organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-({[Bis(2-methyl­prop­yl)carbamo­thio­yl]amino}­carbon­yl)benzamide

aDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 24 June 2013; accepted 25 June 2013; online 29 June 2013)

In the title compound, C17H25N3O2S, the terminal and central amide groups are, respectively, twisted and coplanar with the attached benzene ring [O—C—C—C torsion angles = 22.7 (3) and 5.4 (3)°]. In the central part of the mol­ecule, the amide and thio­amide residues are approximately perpendicular [C—N—C—S torsion angle = −104.98 (18)°]. Supra­molecular layers with a zigzag topology are formed in the crystal packing by N—H⋯O, N—H⋯S and C—H⋯O inter­actions; these stack along c, being separated by hydro­phobic inter­actions.

Related literature

For the preparation of bipodal acyl­thio­urea derivatives, see: Bourne et al. (2005[Bourne, S. A., Hallale, O. & Koch, K. R. (2005). Cryst. Growth Des. 5, 307-312.]). For a related structure, see: Selvakumaran et al. (2013[Selvakumaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o1184-o1185.]).

[Scheme 1]

Experimental

Crystal data
  • C17H25N3O2S

  • Mr = 335.46

  • Orthorhombic, P 21 21 2

  • a = 13.9870 (4) Å

  • b = 15.7103 (4) Å

  • c = 8.5532 (3) Å

  • V = 1879.48 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 100 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Tmin = 0.930, Tmax = 0.964

  • 6635 measured reflections

  • 4007 independent reflections

  • 3694 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.097

  • S = 1.00

  • 4007 reflections

  • 218 parameters

  • 30 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983)[Flack, H. D. (1983). Acta Cryst. A39, 876-881.], 1590 Friedel pairs

  • Flack parameter: −0.03 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H12⋯O2i 0.88 2.09 2.887 (2) 150
N2—H2⋯O1ii 0.88 1.97 2.797 (2) 155
N1—H11⋯S1ii 0.88 2.54 3.3908 (18) 163
C7—H7⋯O1ii 0.95 2.32 3.210 (2) 155
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+1]; (ii) -x, -y+1, z.

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, (I), was obtained as a by-product in an attempt to prepare a bipodal acylthiourea derivative (Bourne et al., 2005) from diisobutylamine, isophthaloyl dichloride and potassium thiocyanate in acetone. Crystals were grown from a solution of the compound in acetonitrile/dimethyl formamide mixture (1:1). In (I), Fig. 1, the terminal [O1—C1—C2—C7 torsion angle = 22.7 (3)°] and central [C5—C6—C8—O2 = 5.4 (3)°] amide substituents are twisted and co-planar with the attached benzene ring, respectively. A twist is also noted between the amide and adjacent thioamide residues as seen in the C8—N2—C9—S1 torsion angle of -104.98 (18)°. The methylpropyl substituents lie to either side and are approximately perpendicular to the C3N plane with the C9—N3—C10—C11/C11' (50:50 disorder in the isopropyl group) torsion angles being 126.0 (3) and 87.5 (3)°, respectively, and 100.4 (2)° for C9—N3—C14—C1. The aforementioned conformation matches that found in the accompanying paper (Selvakumaran et al., 2013). In the crystal packing, supramolecular layers with a zigzag topology are formed by N—H···O, N—H···S and C—H···O interactions, Fig. 2 and Table 1. Layers stack along the c axis being separated by hydrophobic intertactions.

Related literature top

For the preparation of bipodal acylthiourea derivatives, see: Bourne et al. (2005). For a related structure, see: Selvakumaran et al. (2013).

Experimental top

Isophthaloyl dichloride (2.0302 g, 10 mmol) dissolved in acetone (80 ml), was placed in a dropping funnel and added drop wise with stirring to potassium thiocyanate (1.9436 g, 20 mmol) dissolved in acetone (80 ml), under N2 atmosphere, in a three-necked round bottom flask. The mixture was heated to reflux for 30 minutes and then allowed to cool. A solution of diisobutylamine (2.2850 g, 20 mmol) in acetone (80 ml) was added drop wise from a dropping funnel to the reaction mixture and the resulting mixture was stirred for 2 h at room temperature. Then, hydrochloric acid (0.1 N, 300 ml) was added and the resulting white solid was filtered off, washed with water and dried in vacuo. Single crystals were grown at room temperature from acetonitrile/dimethyl formamide mixture (1:1) F T—IR (KBr): ν(NH2) 3217 & 3192, ν(N—H) 3405, ν(CO) 1671 (with adjacent NH2), ν(CO) 1652 (with adjacent NH), ν(CC) 1593, ν(CS) 1257 cm-1. UV-Visible (DMF): νmax; 264, 283, 363 nm.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 1.00 Å, Uiso(H)= 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atoms were similarly constrained [N—H = 0.88 Å, and with Uiso(H)= 1.2Ueq(N)]. One isopropyl arm is disordered; the disorder refined to exactly 0.5. The 1,2-related distances were restrained to 1.54±0.01 Å and the 1,3-related ones to 2.51±0.01 Å. The anisotropic displacement parameters of the primed atoms were set to those of the unprimed ones, and the anisotropic displacement parameters were restrained to be nearly isotropic.

Structure description top

The title compound, (I), was obtained as a by-product in an attempt to prepare a bipodal acylthiourea derivative (Bourne et al., 2005) from diisobutylamine, isophthaloyl dichloride and potassium thiocyanate in acetone. Crystals were grown from a solution of the compound in acetonitrile/dimethyl formamide mixture (1:1). In (I), Fig. 1, the terminal [O1—C1—C2—C7 torsion angle = 22.7 (3)°] and central [C5—C6—C8—O2 = 5.4 (3)°] amide substituents are twisted and co-planar with the attached benzene ring, respectively. A twist is also noted between the amide and adjacent thioamide residues as seen in the C8—N2—C9—S1 torsion angle of -104.98 (18)°. The methylpropyl substituents lie to either side and are approximately perpendicular to the C3N plane with the C9—N3—C10—C11/C11' (50:50 disorder in the isopropyl group) torsion angles being 126.0 (3) and 87.5 (3)°, respectively, and 100.4 (2)° for C9—N3—C14—C1. The aforementioned conformation matches that found in the accompanying paper (Selvakumaran et al., 2013). In the crystal packing, supramolecular layers with a zigzag topology are formed by N—H···O, N—H···S and C—H···O interactions, Fig. 2 and Table 1. Layers stack along the c axis being separated by hydrophobic intertactions.

For the preparation of bipodal acylthiourea derivatives, see: Bourne et al. (2005). For a related structure, see: Selvakumaran et al. (2013).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A plan view of the zigzag supramolecular layer in (I). The N—H···O, N—H···S and C—H···O interactions are shown as blue, orange and purple dashed lines, respectively.
[Figure 3] Fig. 3. A view of the unit-cell contents in projection down the b axis in (I). The N—H···O, N—H···S and C—H···O interactions are shown as blue, orange and purple dashed lines, respectively.
3-({[Bis(2-methylpropyl)carbamothioyl]amino}carbonyl)benzamide top
Crystal data top
C17H25N3O2SF(000) = 720
Mr = 335.46Dx = 1.186 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 3818 reflections
a = 13.9870 (4) Åθ = 2.4–29.3°
b = 15.7103 (4) ŵ = 0.18 mm1
c = 8.5532 (3) ÅT = 100 K
V = 1879.48 (10) Å3Block, colourless
Z = 40.40 × 0.30 × 0.20 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4007 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3694 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.020
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.4°
ω scanh = 1718
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1720
Tmin = 0.930, Tmax = 0.964l = 710
6635 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0461P)2 + 0.7082P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
4007 reflectionsΔρmax = 0.27 e Å3
218 parametersΔρmin = 0.24 e Å3
30 restraintsAbsolute structure: Flack (1983), 1590 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (8)
Crystal data top
C17H25N3O2SV = 1879.48 (10) Å3
Mr = 335.46Z = 4
Orthorhombic, P21212Mo Kα radiation
a = 13.9870 (4) ŵ = 0.18 mm1
b = 15.7103 (4) ÅT = 100 K
c = 8.5532 (3) Å0.40 × 0.30 × 0.20 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4007 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
3694 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.964Rint = 0.020
6635 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.097Δρmax = 0.27 e Å3
S = 1.00Δρmin = 0.24 e Å3
4007 reflectionsAbsolute structure: Flack (1983), 1590 Friedel pairs
218 parametersAbsolute structure parameter: 0.03 (8)
30 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.01768 (4)0.15262 (3)0.66311 (7)0.03126 (14)
O10.05091 (10)0.60837 (8)0.73835 (19)0.0262 (3)
O20.26459 (10)0.25192 (9)0.70500 (17)0.0268 (3)
N10.12011 (13)0.68211 (11)0.5438 (2)0.0311 (4)
H110.07910.72430.55330.037*
H120.16550.68460.47270.037*
N20.11244 (11)0.28966 (10)0.7599 (2)0.0199 (3)
H20.07050.33070.77420.024*
N30.12403 (12)0.17031 (10)0.9200 (2)0.0253 (4)
C10.11351 (14)0.61468 (12)0.6368 (2)0.0222 (4)
C20.18533 (14)0.54440 (12)0.6160 (2)0.0207 (4)
C30.27479 (14)0.55770 (13)0.5504 (3)0.0247 (4)
H30.29210.61270.51360.030*
C40.33900 (16)0.49082 (14)0.5385 (3)0.0299 (5)
H40.40060.50010.49480.036*
C50.31354 (15)0.41050 (13)0.5902 (3)0.0260 (4)
H50.35780.36490.58170.031*
C60.22343 (13)0.39591 (12)0.6546 (2)0.0204 (4)
C70.15980 (13)0.46342 (12)0.6693 (2)0.0196 (4)
H70.09890.45450.71570.024*
C80.20241 (14)0.30731 (12)0.7075 (2)0.0202 (4)
C90.08818 (13)0.20345 (12)0.7909 (2)0.0221 (4)
C100.11303 (17)0.07868 (12)0.9522 (3)0.0371 (6)
H10A0.05080.05920.91020.045*0.500 (4)
H10B0.11220.06971.06680.045*0.500 (4)
H10C0.06960.07221.04290.045*0.500 (4)
H10D0.08120.05220.86110.045*0.500 (4)
C110.1901 (3)0.0265 (3)0.8831 (6)0.0295 (8)0.500 (4)
H11A0.17660.02750.76830.035*0.500 (4)
C120.1752 (7)0.0672 (4)0.9301 (7)0.0374 (13)0.500 (4)
H12A0.10780.07650.95660.056*0.500 (4)
H12B0.21520.08051.02090.056*0.500 (4)
H12C0.19300.10420.84260.056*0.500 (4)
C130.2851 (7)0.0534 (13)0.895 (3)0.0506 (12)0.500 (4)
H13A0.28860.11490.87590.076*0.500 (4)
H13B0.32410.02340.81750.076*0.500 (4)
H13C0.30920.04091.00020.076*0.500 (4)
C11'0.2013 (3)0.0304 (3)0.9852 (6)0.0295 (8)0.50
H11'0.21890.04731.09420.035*0.500 (4)
C12'0.1753 (7)0.0640 (4)0.9979 (7)0.0374 (13)0.50
H12D0.10740.06961.02370.056*0.500 (4)
H12E0.21390.09061.08010.056*0.500 (4)
H12F0.18810.09220.89780.056*0.500 (4)
C13'0.2927 (7)0.0473 (13)0.889 (3)0.0506 (12)0.50
H13D0.29910.10850.86960.076*0.500 (4)
H13E0.28830.01720.78860.076*0.500 (4)
H13F0.34850.02680.94670.076*0.500 (4)
C140.16514 (15)0.22155 (13)1.0474 (3)0.0274 (5)
H14A0.18320.27821.00630.033*
H14B0.22400.19351.08610.033*
C150.09549 (17)0.23284 (18)1.1831 (3)0.0410 (6)
H150.08270.17561.22980.049*
C160.00072 (19)0.2703 (2)1.1290 (3)0.0612 (9)
H16A0.02730.23351.04860.092*
H16B0.01160.32721.08540.092*
H16C0.04310.27441.21810.092*
C170.1423 (2)0.28857 (19)1.3076 (3)0.0475 (7)
H17A0.20210.26221.34210.071*
H17B0.09890.29441.39710.071*
H17C0.15570.34491.26380.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0270 (3)0.0254 (2)0.0414 (3)0.0024 (2)0.0020 (2)0.0130 (2)
O10.0196 (6)0.0223 (7)0.0367 (9)0.0022 (6)0.0062 (6)0.0054 (6)
O20.0231 (7)0.0245 (7)0.0329 (9)0.0073 (6)0.0058 (6)0.0032 (6)
N10.0249 (9)0.0254 (8)0.0431 (12)0.0041 (7)0.0082 (8)0.0128 (8)
N20.0163 (7)0.0166 (7)0.0268 (9)0.0017 (6)0.0003 (7)0.0011 (7)
N30.0212 (8)0.0179 (8)0.0370 (10)0.0007 (6)0.0017 (7)0.0028 (7)
C10.0179 (9)0.0216 (9)0.0272 (11)0.0012 (8)0.0013 (8)0.0026 (8)
C20.0189 (9)0.0230 (9)0.0202 (10)0.0002 (8)0.0005 (7)0.0013 (8)
C30.0226 (9)0.0235 (9)0.0280 (11)0.0006 (8)0.0041 (8)0.0051 (9)
C40.0213 (10)0.0330 (11)0.0354 (12)0.0006 (9)0.0101 (10)0.0022 (10)
C50.0233 (10)0.0241 (10)0.0307 (12)0.0052 (8)0.0055 (9)0.0014 (9)
C60.0200 (9)0.0227 (9)0.0186 (9)0.0006 (7)0.0002 (8)0.0008 (8)
C70.0176 (8)0.0218 (9)0.0196 (9)0.0002 (7)0.0002 (8)0.0001 (8)
C80.0213 (9)0.0221 (9)0.0173 (10)0.0021 (8)0.0012 (7)0.0019 (7)
C90.0174 (8)0.0176 (9)0.0312 (12)0.0027 (7)0.0045 (8)0.0034 (8)
C100.0390 (13)0.0167 (10)0.0556 (16)0.0022 (9)0.0046 (12)0.0065 (10)
C110.0374 (17)0.0237 (13)0.0274 (17)0.0075 (12)0.0093 (16)0.0005 (16)
C120.0503 (17)0.0218 (13)0.040 (4)0.0101 (12)0.019 (4)0.004 (3)
C130.0451 (18)0.042 (2)0.065 (2)0.0223 (19)0.0127 (18)0.0127 (18)
C11'0.0374 (17)0.0237 (13)0.0274 (17)0.0075 (12)0.0093 (16)0.0005 (16)
C12'0.0503 (17)0.0218 (13)0.040 (4)0.0101 (12)0.019 (4)0.004 (3)
C13'0.0451 (18)0.042 (2)0.065 (2)0.0223 (19)0.0127 (18)0.0127 (18)
C140.0238 (10)0.0267 (10)0.0318 (12)0.0025 (8)0.0064 (9)0.0066 (9)
C150.0399 (13)0.0582 (16)0.0249 (12)0.0110 (12)0.0014 (11)0.0082 (11)
C160.0314 (13)0.117 (3)0.0349 (15)0.0081 (16)0.0033 (11)0.0206 (16)
C170.0487 (15)0.0643 (17)0.0297 (14)0.0072 (13)0.0058 (12)0.0027 (12)
Geometric parameters (Å, º) top
S1—C91.675 (2)C11—C131.398 (13)
O1—C11.237 (2)C11—C121.540 (7)
O2—C81.230 (2)C11—H11A1.0000
N1—C11.328 (3)C12—H12A0.9800
N1—H110.8800C12—H12B0.9800
N1—H120.8800C12—H12C0.9800
N2—C81.364 (2)C13—H13A0.9800
N2—C91.421 (2)C13—H13B0.9800
N2—H20.8800C13—H13C0.9800
N3—C91.320 (3)C11'—C13'1.545 (9)
N3—C141.472 (3)C11'—C12'1.531 (6)
N3—C101.474 (2)C11'—H11'1.0000
C1—C21.503 (3)C12'—H12D0.9800
C2—C31.387 (3)C12'—H12E0.9800
C2—C71.398 (3)C12'—H12F0.9800
C3—C41.386 (3)C13'—H13D0.9800
C3—H30.9500C13'—H13E0.9800
C4—C51.384 (3)C13'—H13F0.9800
C4—H40.9500C14—C151.525 (3)
C5—C61.394 (3)C14—H14A0.9900
C5—H50.9500C14—H14B0.9900
C6—C71.390 (3)C15—C171.526 (4)
C6—C81.493 (3)C15—C161.523 (4)
C7—H70.9500C15—H151.0000
C10—C11'1.475 (4)C16—H16A0.9800
C10—C111.478 (5)C16—H16B0.9800
C10—H10A0.9900C16—H16C0.9800
C10—H10B0.9900C17—H17A0.9800
C10—H10C0.9900C17—H17B0.9800
C10—H10D0.9900C17—H17C0.9800
C1—N1—H11120.0C11—C12—H12A109.5
C1—N1—H12120.0C11—C12—H12B109.5
H11—N1—H12120.0H12A—C12—H12B109.5
C8—N2—C9118.37 (16)C11—C12—H12C109.5
C8—N2—H2120.8H12A—C12—H12C109.5
C9—N2—H2120.8H12B—C12—H12C109.5
C9—N3—C14123.52 (16)C11—C13—H13A109.5
C9—N3—C10120.15 (19)C11—C13—H13B109.5
C14—N3—C10115.87 (19)H13A—C13—H13B109.5
O1—C1—N1122.25 (18)C11—C13—H13C109.5
O1—C1—C2119.81 (17)H13A—C13—H13C109.5
N1—C1—C2117.94 (18)H13B—C13—H13C109.5
C3—C2—C7119.97 (18)C10—C11'—C13'120.2 (8)
C3—C2—C1122.69 (17)C10—C11'—C12'108.2 (4)
C7—C2—C1117.33 (17)C13'—C11'—C12'113.6 (8)
C2—C3—C4120.00 (19)C10—C11'—H11'104.4
C2—C3—H3120.0C13'—C11'—H11'104.4
C4—C3—H3120.0C12'—C11'—H11'104.4
C5—C4—C3120.08 (19)C11'—C12'—H12D109.5
C5—C4—H4120.0C11'—C12'—H12E109.5
C3—C4—H4120.0H12D—C12'—H12E109.5
C4—C5—C6120.58 (19)C11'—C12'—H12F109.5
C4—C5—H5119.7H12D—C12'—H12F109.5
C6—C5—H5119.7H12E—C12'—H12F109.5
C7—C6—C5119.28 (18)C11'—C13'—H13D109.5
C7—C6—C8123.91 (17)C11'—C13'—H13E109.5
C5—C6—C8116.80 (17)H13D—C13'—H13E109.5
C6—C7—C2120.08 (18)C11'—C13'—H13F109.5
C6—C7—H7120.0H13D—C13'—H13F109.5
C2—C7—H7120.0H13E—C13'—H13F109.5
O2—C8—N2120.92 (18)N3—C14—C15112.17 (18)
O2—C8—C6120.99 (17)N3—C14—H14A109.2
N2—C8—C6118.08 (16)C15—C14—H14A109.2
N3—C9—N2116.19 (17)N3—C14—H14B109.2
N3—C9—S1125.57 (15)C15—C14—H14B109.2
N2—C9—S1118.24 (16)H14A—C14—H14B107.9
C11'—C10—N3116.8 (2)C14—C15—C17108.9 (2)
N3—C10—C11113.0 (2)C14—C15—C16111.7 (2)
N3—C10—H10A109.0C17—C15—C16111.3 (2)
C11—C10—H10A109.0C14—C15—H15108.3
N3—C10—H10B109.0C17—C15—H15108.3
C11—C10—H10B109.0C16—C15—H15108.3
H10A—C10—H10B107.8C15—C16—H16A109.5
C11'—C10—H10C108.1C15—C16—H16B109.5
N3—C10—H10C108.1H16A—C16—H16B109.5
C11'—C10—H10D108.1C15—C16—H16C109.5
N3—C10—H10D108.1H16A—C16—H16C109.5
H10C—C10—H10D107.3H16B—C16—H16C109.5
C13—C11—C10119.7 (9)C15—C17—H17A109.5
C13—C11—C12113.5 (9)C15—C17—H17B109.5
C10—C11—C12109.1 (4)H17A—C17—H17B109.5
C13—C11—H11A104.2C15—C17—H17C109.5
C10—C11—H11A104.2H17A—C17—H17C109.5
C12—C11—H11A104.2H17B—C17—H17C109.5
O1—C1—C2—C3155.8 (2)C10—N3—C9—N2172.35 (18)
N1—C1—C2—C324.2 (3)C14—N3—C9—S1164.30 (16)
O1—C1—C2—C722.7 (3)C10—N3—C9—S17.6 (3)
N1—C1—C2—C7157.3 (2)C8—N2—C9—N375.0 (2)
C7—C2—C3—C40.3 (3)C8—N2—C9—S1104.98 (18)
C1—C2—C3—C4178.1 (2)C9—N3—C10—C11'126.0 (3)
C2—C3—C4—C50.8 (4)C14—N3—C10—C11'61.5 (3)
C3—C4—C5—C60.0 (4)C9—N3—C10—C1187.5 (3)
C4—C5—C6—C71.2 (3)C14—N3—C10—C11100.0 (3)
C4—C5—C6—C8179.8 (2)C11'—C10—C11—C1360.3 (12)
C5—C6—C7—C21.7 (3)N3—C10—C11—C1344.0 (12)
C8—C6—C7—C2179.77 (19)C11'—C10—C11—C1272.9 (5)
C3—C2—C7—C61.0 (3)N3—C10—C11—C12177.1 (4)
C1—C2—C7—C6179.47 (18)N3—C10—C11'—C13'41.3 (10)
C9—N2—C8—O28.7 (3)C11—C10—C11'—C13'51.2 (9)
C9—N2—C8—C6171.83 (18)N3—C10—C11'—C12'174.1 (4)
C7—C6—C8—O2173.1 (2)C11—C10—C11'—C12'81.5 (5)
C5—C6—C8—O25.4 (3)C9—N3—C14—C15100.4 (2)
C7—C6—C8—N26.4 (3)C10—N3—C14—C1571.8 (2)
C5—C6—C8—N2175.10 (19)N3—C14—C15—C17178.37 (19)
C14—N3—C9—N215.8 (3)N3—C14—C15—C1655.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H12···O2i0.882.092.887 (2)150
N2—H2···O1ii0.881.972.797 (2)155
N1—H11···S1ii0.882.543.3908 (18)163
C7—H7···O1ii0.952.323.210 (2)155
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H25N3O2S
Mr335.46
Crystal system, space groupOrthorhombic, P21212
Temperature (K)100
a, b, c (Å)13.9870 (4), 15.7103 (4), 8.5532 (3)
V3)1879.48 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2013)
Tmin, Tmax0.930, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
6635, 4007, 3694
Rint0.020
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.097, 1.00
No. of reflections4007
No. of parameters218
No. of restraints30
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.24
Absolute structureFlack (1983), 1590 Friedel pairs
Absolute structure parameter0.03 (8)

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H12···O2i0.882.092.887 (2)150
N2—H2···O1ii0.881.972.797 (2)155
N1—H11···S1ii0.882.543.3908 (18)163
C7—H7···O1ii0.952.323.210 (2)155
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: kar@nitt.edu.

Acknowledgements

NS thanks the NITT for a Fellowship. The authors also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationBourne, S. A., Hallale, O. & Koch, K. R. (2005). Cryst. Growth Des. 5, 307–312.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSelvakumaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o1184–o1185.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds