organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(2-Chloro­phen­yl)sulfon­yl]-3-nitro­benzamide

aDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur, Karnataka 572 103, India, bUniversity College of Science, Tumkur University, Tumkur, India, cDepartment of Studies and Research in Physics, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, and dDepartment of Chemistry, University College of Science, Tumkur University, Tumkur 572 103, India
*Correspondence e-mail: pasuchetan@yahoo.co.in

(Received 6 June 2013; accepted 7 June 2013; online 12 June 2013)

In the title compound, C13H9ClN2O5S, the dihedral angle between the benzene rings is 74.86 (11)°. The mol­ecule is twisted at the S atom, with a dihedral angle of 82.53 (13)° between the sulfonyl benzene ring and the S—N—C=O segment. In the crystal, mol­ecules are linked into inversion dimers through pairs of N—H⋯O hydrogen bonds, thereby forming R22(8) loops. Mol­ecules are linked into C(7) [010] chains by weak C—H⋯O hydrogen bonds, and C—H⋯π inter­actions are also observed.

Related literature

For similar structures, see: Gowda et al. (2009[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516.], 2010[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o794.]); Suchetan et al. (2011[Suchetan, P. A., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o930.], 2012[Suchetan, P. A., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o1507.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9ClN2O5S

  • Mr = 340.73

  • Orthorhombic, P b c a

  • a = 12.290 (8) Å

  • b = 13.548 (9) Å

  • c = 17.240 (11) Å

  • V = 2870 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 298 K

  • 0.32 × 0.26 × 0.18 mm

Data collection
  • Bruker APEXII diffractometer

  • 22957 measured reflections

  • 2523 independent reflections

  • 2170 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.095

  • S = 1.06

  • 2523 reflections

  • 203 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the nitro­benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2i 0.81 (2) 2.15 (2) 2.954 (3) 169 (2)
C11—H11⋯O3ii 0.93 2.50 3.411 (3) 166
C6—H6⋯Cgiii 0.93 2.72 3.550 (3) 150
Symmetry codes: (i) -x, -y, -z+1; (ii) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Diaryl acylsulfonamides are known as potent anti-tumor agents against a broad spectrum of human tumor xenografts (colon, lung, breast, ovary, and prostate) in nude mice. As part of our studies in this area, the structure of the title compound, (I), was determined.

In the title compound, C13H9ClN2O5S (I), the conformation of the N—H bond in the C—SO2—NH—C(O) segment is anti to the C=O bond. In the molecule, the conformation between the N—H bond and the ortho-chloro group in the sulfonyl benzene ring is syn. Similarly, the conformation between the N—H bond and the meta-nitro group in the benzoyl ring is syn. The dihedral angle between the two benzene rings is 74.86 (11)°, compared to the value of 80.3 (1)° in N-(benzoyl)-benzenesulfonamide (Gowda et al. 2009), 86.9 (2)o N-(3-nitrobenzoyl)-benzenesulfonamide (Suchetan et al. 2012), 73.3 (1)° in N-benzoyl-2-chlorobenzenesulfonamide (Gowda et al. 2010) and 85.4 (1)o in 2-chloro-N-(4-nitrobenzoyl)benzenesulfonamide (Suchetan et al. 2011). In the crystal, the molecules are linked into inversion dimers through N—H···O hydrogen bonds forming a R22(8) motif. The molecules are further linked along [010] through a weak C—H···O intermolecular interaction into C(7) chains. C—H···Cg (where Cg is the centroid of the nitrobenzene ring) interactions are also observed in the crystal structure.

Related literature top

For similar structures, see: Gowda et al. (2009, 2010); Suchetan et al. (2011, 2012).

Experimental top

The title compound was prepared by refluxing a mixture of 3-nitrobenzoic acid, 2-chlorobenzene sulfonamide and phosphorous oxy chloride for 2 h on a water bath. The resultant mixture was cooled and poured into ice cold water. The Solid obtained was filtered and washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. The filtered and dried solid was recrystallized to the constant melting point (483 K).

Colorless prisms of (I) were obtained from a slow evaporation of its ethanolic solution at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later restained to N—H = 0.81 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Structure description top

Diaryl acylsulfonamides are known as potent anti-tumor agents against a broad spectrum of human tumor xenografts (colon, lung, breast, ovary, and prostate) in nude mice. As part of our studies in this area, the structure of the title compound, (I), was determined.

In the title compound, C13H9ClN2O5S (I), the conformation of the N—H bond in the C—SO2—NH—C(O) segment is anti to the C=O bond. In the molecule, the conformation between the N—H bond and the ortho-chloro group in the sulfonyl benzene ring is syn. Similarly, the conformation between the N—H bond and the meta-nitro group in the benzoyl ring is syn. The dihedral angle between the two benzene rings is 74.86 (11)°, compared to the value of 80.3 (1)° in N-(benzoyl)-benzenesulfonamide (Gowda et al. 2009), 86.9 (2)o N-(3-nitrobenzoyl)-benzenesulfonamide (Suchetan et al. 2012), 73.3 (1)° in N-benzoyl-2-chlorobenzenesulfonamide (Gowda et al. 2010) and 85.4 (1)o in 2-chloro-N-(4-nitrobenzoyl)benzenesulfonamide (Suchetan et al. 2011). In the crystal, the molecules are linked into inversion dimers through N—H···O hydrogen bonds forming a R22(8) motif. The molecules are further linked along [010] through a weak C—H···O intermolecular interaction into C(7) chains. C—H···Cg (where Cg is the centroid of the nitrobenzene ring) interactions are also observed in the crystal structure.

For similar structures, see: Gowda et al. (2009, 2010); Suchetan et al. (2011, 2012).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines. Carbon bounded hydrogen atoms are ommitted for clarity.
[Figure 3] Fig. 3. Display of C—H···O interactions among molecules along b axis forming C(7) chains.
[Figure 4] Fig. 4. Stacking of molecules along b axis through C—H···Cg interactions. Cg is the centroid of the nitrobenzene ring
N-[(2-Chlorophenyl)sulfonyl]-3-nitrobenzamide top
Crystal data top
C13H9ClN2O5SPrism
Mr = 340.73Dx = 1.577 Mg m3
Orthorhombic, PbcaMelting point: 483 K
Hall symbol: -P 2ac 2abMo Kα radiation, λ = 0.71073 Å
a = 12.290 (8) ÅCell parameters from 456 reflections
b = 13.548 (9) Åθ = 2.4–25.0°
c = 17.240 (11) ŵ = 0.44 mm1
V = 2870 (3) Å3T = 298 K
Z = 8Prism, colourless
F(000) = 13920.32 × 0.26 × 0.18 mm
Data collection top
Bruker APEXII
diffractometer
2170 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.059
Graphite monochromatorθmax = 25.0°, θmin = 2.4°
phi and ω scansh = 1414
22957 measured reflectionsk = 1616
2523 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0417P)2 + 1.3036P]
where P = (Fo2 + 2Fc2)/3
2523 reflections(Δ/σ)max = 0.009
203 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C13H9ClN2O5SV = 2870 (3) Å3
Mr = 340.73Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.290 (8) ŵ = 0.44 mm1
b = 13.548 (9) ÅT = 298 K
c = 17.240 (11) Å0.32 × 0.26 × 0.18 mm
Data collection top
Bruker APEXII
diffractometer
2170 reflections with I > 2σ(I)
22957 measured reflectionsRint = 0.059
2523 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.19 e Å3
2523 reflectionsΔρmin = 0.34 e Å3
203 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H1N10.0482 (19)0.0080 (17)0.5829 (13)0.038 (7)*
Cl0.15389 (6)0.15122 (5)0.47697 (4)0.0619 (2)
O10.14765 (12)0.14055 (11)0.63851 (9)0.0459 (4)
O20.08993 (13)0.09375 (11)0.50819 (9)0.0417 (4)
O30.04676 (15)0.10265 (12)0.73735 (9)0.0500 (4)
C70.06345 (17)0.03864 (15)0.69067 (12)0.0360 (5)
C10.01089 (17)0.23801 (15)0.57672 (11)0.0326 (5)
N10.02055 (16)0.04195 (13)0.61651 (11)0.0372 (5)
C90.10982 (18)0.13960 (15)0.66930 (12)0.0354 (5)
H90.05180.14580.63500.042*
C20.09947 (18)0.24942 (17)0.52799 (12)0.0406 (5)
C80.13061 (17)0.05097 (15)0.70592 (11)0.0333 (5)
O40.21793 (19)0.37931 (13)0.65266 (13)0.0796 (7)
N20.15398 (19)0.31165 (14)0.64382 (12)0.0524 (6)
C30.1469 (2)0.3409 (2)0.51955 (15)0.0565 (7)
H30.20650.34870.48680.068*
C120.2825 (2)0.12449 (18)0.77063 (14)0.0471 (6)
H120.34070.11890.80480.057*
C130.21677 (19)0.04398 (17)0.75771 (12)0.0427 (6)
H130.23000.01500.78360.051*
C100.17671 (19)0.21855 (15)0.68463 (12)0.0378 (5)
C50.0202 (2)0.40986 (18)0.60766 (16)0.0587 (7)
H50.00620.46420.63470.070*
C60.0285 (2)0.31882 (16)0.61681 (14)0.0452 (6)
H60.08780.31190.64990.054*
O50.0744 (2)0.31613 (14)0.60277 (13)0.0822 (7)
C110.2639 (2)0.21325 (18)0.73390 (13)0.0443 (6)
H110.30890.26740.74230.053*
C40.1068 (2)0.4203 (2)0.55921 (16)0.0629 (8)
H40.13890.48200.55300.076*
S10.06284 (4)0.12695 (4)0.58416 (3)0.03356 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0569 (4)0.0694 (5)0.0596 (4)0.0047 (3)0.0229 (3)0.0149 (3)
O10.0407 (9)0.0430 (9)0.0540 (10)0.0002 (7)0.0146 (8)0.0011 (7)
O20.0465 (9)0.0391 (8)0.0394 (9)0.0032 (7)0.0112 (7)0.0044 (7)
O30.0670 (12)0.0416 (9)0.0415 (9)0.0036 (8)0.0007 (8)0.0112 (8)
C70.0422 (12)0.0328 (11)0.0328 (12)0.0053 (9)0.0023 (10)0.0001 (9)
C10.0361 (11)0.0314 (11)0.0301 (11)0.0002 (9)0.0001 (9)0.0002 (9)
N10.0493 (12)0.0319 (10)0.0305 (10)0.0089 (9)0.0011 (9)0.0029 (8)
C90.0402 (12)0.0358 (12)0.0301 (11)0.0001 (9)0.0034 (10)0.0031 (9)
C20.0395 (12)0.0466 (13)0.0356 (12)0.0014 (10)0.0034 (10)0.0027 (10)
C80.0407 (12)0.0326 (11)0.0267 (11)0.0025 (9)0.0007 (9)0.0039 (8)
O40.1089 (17)0.0447 (11)0.0853 (15)0.0325 (11)0.0239 (13)0.0087 (10)
N20.0765 (16)0.0340 (11)0.0467 (12)0.0083 (11)0.0071 (12)0.0016 (9)
C30.0521 (16)0.0654 (18)0.0521 (16)0.0171 (13)0.0112 (13)0.0027 (13)
C120.0413 (13)0.0607 (16)0.0392 (13)0.0037 (12)0.0109 (11)0.0101 (11)
C130.0540 (14)0.0412 (12)0.0331 (12)0.0089 (11)0.0054 (11)0.0042 (10)
C100.0467 (13)0.0345 (11)0.0321 (11)0.0027 (10)0.0023 (10)0.0030 (9)
C50.084 (2)0.0343 (13)0.0581 (17)0.0027 (13)0.0037 (15)0.0073 (12)
C60.0565 (15)0.0357 (12)0.0433 (14)0.0024 (11)0.0087 (11)0.0038 (10)
O50.1074 (18)0.0453 (11)0.0940 (16)0.0102 (11)0.0529 (14)0.0155 (10)
C110.0459 (14)0.0475 (14)0.0395 (12)0.0067 (11)0.0023 (11)0.0109 (11)
C40.079 (2)0.0454 (15)0.0646 (18)0.0224 (14)0.0006 (16)0.0020 (13)
S10.0352 (3)0.0302 (3)0.0353 (3)0.0017 (2)0.0007 (2)0.0008 (2)
Geometric parameters (Å, º) top
Cl—C21.729 (2)O4—N21.217 (3)
O1—S11.4137 (17)N2—O51.209 (3)
O2—S11.4243 (17)N2—C101.471 (3)
O3—C71.201 (3)C3—C41.367 (4)
C7—N11.384 (3)C3—H30.9300
C7—C81.491 (3)C12—C131.376 (3)
C1—C61.382 (3)C12—C111.378 (3)
C1—C21.384 (3)C12—H120.9300
C1—S11.761 (2)C13—H130.9300
N1—S11.639 (2)C10—C111.370 (3)
N1—H1N10.81 (2)C5—C41.360 (4)
C9—C101.375 (3)C5—C61.380 (3)
C9—C81.381 (3)C5—H50.9300
C9—H90.9300C6—H60.9300
C2—C31.378 (3)C11—H110.9300
C8—C131.388 (3)C4—H40.9300
O3—C7—N1122.1 (2)C11—C12—H12119.3
O3—C7—C8124.3 (2)C12—C13—C8119.9 (2)
N1—C7—C8113.60 (18)C12—C13—H13120.1
C6—C1—C2119.4 (2)C8—C13—H13120.1
C6—C1—S1117.40 (17)C11—C10—C9123.1 (2)
C2—C1—S1122.98 (16)C11—C10—N2119.4 (2)
C7—N1—S1125.13 (16)C9—C10—N2117.5 (2)
C7—N1—H1N1118.7 (16)C4—C5—C6120.2 (2)
S1—N1—H1N1114.6 (16)C4—C5—H5119.9
C10—C9—C8118.6 (2)C6—C5—H5119.9
C10—C9—H9120.7C5—C6—C1119.9 (2)
C8—C9—H9120.7C5—C6—H6120.0
C3—C2—C1119.8 (2)C1—C6—H6120.0
C3—C2—Cl118.35 (19)C10—C11—C12117.4 (2)
C1—C2—Cl121.81 (17)C10—C11—H11121.3
C9—C8—C13119.6 (2)C12—C11—H11121.3
C9—C8—C7121.66 (19)C5—C4—C3120.5 (2)
C13—C8—C7118.69 (19)C5—C4—H4119.7
O5—N2—O4123.9 (2)C3—C4—H4119.7
O5—N2—C10118.5 (2)O1—S1—O2118.58 (11)
O4—N2—C10117.6 (2)O1—S1—N1109.09 (10)
C4—C3—C2120.2 (2)O2—S1—N1103.72 (10)
C4—C3—H3119.9O1—S1—C1108.43 (10)
C2—C3—H3119.9O2—S1—C1108.86 (10)
C13—C12—C11121.3 (2)N1—S1—C1107.65 (11)
C13—C12—H12119.3
O3—C7—N1—S14.0 (3)O4—N2—C10—C113.8 (3)
C8—C7—N1—S1175.78 (15)O5—N2—C10—C94.4 (3)
C6—C1—C2—C30.4 (3)O4—N2—C10—C9174.4 (2)
S1—C1—C2—C3173.82 (19)C4—C5—C6—C10.1 (4)
C6—C1—C2—Cl179.23 (18)C2—C1—C6—C50.3 (3)
S1—C1—C2—Cl6.5 (3)S1—C1—C6—C5174.2 (2)
C10—C9—C8—C130.9 (3)C9—C10—C11—C121.6 (3)
C10—C9—C8—C7178.37 (19)N2—C10—C11—C12179.7 (2)
O3—C7—C8—C9149.7 (2)C13—C12—C11—C100.7 (3)
N1—C7—C8—C930.1 (3)C6—C5—C4—C30.5 (4)
O3—C7—C8—C1331.0 (3)C2—C3—C4—C50.4 (4)
N1—C7—C8—C13149.2 (2)C7—N1—S1—O148.2 (2)
C1—C2—C3—C40.0 (4)C7—N1—S1—O2175.44 (18)
Cl—C2—C3—C4179.6 (2)C7—N1—S1—C169.3 (2)
C11—C12—C13—C80.9 (4)C6—C1—S1—O15.5 (2)
C9—C8—C13—C121.7 (3)C2—C1—S1—O1179.83 (18)
C7—C8—C13—C12177.6 (2)C6—C1—S1—O2124.79 (18)
C8—C9—C10—C110.8 (3)C2—C1—S1—O249.5 (2)
C8—C9—C10—N2178.95 (19)C6—C1—S1—N1123.40 (18)
O5—N2—C10—C11177.3 (2)C2—C1—S1—N162.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the nitrobenzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.81 (2)2.15 (2)2.954 (3)169 (2)
C11—H11···O3ii0.932.503.411 (3)166
C6—H6···Cgiii0.932.723.550 (3)150
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y1/2, z; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H9ClN2O5S
Mr340.73
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)12.290 (8), 13.548 (9), 17.240 (11)
V3)2870 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.32 × 0.26 × 0.18
Data collection
DiffractometerBruker APEXII
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
22957, 2523, 2170
Rint0.059
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.095, 1.06
No. of reflections2523
No. of parameters203
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.34

Computer programs: APEX2 (Bruker, 2009), APEX2 and SAINT-Plus (Bruker, 2009), SAINT-Plus and XPREP (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the nitrobenzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.81 (2)2.15 (2)2.954 (3)169 (2)
C11—H11···O3ii0.932.503.411 (3)166
C6—H6···Cgiii0.932.723.550 (3)150
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y1/2, z; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

PAS thanks the University Grants Commission (UGC), India, for financial support under its Minor Research Project scheme.

References

First citationBruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o794.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuchetan, P. A., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o930.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSuchetan, P. A., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o1507.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds