organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-{[(Di­benzyl­carbamo­thio­yl)amino]­carbon­yl}benzamide

aDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 25 June 2013; accepted 25 June 2013; online 29 June 2013)

Two independent mol­ecules with quite similar conformations, A and B, comprise the asymmetric unit of the title compound, C23H21N3O2S. The terminal amide substituent is coplanar with the attached benzene ring [the O—C—C—C torsion angles are 174.0 (2) (A) and 6.3 (3)° (B)]. In the same way, the central amide group [C—C—C—O = 7.8 (3) (A) and 11.5 (3)° (B)] is approximately coplanar with the ring to which it is attached. A major twist is noted between the amide and adjacent thio­amide residues [C—N—C—S = −109.29 (19) (A) and −112.29 (19)° (B)]. In the crystal, supra­molecular chains along [100] are formed by N—H⋯O and N—H⋯S hydrogen bonding. These are connected into a three-dimensional architecture by C—H⋯π and ππ inter­actions [inter-centroid distance = 3.9157 (12) Å].

Related literature

For the preparation of bipodal acyl­thio­urea derivatives, see: Bourne et al. (2005[Bourne, S. A., Hallale, O. & Koch, K. R. (2005). Cryst. Growth Des. 5, 307-312.]). For a related structure, see: Selvakumaran et al. (2013[Selvakumaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o1183.]).

[Scheme 1]

Experimental

Crystal data
  • C23H21N3O2S

  • Mr = 403.49

  • Monoclinic, P 21 /n

  • a = 11.3448 (5) Å

  • b = 18.6100 (8) Å

  • c = 19.3282 (7) Å

  • β = 97.297 (4)°

  • V = 4047.7 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 100 K

  • 0.40 × 0.40 × 0.40 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Tmin = 0.827, Tmax = 1.000

  • 41058 measured reflections

  • 9360 independent reflections

  • 6863 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.124

  • S = 1.03

  • 9360 reflections

  • 541 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1–Cg3 are the centroids of the C25–C30, C34–C39 and C11–C16 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H12⋯S1i 0.88 (1) 2.60 (1) 3.4103 (19) 155 (2)
N1—H11⋯S2 0.88 (1) 2.65 (1) 3.5220 (19) 170 (2)
N2—H2⋯O3 0.87 (1) 2.01 (1) 2.832 (2) 156 (2)
N4—H41⋯S1 0.88 (1) 2.61 (1) 3.4666 (19) 165 (2)
N4—H42⋯S2ii 0.88 (1) 2.65 (2) 3.437 (2) 150 (2)
N5—H5⋯O1 0.87 (1) 2.09 (1) 2.909 (2) 156 (2)
C13—H13⋯Cg1iii 0.95 2.92 3.614 (3) 130
C17—H17ACg2iii 0.99 2.90 3.644 (2) 132
C40—H40ACg3iv 0.99 2.86 3.549 (2) 128
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In an attempt to prepare a bipodal acylthiourea derivative (Bourne et al., 2005) from dibenzylamine, isophthaloyl dichloride and potassium thiocyanate in acetone, the title compound, (I), was obtained as a by-product.

Two independent but similar molecules comprise the asymmetric unit in (I), Fig. 1. In each case, the terminal amide substituent is co-planar with the attached benzene ring as seen in the O1—C1—C2—C3 and O3—C24—C25—C30 torsion angles of 174.0 (2) and 6.3 (3)°, respectively. Similarly, the central amide [C5—C6—C8—O2 = 7.8 (3)° and C28—C29—C31—O4 = 11.5 (3)°] is approximately co-planar with the ring to which it is attached. It is in this region of the molecule that the major differences occur although minimal, Fig. 2. A major twist is noted between the amide and adjacent thioamide residues as seen in the torsion angles: C8—N2—C9—S1 = -109.29 (19)° and C31—N5—C32—S2 = -112.29 (19)°. The benzyl substituents lie to either side and are approximately perpendicular to the C3N plane with the C9—N3—C10—C11 and C9—N3—C17–C18 torsion angles being 98.2 (2) and 95.8 (2)°, respectively, for the first independent molecule. For the second independent molecule, the C32—N6—C33—C34 torsion angle is 100.5 (2)° and the C32—N6—C40—C41 angle is 96.9 (2)°. To a first approximation, the observed conformation matches that reported in the accompanying paper (Selvakumaran et al., 2013).

In the crystal packing, supramolecular chains along the a axis are formed by N—O and N—H···S hydrogen bonds, Fig. 3 and Table 1. These are connected into layers by C—H···π interactions, Table 1. A three-dimensional architecture is formed via ππ interactions between centrosymmetrically related benzene rings [inter-centroid distance = 3.9157 (12) Å for symmetry operation 1-x, 1 - y, 1 - z], Fig. 4.

Related literature top

For the preparation of bipodal acylthiourea derivatives, see: Bourne et al. (2005). For a related structure, see: Selvakumaran et al. (2013).

Experimental top

Isophthaloyl dichloride (2.0302 g, 10 mmol) dissolved in acetone (80 ml), was placed in a dropping funnel and added drop wise with stirring to potassium thiocyanate (1.9436 g, 20 mmol) dissolved in acetone (80 ml), under N2 atmosphere, in a three-necked round bottom flask. The mixture was heated to reflux for 30 minutes and then allowed to cool. A solution of dibenzylamine (3.9456 g, 20 mmol) in acetone (80 ml) was added drop wise from a dropping funnel to the reaction mixture and the resulting mixture was stirred for 2 h at room temperature. Then, hydrochloric acid (0.1 N, 300 ml) was added and the resulting white solid was filtered off, washed with water and dried in vacuo. Single crystals were grown at room temperature from acetonitrile/dimethyl formamide mixture (1:1). FT—IR (KBr): ν(NH2) 3290 & 3225, ν(N—H) 3426, ν(CO) 1674 (adjacent to NH2),ν(CO) 1660 (adjacent to NH), ν(CC) 1599, ν(CS) 1257 cm-1. UV-Vis (DMF): λmax; 267, 281, 359 nm.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.98 Å, Uiso(H)= 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The N-bound H-atoms were refined with N—H = 0.88±0.01 Å, and with Uiso(H)= 1.2Ueq(N). A reflection, i.e. (0 1 2), was omitted owing to poor agreement.

Structure description top

In an attempt to prepare a bipodal acylthiourea derivative (Bourne et al., 2005) from dibenzylamine, isophthaloyl dichloride and potassium thiocyanate in acetone, the title compound, (I), was obtained as a by-product.

Two independent but similar molecules comprise the asymmetric unit in (I), Fig. 1. In each case, the terminal amide substituent is co-planar with the attached benzene ring as seen in the O1—C1—C2—C3 and O3—C24—C25—C30 torsion angles of 174.0 (2) and 6.3 (3)°, respectively. Similarly, the central amide [C5—C6—C8—O2 = 7.8 (3)° and C28—C29—C31—O4 = 11.5 (3)°] is approximately co-planar with the ring to which it is attached. It is in this region of the molecule that the major differences occur although minimal, Fig. 2. A major twist is noted between the amide and adjacent thioamide residues as seen in the torsion angles: C8—N2—C9—S1 = -109.29 (19)° and C31—N5—C32—S2 = -112.29 (19)°. The benzyl substituents lie to either side and are approximately perpendicular to the C3N plane with the C9—N3—C10—C11 and C9—N3—C17–C18 torsion angles being 98.2 (2) and 95.8 (2)°, respectively, for the first independent molecule. For the second independent molecule, the C32—N6—C33—C34 torsion angle is 100.5 (2)° and the C32—N6—C40—C41 angle is 96.9 (2)°. To a first approximation, the observed conformation matches that reported in the accompanying paper (Selvakumaran et al., 2013).

In the crystal packing, supramolecular chains along the a axis are formed by N—O and N—H···S hydrogen bonds, Fig. 3 and Table 1. These are connected into layers by C—H···π interactions, Table 1. A three-dimensional architecture is formed via ππ interactions between centrosymmetrically related benzene rings [inter-centroid distance = 3.9157 (12) Å for symmetry operation 1-x, 1 - y, 1 - z], Fig. 4.

For the preparation of bipodal acylthiourea derivatives, see: Bourne et al. (2005). For a related structure, see: Selvakumaran et al. (2013).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structures of the two independent molecules comprising the asymmetric unit of (I) showing atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. Overlay diagram of the two independent molecules in (I). The molecules have been superimposed so that the N—C—N atoms are overlapped. Red image: S1-containing molecule. Blue image, S2-containing molecule.
[Figure 3] Fig. 3. A view of the supramolecular chain along the a axis sustained by N—H···O and N—H···S hydrogen bonding shown as blue and orange dashed lies, respectively.
[Figure 4] Fig. 4. A view of the unit-cell contents in projection down the c axis in (I). The N—H···O, N—H···S, C—H···π and ππ interactions are shown as blue, orange, purple and pink dashed lines, respectively.
3-{[(Dibenzylcarbamothioyl)amino]carbonyl}benzamide top
Crystal data top
C23H21N3O2SF(000) = 1696
Mr = 403.49Dx = 1.324 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8114 reflections
a = 11.3448 (5) Åθ = 2.3–27.5°
b = 18.6100 (8) ŵ = 0.18 mm1
c = 19.3282 (7) ÅT = 100 K
β = 97.297 (4)°Block, colourless
V = 4047.7 (3) Å30.40 × 0.40 × 0.40 mm
Z = 8
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
9360 independent reflections
Radiation source: SuperNova (Mo) X-ray Source6863 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.067
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.3°
ω scanh = 1214
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 2424
Tmin = 0.827, Tmax = 1.000l = 2525
41058 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0481P)2 + 1.1188P]
where P = (Fo2 + 2Fc2)/3
9360 reflections(Δ/σ)max = 0.001
541 parametersΔρmax = 0.32 e Å3
6 restraintsΔρmin = 0.29 e Å3
Crystal data top
C23H21N3O2SV = 4047.7 (3) Å3
Mr = 403.49Z = 8
Monoclinic, P21/nMo Kα radiation
a = 11.3448 (5) ŵ = 0.18 mm1
b = 18.6100 (8) ÅT = 100 K
c = 19.3282 (7) Å0.40 × 0.40 × 0.40 mm
β = 97.297 (4)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
9360 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
6863 reflections with I > 2σ(I)
Tmin = 0.827, Tmax = 1.000Rint = 0.067
41058 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0586 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.32 e Å3
9360 reflectionsΔρmin = 0.29 e Å3
541 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.93702 (5)0.53450 (3)0.58907 (3)0.01735 (13)
S20.17284 (5)0.50989 (3)0.85324 (3)0.01659 (13)
O10.40819 (13)0.53199 (8)0.72332 (7)0.0199 (3)
O20.67598 (14)0.63628 (8)0.47184 (7)0.0210 (4)
O30.70635 (14)0.55121 (9)0.71894 (7)0.0264 (4)
O40.43449 (14)0.60561 (8)0.97848 (7)0.0223 (4)
N10.21714 (17)0.52663 (11)0.67687 (9)0.0220 (4)
H110.199 (2)0.5186 (13)0.7190 (7)0.026*
H120.1584 (16)0.5335 (13)0.6434 (9)0.026*
N20.73227 (16)0.60455 (9)0.58448 (8)0.0142 (4)
H20.7165 (19)0.5772 (10)0.6189 (8)0.017*
N30.89631 (16)0.67559 (9)0.56959 (8)0.0158 (4)
N40.89252 (18)0.52334 (12)0.76290 (9)0.0269 (5)
H410.913 (2)0.5191 (13)0.7206 (7)0.032*
H420.9465 (17)0.5154 (13)0.7987 (9)0.032*
N50.38079 (16)0.57719 (10)0.86445 (8)0.0153 (4)
H50.398 (2)0.5524 (10)0.8289 (8)0.018*
N60.21864 (15)0.64993 (9)0.87808 (8)0.0145 (4)
C10.33211 (19)0.53734 (11)0.67209 (10)0.0152 (4)
C20.36657 (19)0.55656 (11)0.60158 (10)0.0136 (4)
C30.2863 (2)0.55708 (11)0.54047 (10)0.0162 (5)
H3A0.20530.54500.54220.019*
C40.3243 (2)0.57522 (11)0.47723 (10)0.0177 (5)
H40.26930.57600.43580.021*
C50.4421 (2)0.59218 (11)0.47450 (10)0.0168 (5)
H5A0.46780.60400.43100.020*
C60.52415 (19)0.59210 (11)0.53509 (10)0.0147 (4)
C70.48522 (19)0.57448 (11)0.59866 (10)0.0143 (4)
H70.53990.57470.64020.017*
C80.64912 (19)0.61286 (11)0.52683 (10)0.0145 (4)
C90.85511 (19)0.61048 (11)0.57992 (10)0.0140 (4)
C101.02249 (19)0.68788 (12)0.56284 (11)0.0183 (5)
H10A1.07020.64790.58570.022*
H10B1.04880.73290.58750.022*
C111.04565 (19)0.69331 (11)0.48772 (11)0.0180 (5)
C121.1260 (2)0.74421 (12)0.46958 (12)0.0231 (5)
H12A1.16380.77570.50420.028*
C131.1516 (2)0.74958 (13)0.40163 (12)0.0285 (6)
H131.20690.78450.38990.034*
C141.0967 (2)0.70406 (13)0.35064 (12)0.0272 (6)
H141.11410.70770.30400.033*
C151.0163 (2)0.65326 (12)0.36807 (11)0.0236 (5)
H150.97870.62190.33320.028*
C160.9903 (2)0.64788 (12)0.43625 (11)0.0204 (5)
H160.93460.61310.44780.025*
C170.8272 (2)0.74278 (11)0.57196 (10)0.0170 (5)
H17A0.74140.73200.56120.020*
H17B0.84910.77650.53610.020*
C180.85085 (19)0.77774 (12)0.64324 (10)0.0175 (5)
C190.8366 (2)0.73848 (13)0.70278 (11)0.0248 (5)
H190.81490.68920.69880.030*
C200.8538 (2)0.77069 (15)0.76777 (11)0.0320 (6)
H200.84450.74340.80830.038*
C210.8845 (2)0.84245 (16)0.77384 (12)0.0352 (7)
H210.89490.86470.81840.042*
C220.9000 (2)0.88180 (14)0.71529 (12)0.0302 (6)
H220.92140.93110.71950.036*
C230.8841 (2)0.84918 (12)0.64974 (11)0.0233 (5)
H230.89620.87610.60950.028*
C240.7812 (2)0.54205 (12)0.76991 (11)0.0177 (5)
C250.74779 (19)0.55129 (11)0.84237 (10)0.0154 (4)
C260.82982 (19)0.54898 (11)0.90265 (10)0.0161 (5)
H260.91180.54180.89920.019*
C270.7918 (2)0.55711 (11)0.96753 (11)0.0183 (5)
H270.84800.55631.00840.022*
C280.6731 (2)0.56643 (11)0.97299 (11)0.0176 (5)
H280.64750.57061.01770.021*
C290.58962 (19)0.56988 (11)0.91318 (10)0.0153 (4)
C300.62837 (19)0.56305 (11)0.84800 (10)0.0152 (4)
H300.57280.56650.80700.018*
C310.46309 (19)0.58536 (11)0.92285 (10)0.0160 (5)
C320.25740 (19)0.58442 (11)0.86691 (10)0.0149 (4)
C330.09242 (19)0.66406 (12)0.88222 (10)0.0168 (5)
H33A0.04440.62450.85880.020*
H33B0.06910.70910.85680.020*
C340.06454 (19)0.67085 (11)0.95643 (10)0.0157 (5)
C350.0182 (2)0.72124 (12)0.97195 (11)0.0204 (5)
H350.05490.75180.93620.024*
C360.0483 (2)0.72755 (13)1.03892 (11)0.0244 (5)
H360.10560.76211.04870.029*
C370.0052 (2)0.68354 (12)1.09175 (11)0.0231 (5)
H370.01490.68791.13780.028*
C380.0882 (2)0.63322 (12)1.07676 (11)0.0208 (5)
H380.12470.60281.11270.025*
C390.1185 (2)0.62688 (11)1.00976 (11)0.0184 (5)
H390.17610.59251.00010.022*
C400.2908 (2)0.71634 (11)0.87810 (10)0.0160 (5)
H40A0.37630.70430.88850.019*
H40B0.27000.74950.91470.019*
C410.26756 (19)0.75252 (11)0.80750 (10)0.0160 (5)
C420.2201 (2)0.82148 (12)0.80117 (11)0.0196 (5)
H42A0.20050.84590.84130.023*
C430.2012 (2)0.85472 (12)0.73647 (11)0.0231 (5)
H430.16960.90200.73250.028*
C440.2286 (2)0.81875 (13)0.67745 (11)0.0250 (5)
H440.21610.84150.63310.030*
C450.2740 (2)0.74981 (13)0.68339 (11)0.0240 (5)
H450.29150.72490.64300.029*
C460.2941 (2)0.71683 (12)0.74821 (11)0.0205 (5)
H460.32610.66960.75210.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0137 (3)0.0162 (3)0.0218 (3)0.0011 (2)0.0011 (2)0.0003 (2)
S20.0163 (3)0.0158 (3)0.0177 (3)0.0012 (2)0.0022 (2)0.0004 (2)
O10.0151 (9)0.0305 (9)0.0134 (7)0.0009 (7)0.0006 (6)0.0003 (6)
O20.0203 (9)0.0282 (9)0.0144 (7)0.0040 (7)0.0017 (6)0.0044 (6)
O30.0155 (9)0.0469 (11)0.0165 (8)0.0048 (7)0.0010 (6)0.0080 (7)
O40.0217 (10)0.0307 (9)0.0149 (7)0.0043 (7)0.0034 (6)0.0008 (7)
N10.0131 (11)0.0370 (12)0.0154 (9)0.0026 (9)0.0000 (8)0.0048 (9)
N20.0117 (10)0.0179 (10)0.0131 (8)0.0008 (7)0.0023 (7)0.0038 (7)
N30.0139 (10)0.0169 (9)0.0168 (9)0.0014 (7)0.0029 (7)0.0000 (7)
N40.0157 (12)0.0496 (14)0.0150 (9)0.0084 (9)0.0011 (8)0.0006 (9)
N50.0120 (10)0.0205 (10)0.0141 (9)0.0012 (7)0.0040 (7)0.0029 (7)
N60.0128 (10)0.0175 (10)0.0138 (8)0.0011 (7)0.0033 (7)0.0012 (7)
C10.0152 (12)0.0139 (11)0.0167 (10)0.0001 (8)0.0028 (8)0.0032 (8)
C20.0144 (12)0.0095 (10)0.0165 (10)0.0001 (8)0.0012 (8)0.0018 (8)
C30.0133 (12)0.0142 (11)0.0210 (11)0.0016 (8)0.0012 (8)0.0020 (9)
C40.0185 (13)0.0176 (11)0.0156 (10)0.0004 (9)0.0028 (9)0.0007 (9)
C50.0197 (13)0.0164 (11)0.0143 (10)0.0009 (9)0.0020 (8)0.0012 (8)
C60.0154 (12)0.0105 (10)0.0179 (10)0.0005 (8)0.0014 (8)0.0003 (8)
C70.0147 (12)0.0126 (10)0.0150 (10)0.0006 (8)0.0002 (8)0.0015 (8)
C80.0164 (12)0.0124 (11)0.0148 (10)0.0006 (8)0.0019 (8)0.0001 (8)
C90.0134 (12)0.0166 (11)0.0116 (9)0.0015 (8)0.0005 (8)0.0003 (8)
C100.0135 (12)0.0174 (11)0.0237 (11)0.0042 (9)0.0019 (9)0.0011 (9)
C110.0146 (12)0.0158 (11)0.0241 (11)0.0028 (9)0.0048 (9)0.0021 (9)
C120.0225 (14)0.0170 (12)0.0309 (12)0.0008 (9)0.0076 (10)0.0005 (10)
C130.0252 (15)0.0248 (13)0.0387 (14)0.0003 (10)0.0157 (11)0.0062 (11)
C140.0268 (15)0.0299 (14)0.0271 (12)0.0065 (11)0.0123 (10)0.0065 (11)
C150.0217 (14)0.0243 (13)0.0249 (12)0.0046 (10)0.0040 (10)0.0016 (10)
C160.0199 (13)0.0163 (11)0.0257 (12)0.0000 (9)0.0052 (9)0.0034 (9)
C170.0186 (13)0.0161 (11)0.0159 (10)0.0009 (9)0.0003 (9)0.0010 (8)
C180.0147 (13)0.0209 (12)0.0166 (10)0.0034 (9)0.0014 (8)0.0007 (9)
C190.0238 (14)0.0306 (14)0.0203 (11)0.0011 (10)0.0042 (9)0.0017 (10)
C200.0287 (16)0.0520 (18)0.0155 (11)0.0047 (12)0.0040 (10)0.0018 (11)
C210.0278 (16)0.0552 (19)0.0211 (12)0.0120 (13)0.0029 (10)0.0155 (12)
C220.0285 (16)0.0266 (14)0.0323 (13)0.0067 (11)0.0081 (11)0.0114 (11)
C230.0236 (14)0.0214 (12)0.0234 (11)0.0037 (10)0.0028 (10)0.0014 (10)
C240.0148 (13)0.0194 (12)0.0191 (10)0.0003 (9)0.0024 (9)0.0032 (9)
C250.0151 (12)0.0134 (11)0.0176 (10)0.0000 (8)0.0021 (8)0.0027 (8)
C260.0123 (12)0.0155 (11)0.0201 (10)0.0009 (8)0.0002 (8)0.0038 (9)
C270.0172 (13)0.0183 (11)0.0177 (10)0.0009 (9)0.0040 (9)0.0017 (9)
C280.0196 (13)0.0171 (11)0.0159 (10)0.0007 (9)0.0021 (9)0.0019 (9)
C290.0164 (12)0.0123 (11)0.0170 (10)0.0006 (8)0.0014 (8)0.0007 (8)
C300.0153 (12)0.0145 (11)0.0153 (10)0.0003 (8)0.0005 (8)0.0019 (8)
C310.0166 (12)0.0147 (11)0.0166 (10)0.0005 (8)0.0015 (9)0.0025 (8)
C320.0149 (12)0.0197 (11)0.0101 (9)0.0009 (9)0.0010 (8)0.0015 (8)
C330.0136 (12)0.0178 (11)0.0190 (10)0.0027 (9)0.0021 (8)0.0019 (9)
C340.0145 (12)0.0136 (11)0.0195 (10)0.0041 (8)0.0044 (9)0.0010 (9)
C350.0204 (14)0.0180 (12)0.0231 (11)0.0036 (9)0.0043 (9)0.0016 (9)
C360.0220 (14)0.0253 (13)0.0276 (12)0.0042 (10)0.0092 (10)0.0030 (10)
C370.0255 (14)0.0253 (13)0.0203 (11)0.0021 (10)0.0095 (10)0.0027 (10)
C380.0220 (14)0.0210 (12)0.0191 (11)0.0017 (9)0.0012 (9)0.0034 (9)
C390.0169 (13)0.0161 (11)0.0228 (11)0.0018 (9)0.0048 (9)0.0009 (9)
C400.0190 (13)0.0129 (11)0.0160 (10)0.0017 (8)0.0027 (8)0.0014 (8)
C410.0144 (12)0.0167 (11)0.0171 (10)0.0038 (8)0.0031 (8)0.0001 (8)
C420.0206 (13)0.0191 (12)0.0192 (11)0.0007 (9)0.0038 (9)0.0011 (9)
C430.0241 (14)0.0194 (12)0.0255 (12)0.0000 (10)0.0024 (10)0.0036 (10)
C440.0276 (15)0.0286 (14)0.0184 (11)0.0058 (10)0.0016 (10)0.0064 (10)
C450.0306 (15)0.0241 (13)0.0189 (11)0.0045 (10)0.0093 (10)0.0034 (10)
C460.0233 (14)0.0172 (12)0.0216 (11)0.0017 (9)0.0053 (9)0.0004 (9)
Geometric parameters (Å, º) top
S1—C91.689 (2)C17—H17B0.9900
S2—C321.688 (2)C18—C231.384 (3)
O1—C11.232 (2)C18—C191.390 (3)
O2—C81.223 (2)C19—C201.383 (3)
O3—C241.228 (2)C19—H190.9500
O4—C311.222 (2)C20—C211.381 (4)
N1—C11.334 (3)C20—H200.9500
N1—H110.877 (9)C21—C221.378 (4)
N1—H120.877 (9)C21—H210.9500
N2—C81.374 (3)C22—C231.396 (3)
N2—C91.412 (3)C22—H220.9500
N2—H20.874 (9)C23—H230.9500
N3—C91.323 (3)C24—C251.506 (3)
N3—C101.472 (3)C25—C301.390 (3)
N3—C171.480 (3)C25—C261.396 (3)
N4—C241.333 (3)C26—C271.385 (3)
N4—H410.882 (10)C26—H260.9500
N4—H420.876 (10)C27—C281.375 (3)
N5—C311.379 (3)C27—H270.9500
N5—C321.413 (3)C28—C291.400 (3)
N5—H50.872 (9)C28—H280.9500
N6—C321.323 (3)C29—C301.392 (3)
N6—C331.468 (3)C29—C311.499 (3)
N6—C401.483 (3)C30—H300.9500
C1—C21.508 (3)C33—C341.513 (3)
C2—C71.395 (3)C33—H33A0.9900
C2—C31.397 (3)C33—H33B0.9900
C3—C41.389 (3)C34—C351.387 (3)
C3—H3A0.9500C34—C391.395 (3)
C4—C51.380 (3)C35—C361.385 (3)
C4—H40.9500C35—H350.9500
C5—C61.400 (3)C36—C371.387 (3)
C5—H5A0.9500C36—H360.9500
C6—C71.396 (3)C37—C381.384 (3)
C6—C81.498 (3)C37—H370.9500
C7—H70.9500C38—C391.386 (3)
C10—C111.511 (3)C38—H380.9500
C10—H10A0.9900C39—H390.9500
C10—H10B0.9900C40—C411.514 (3)
C11—C121.390 (3)C40—H40A0.9900
C11—C161.393 (3)C40—H40B0.9900
C12—C131.384 (3)C41—C461.390 (3)
C12—H12A0.9500C41—C421.391 (3)
C13—C141.386 (3)C42—C431.387 (3)
C13—H130.9500C42—H42A0.9500
C14—C151.385 (3)C43—C441.391 (3)
C14—H140.9500C43—H430.9500
C15—C161.390 (3)C44—C451.382 (3)
C15—H150.9500C44—H440.9500
C16—H160.9500C45—C461.388 (3)
C17—C181.516 (3)C45—H450.9500
C17—H17A0.9900C46—H460.9500
C1—N1—H11115.9 (16)C22—C21—C20120.1 (2)
C1—N1—H12125.8 (16)C22—C21—H21120.0
H11—N1—H12118 (2)C20—C21—H21120.0
C8—N2—C9121.46 (17)C21—C22—C23120.0 (2)
C8—N2—H2119.8 (15)C21—C22—H22120.0
C9—N2—H2113.1 (15)C23—C22—H22120.0
C9—N3—C10121.47 (18)C18—C23—C22120.2 (2)
C9—N3—C17124.78 (19)C18—C23—H23119.9
C10—N3—C17113.37 (17)C22—C23—H23119.9
C24—N4—H41118.9 (16)O3—C24—N4121.5 (2)
C24—N4—H42122.7 (17)O3—C24—C25120.0 (2)
H41—N4—H42118 (2)N4—C24—C25118.53 (18)
C31—N5—C32122.19 (17)C30—C25—C26119.49 (19)
C31—N5—H5120.2 (15)C30—C25—C24116.97 (17)
C32—N5—H5113.9 (15)C26—C25—C24123.5 (2)
C32—N6—C33121.38 (18)C27—C26—C25120.1 (2)
C32—N6—C40124.96 (19)C27—C26—H26120.0
C33—N6—C40113.16 (17)C25—C26—H26120.0
O1—C1—N1121.57 (19)C28—C27—C26120.23 (19)
O1—C1—C2120.66 (19)C28—C27—H27119.9
N1—C1—C2117.78 (17)C26—C27—H27119.9
C7—C2—C3119.54 (19)C27—C28—C29120.6 (2)
C7—C2—C1117.11 (17)C27—C28—H28119.7
C3—C2—C1123.35 (19)C29—C28—H28119.7
C4—C3—C2120.2 (2)C30—C29—C28119.0 (2)
C4—C3—H3A119.9C30—C29—C31123.23 (18)
C2—C3—H3A119.9C28—C29—C31117.65 (18)
C5—C4—C3119.99 (19)C25—C30—C29120.54 (18)
C5—C4—H4120.0C25—C30—H30119.7
C3—C4—H4120.0C29—C30—H30119.7
C4—C5—C6120.77 (19)O4—C31—N5121.8 (2)
C4—C5—H5A119.6O4—C31—C29122.33 (18)
C6—C5—H5A119.6N5—C31—C29115.88 (18)
C7—C6—C5119.0 (2)N6—C32—N5116.38 (19)
C7—C6—C8124.33 (18)N6—C32—S2126.06 (17)
C5—C6—C8116.63 (18)N5—C32—S2117.54 (15)
C6—C7—C2120.43 (18)N6—C33—C34112.92 (16)
C6—C7—H7119.8N6—C33—H33A109.0
C2—C7—H7119.8C34—C33—H33A109.0
O2—C8—N2121.6 (2)N6—C33—H33B109.0
O2—C8—C6121.91 (18)C34—C33—H33B109.0
N2—C8—C6116.50 (17)H33A—C33—H33B107.8
N3—C9—N2116.84 (18)C35—C34—C39118.8 (2)
N3—C9—S1125.61 (17)C35—C34—C33119.37 (18)
N2—C9—S1117.54 (15)C39—C34—C33121.78 (19)
N3—C10—C11112.66 (17)C36—C35—C34120.9 (2)
N3—C10—H10A109.1C36—C35—H35119.6
C11—C10—H10A109.1C34—C35—H35119.6
N3—C10—H10B109.1C35—C36—C37120.1 (2)
C11—C10—H10B109.1C35—C36—H36120.0
H10A—C10—H10B107.8C37—C36—H36120.0
C12—C11—C16119.0 (2)C38—C37—C36119.4 (2)
C12—C11—C10119.17 (19)C38—C37—H37120.3
C16—C11—C10121.9 (2)C36—C37—H37120.3
C13—C12—C11120.8 (2)C37—C38—C39120.6 (2)
C13—C12—H12A119.6C37—C38—H38119.7
C11—C12—H12A119.6C39—C38—H38119.7
C12—C13—C14120.1 (2)C38—C39—C34120.2 (2)
C12—C13—H13120.0C38—C39—H39119.9
C14—C13—H13120.0C34—C39—H39119.9
C13—C14—C15119.7 (2)N6—C40—C41109.71 (16)
C13—C14—H14120.2N6—C40—H40A109.7
C15—C14—H14120.2C41—C40—H40A109.7
C14—C15—C16120.4 (2)N6—C40—H40B109.7
C14—C15—H15119.8C41—C40—H40B109.7
C16—C15—H15119.8H40A—C40—H40B108.2
C15—C16—C11120.2 (2)C46—C41—C42119.35 (19)
C15—C16—H16119.9C46—C41—C40119.95 (19)
C11—C16—H16119.9C42—C41—C40120.70 (19)
N3—C17—C18110.93 (16)C43—C42—C41120.3 (2)
N3—C17—H17A109.5C43—C42—H42A119.9
C18—C17—H17A109.5C41—C42—H42A119.9
N3—C17—H17B109.5C42—C43—C44120.0 (2)
C18—C17—H17B109.5C42—C43—H43120.0
H17A—C17—H17B108.0C44—C43—H43120.0
C23—C18—C19119.3 (2)C45—C44—C43119.9 (2)
C23—C18—C17120.64 (19)C45—C44—H44120.1
C19—C18—C17120.1 (2)C43—C44—H44120.1
C20—C19—C18120.4 (2)C44—C45—C46120.2 (2)
C20—C19—H19119.8C44—C45—H45119.9
C18—C19—H19119.8C46—C45—H45119.9
C21—C20—C19120.1 (2)C45—C46—C41120.3 (2)
C21—C20—H20120.0C45—C46—H46119.8
C19—C20—H20120.0C41—C46—H46119.8
O1—C1—C2—C76.0 (3)O3—C24—C25—C306.3 (3)
N1—C1—C2—C7173.88 (19)N4—C24—C25—C30173.2 (2)
O1—C1—C2—C3174.0 (2)O3—C24—C25—C26173.3 (2)
N1—C1—C2—C36.2 (3)N4—C24—C25—C267.2 (3)
C7—C2—C3—C40.1 (3)C30—C25—C26—C271.1 (3)
C1—C2—C3—C4179.87 (19)C24—C25—C26—C27179.22 (19)
C2—C3—C4—C50.6 (3)C25—C26—C27—C281.0 (3)
C3—C4—C5—C60.7 (3)C26—C27—C28—C291.8 (3)
C4—C5—C6—C70.1 (3)C27—C28—C29—C300.6 (3)
C4—C5—C6—C8178.66 (19)C27—C28—C29—C31175.72 (19)
C5—C6—C7—C20.6 (3)C26—C25—C30—C292.4 (3)
C8—C6—C7—C2179.24 (19)C24—C25—C30—C29177.97 (19)
C3—C2—C7—C60.7 (3)C28—C29—C30—C251.5 (3)
C1—C2—C7—C6179.27 (18)C31—C29—C30—C25177.62 (19)
C9—N2—C8—O211.3 (3)C32—N5—C31—O46.7 (3)
C9—N2—C8—C6169.02 (18)C32—N5—C31—C29174.95 (18)
C7—C6—C8—O2170.9 (2)C30—C29—C31—O4164.7 (2)
C5—C6—C8—O27.8 (3)C28—C29—C31—O411.5 (3)
C7—C6—C8—N28.8 (3)C30—C29—C31—N513.7 (3)
C5—C6—C8—N2172.49 (18)C28—C29—C31—N5170.16 (19)
C10—N3—C9—N2178.97 (16)C33—N6—C32—N5179.56 (16)
C17—N3—C9—N28.6 (3)C40—N6—C32—N59.1 (3)
C10—N3—C9—S11.9 (3)C33—N6—C32—S22.2 (3)
C17—N3—C9—S1170.59 (15)C40—N6—C32—S2169.12 (14)
C8—N2—C9—N371.5 (2)C31—N5—C32—N669.4 (2)
C8—N2—C9—S1109.29 (19)C31—N5—C32—S2112.29 (19)
C9—N3—C10—C1198.2 (2)C32—N6—C33—C34100.5 (2)
C17—N3—C10—C1188.5 (2)C40—N6—C33—C3487.2 (2)
N3—C10—C11—C12140.0 (2)N6—C33—C34—C35142.2 (2)
N3—C10—C11—C1641.2 (3)N6—C33—C34—C3938.9 (3)
C16—C11—C12—C130.5 (3)C39—C34—C35—C360.7 (3)
C10—C11—C12—C13178.4 (2)C33—C34—C35—C36178.2 (2)
C11—C12—C13—C140.2 (4)C34—C35—C36—C370.5 (4)
C12—C13—C14—C150.0 (4)C35—C36—C37—C380.3 (4)
C13—C14—C15—C160.2 (4)C36—C37—C38—C390.4 (3)
C14—C15—C16—C110.4 (3)C37—C38—C39—C340.6 (3)
C12—C11—C16—C150.6 (3)C35—C34—C39—C380.8 (3)
C10—C11—C16—C15178.3 (2)C33—C34—C39—C38178.1 (2)
C9—N3—C17—C1895.8 (2)C32—N6—C40—C4196.9 (2)
C10—N3—C17—C1877.2 (2)C33—N6—C40—C4175.1 (2)
N3—C17—C18—C23127.9 (2)N6—C40—C41—C4661.5 (3)
N3—C17—C18—C1953.6 (3)N6—C40—C41—C42118.7 (2)
C23—C18—C19—C200.9 (4)C46—C41—C42—C431.0 (3)
C17—C18—C19—C20177.6 (2)C40—C41—C42—C43178.8 (2)
C18—C19—C20—C210.5 (4)C41—C42—C43—C440.7 (3)
C19—C20—C21—C221.1 (4)C42—C43—C44—C450.3 (4)
C20—C21—C22—C230.3 (4)C43—C44—C45—C461.0 (4)
C19—C18—C23—C221.7 (3)C44—C45—C46—C410.7 (4)
C17—C18—C23—C22176.8 (2)C42—C41—C46—C450.3 (3)
C21—C22—C23—C181.1 (4)C40—C41—C46—C45179.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg1–Cg3 are the centroids of the C25–C30, C34–C39 and C11–C16 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H12···S1i0.88 (1)2.60 (1)3.4103 (19)155 (2)
N1—H11···S20.88 (1)2.65 (1)3.5220 (19)170 (2)
N2—H2···O30.87 (1)2.01 (1)2.832 (2)156 (2)
N4—H41···S10.88 (1)2.61 (1)3.4666 (19)165 (2)
N4—H42···S2ii0.88 (1)2.65 (2)3.437 (2)150 (2)
N5—H5···O10.87 (1)2.09 (1)2.909 (2)156 (2)
C13—H13···Cg1iii0.952.923.614 (3)130
C17—H17A···Cg2iii0.992.903.644 (2)132
C40—H40A···Cg3iv0.992.863.549 (2)128
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1/2, y+3/2, z1/2; (iv) x1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H21N3O2S
Mr403.49
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)11.3448 (5), 18.6100 (8), 19.3282 (7)
β (°) 97.297 (4)
V3)4047.7 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.40 × 0.40 × 0.40
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2013)
Tmin, Tmax0.827, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
41058, 9360, 6863
Rint0.067
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.124, 1.03
No. of reflections9360
No. of parameters541
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.29

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1–Cg3 are the centroids of the C25–C30, C34–C39 and C11–C16 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H12···S1i0.877 (9)2.596 (14)3.4103 (19)155 (2)
N1—H11···S20.877 (9)2.654 (10)3.5220 (19)170 (2)
N2—H2···O30.874 (9)2.011 (12)2.832 (2)156 (2)
N4—H41···S10.882 (10)2.606 (11)3.4666 (19)165 (2)
N4—H42···S2ii0.876 (10)2.651 (15)3.437 (2)150 (2)
N5—H5···O10.872 (9)2.093 (12)2.909 (2)156 (2)
C13—H13···Cg1iii0.952.923.614 (3)130
C17—H17A···Cg2iii0.992.903.644 (2)132
C40—H40A···Cg3iv0.992.863.549 (2)128
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1/2, y+3/2, z1/2; (iv) x1/2, y+3/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: kar@nitt.edu.

Acknowledgements

NS thanks the NITT for a Fellowship. The authors also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/12).

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationBourne, S. A., Hallale, O. & Koch, K. R. (2005). Cryst. Growth Des. 5, 307–312.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSelvakumaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o1183.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds