B—N1—H1C109.5C15—C16—N1118.7 (4)
C25—C26—C21121.0 (4)C11—C16—N1120.6 (4)
C25—C26—N2118.1 (4)C12—C13—C14120.9 (5)
C21—C26—N2120.8 (4)C12—C13—H13119.5
C15—C14—C13120.0 (5)C14—C13—H13119.5
C15—C14—H14120C21—C22—C23119.6 (5)
C13—C14—H14120C21—C22—H22120.2
C13—C12—C11120.0 (5)C23—C22—H22120.2
C11—S1—S2—C2196.8 (2)C22—C23—C24—C252.1 (8)
S1—S2—C21—C2287.5 (5)C26—C25—C24—C230.7 (8)
S1—S2—C21—C2696.2 (4)C14—C15—C16—C111.2 (7)
C22—C21—C26—C250.7 (8)C14—C15—C16—N1178.3 (4)
S2—C21—C26—C25175.7 (4)C12—C11—C16—C150.3 (7)
C22—C21—C26—N2177.1 (4)S1—C11—C16—C15177.5 (4)
S2—C21—C26—N26.5 (6)C12—C11—C16—N1179.1 (4)
C21—C26—C25—C240.7 (7)S1—C11—C16—N13.0 (6)
N2—C26—C25—C24177.1 (5)C11—C12—C13—C142.1 (8)
C13—C14—C15—C160.4 (7)C15—C14—C13—C121.2 (8)
C13—C12—C11—C161.3 (7)C26—C21—C22—C230.8 (8)
C13—C12—C11—S1179.1 (4)S2—C21—C22—C23177.2 (4)
S2—S1—C11—C16103.3 (4)C24—C23—C22—C212.2 (9)
S2—S1—C11—C1278.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1Wi0.891.832.723 (6)178
N1—H1B···Cl2i0.892.243.108 (4)166
N1—H1C···Cl1i0.892.253.103 (4)160
N2—H2A···O2Wii0.891.842.727 (6)177
N2—H2B···Cl2iii0.892.263.111 (4)160
N2—H2C···Cl20.892.303.157 (4)163
O2W—H4W···Cl20.86 (5)2.36 (5)3.157 (5)155 (5)
O2W—H3W···Cl1iv0.85 (5)2.23 (5)3.078 (4)171 (6)
O1W—H1W···Cl1v0.85 (5)2.27 (5)3.096 (5)167 (5)
O1W—H2W···Cl1iv0.86 (5)2.27 (5)3.127 (5)176 (7)
Symmetry codes: (i) x+2, y, z+1/2; (ii) x, y, z1; (iii) x+2, y, z1/2; (iv) x, y, z+1; (v) x+2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H14N2S22+·2Cl·2H2O
Mr357.32
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)150
a, b, c (Å)17.826 (7), 13.358 (5), 7.120 (3)
V3)1695.4 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.16 × 0.13 × 0.11
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10760, 3584, 2409
Rint0.097
(sin θ/λ)max1)0.678
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.134, 1.05
No. of reflections3584
No. of parameters195
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.47
Absolute structureFlack (1983), 1369 Friedel pairs
Absolute structure parameter0.12 (12)

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2011), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1Wi0.891.832.723 (6)178
N1—H1B···Cl2i0.892.243.108 (4)166
N1—H1C···Cl1i0.892.253.103 (4)160
N2—H2A···O2Wii0.891.842.727 (6)177
N2—H2B···Cl2iii0.892.263.111 (4)160
N2—H2C···Cl20.892.303.157 (4)163
O2W—H4W···Cl20.86 (5)2.36 (5)3.157 (5)155 (5)
O2W—H3W···Cl1iv0.85 (5)2.23 (5)3.078 (4)171 (6)
O1W—H1W···Cl1v0.85 (5)2.27 (5)3.096 (5)167 (5)
O1W—H2W···Cl1iv0.86 (5)2.27 (5)3.127 (5)176 (7)
Symmetry codes: (i) x+2, y, z+1/2; (ii) x, y, z1; (iii) x+2, y, z1/2; (iv) x, y, z+1; (v) x+2, y+1, z+1/2.
 

Acknowledgements

This work is supported by the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université de Constantine, Algeria. Thanks are due to MESRS and ATRST (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique et l'Agence Thématique de Recherche en Sciences et Technologie - Algérie) via the PNR programme for financial support.

References

First citationBenmebarek, S., Boudraa, M., Bouacida, S. & Daran, J.-C. (2012). Acta Cryst. E68, o3207.  CSD CrossRef IUCr Journals Google Scholar
First citationBenmebarek, S., Boudraa, M., Bouacida, S. & Merazig, H. (2013). Acta Cryst. E69, o432.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoh, J. H., Fun, H.-K., Babu, M. & Kalluraya, B. (2010). Acta Cryst. E66, o292–o293.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, M. & Fan, C. (2009). Acta Cryst. E65, o2835.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, J.-M., Feng, Z.-Q. & Cheng, W. (2011). Acta Cryst. E67, o1197.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds