metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[tetra­aqua­tetra­kis­[μ3-5-(pyridine-4-carboxamido)­isophthalato]nickel(II)diterbium(III)] tetra­hydrate]

aKey Laboratory of Functional Organometallic Materials, Hengyang Normal University, Department of Chemistry and Materials Science, Hengyang, Hunan 421008, People's Republic of China
*Correspondence e-mail: hynuzch@163.com

(Received 21 May 2013; accepted 30 May 2013; online 8 June 2013)

In the title compound, {[NiTb2(C14H8N2O5)4(H2O)4]·4H2O}n, the TbIII ion is coordinated by one water mol­ecule and seven O atoms from four 5-(pyridine-4-carboxamido)­isophthalate (L) ligands in a distorted square-anti­prismatic arrangement, while the NiII ion, lying on an inversion center, is six-coordinated in an octa­hedral geometry by two pyridine N atoms, two carboxyl­ate O atoms and two water mol­ecules. One L ligand bridges two TbIII ions and one NiII ion through two carboxyl­ate groups and one pyridine N atom. The other L ligand bridges two TbIII ions and one NiII ion through two carboxyl­ate groups, while the uncoordinating pyridine N atom is hydrogen bonded to an adjacent coordinating water mol­ecule. Extensive O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds play an important role in stabilizing the crystal structure.

Related literature

For background to hetero-metallic complexes, see: Gu & Xue (2006[Gu, X.-J. & Xue, D.-F. (2006). Inorg. Chem. 45, 9257-9261.]); Liang et al. (2000[Liang, Y.-C., Cao, R., Su, W.-P., Hong, M.-C. & Zhang, W.-J. (2000). Angew. Chem. Int. Ed. 39, 3304-3307.]); Prasad et al. (2007[Prasad, T. K., Rajasekharan, M. V. & Costes, J. P. (2007). Angew. Chem. Int. Ed. 46, 2851-2854.]); Zhao et al. (2003[Zhao, B., Cheng, P., Dai, Y., Cheng, C., Liao, D.-Z., Yan, S.-P., Jiang, Z.-H. & Wang, G.-L. (2003). Angew. Chem. Int. Ed. 42, 934-936.], 2004[Zhao, B., Cheng, P., Chen, X.-Y., Cheng, C., Shi, W., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2004). J. Am. Chem. Soc. 126, 3012-3013.]). For related structures, see: Chen et al. (2011[Chen, M.-S., Zhao, Y., Okamura, T.-A., Su, Z., Sun, W.-Y. & Ueyama, N. (2011). Supramol. Chem. 23, 117-124.]); Deng et al. (2011[Deng, Y.-F., Chen, M.-S., Zhang, C.-H. & Kuang, D.-Z. (2011). Acta Cryst. E67, m1431-m1432.]).

[Scheme 1]

Experimental

Crystal data
  • [NiTb2(C14H8N2O5)4(H2O)4]·4H2O

  • Mr = 1657.57

  • Triclinic, [P \overline 1]

  • a = 10.2347 (12) Å

  • b = 10.8608 (13) Å

  • c = 13.7452 (17) Å

  • α = 79.053 (2)°

  • β = 78.745 (1)°

  • γ = 86.326 (2)°

  • V = 1470.7 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.80 mm−1

  • T = 293 K

  • 0.22 × 0.16 × 0.08 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.578, Tmax = 0.807

  • 7345 measured reflections

  • 5088 independent reflections

  • 4486 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.074

  • S = 1.03

  • 5088 reflections

  • 434 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.24 e Å−3

  • Δρmin = −0.85 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4Wi 0.86 2.16 3.000 (6) 166
N3—H3⋯O4ii 0.86 2.17 2.958 (6) 153
O1W—H1WA⋯O6iii 0.82 2.24 2.988 (4) 151
O1W—H1WB⋯O3Wiv 0.85 2.04 2.763 (6) 143
O2W—H2WA⋯O3Wv 0.85 (6) 2.47 (6) 3.117 (7) 134 (5)
O2W—H2WB⋯N2vi 0.85 1.92 2.672 (6) 147
O3W—H3WC⋯O3iv 0.85 1.92 2.736 (5) 159
O3W—H3WD⋯O8vii 0.85 1.98 2.793 (5) 160
O4W—H4WA⋯O9viii 0.85 2.25 3.088 (6) 170
O4W—H4WB⋯O9ii 0.85 2.19 3.034 (5) 172
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+2, -y+1, -z+2; (iii) -x+2, -y+1, -z+1; (iv) -x+1, -y+1, -z+1; (v) -x+1, -y, -z+1; (vi) x, y, z-1; (vii) x-1, y, z; (viii) x-1, y+1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis and investigation of d-f heterometallic complexes are challenge for chemists and have attracted increasing attention in last few years since the competitive reaction containing d-f metal ions in conjunction with ligands often result in the formation of a mixture of homometallic assemblies rather than heterometallic analogous (Gu & Xue, 2006; Liang et al., 2000; Prasad et al., 2007; Zhao et al., 2003, 2004;). We have recently prepared the title compound, a new transition metal(II)–lanthanide(III) coordination polymer, under hydrothermal conditions.

In the title compound, the TbIII ion is eight-coordinated by seven O atoms from four 5-(pyridine-4-carboxamido)isophthalate (L) ligands and one water molecule, forming a distorted square-antiprismatic geometry (Fig. 1). It is interesting that the carboxylate groups of two unique L ligands exhibit different coordination modes: one coordinates to two TbIII ions and one NiII ion using its two carboxylate groups with µ1-η1:η1-chelate and µ2-η1:η1-bis-monodentate coordination modes while the pyridyl group is free of coordination, the other one coordinates to two TbIII ions through the carboxylate groups with µ1-η1:η1-chelate coordination mode and to one NiII ion through the pyridyl group. Based on the coordination modes of the carboxylate and pyridyl groups, a complicated three-dimensional network is formed (Fig. 2), which is similar to the complexes {[LnCo0.5(INAIP)2(H2O)2].2H2O}n (Chen et al., 2011; Deng et al., 2011).

Related literature top

For background to hetero-metallic complexes, see: Gu & Xue (2006); Liang et al. (2000); Prasad et al. (2007); Zhao et al. (2003, 2004). For related structures, see: Chen et al. (2011); Deng et al. (2011).

Experimental top

A mixture of Tb(NO3)3.6H2O (22.1 mg. 0.05 mmol), H2L (28.7 mg, 0.1 mmol), NiSO4.6H2O (13.1 mg, 0.05 mmol), NaOH (6.0 mg, 0.15 mmol), EtOH (4 ml) and H2O (6 ml) was heated in a 16 ml capacity Teflon-lined reaction vessel at 453 K for 3 days. The reaction mixture was cooled to room temperature over a period of 48 h. The product was collected by filtration, washed with H2O and air-dried.

Refinement top

H atoms bonded to C and N atoms were placed geometrically and refiined as riding atoms, with C—H = 0.93 and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C, N). The water H atoms were found from difference Fourier maps and refined with a restraint of O—H = 0.85 (1) Å. In final refinements, these H atoms were refined as riding atoms with Uiso(H) = 1.2Ueq(O). H2WA was refined isotropically.

Structure description top

The synthesis and investigation of d-f heterometallic complexes are challenge for chemists and have attracted increasing attention in last few years since the competitive reaction containing d-f metal ions in conjunction with ligands often result in the formation of a mixture of homometallic assemblies rather than heterometallic analogous (Gu & Xue, 2006; Liang et al., 2000; Prasad et al., 2007; Zhao et al., 2003, 2004;). We have recently prepared the title compound, a new transition metal(II)–lanthanide(III) coordination polymer, under hydrothermal conditions.

In the title compound, the TbIII ion is eight-coordinated by seven O atoms from four 5-(pyridine-4-carboxamido)isophthalate (L) ligands and one water molecule, forming a distorted square-antiprismatic geometry (Fig. 1). It is interesting that the carboxylate groups of two unique L ligands exhibit different coordination modes: one coordinates to two TbIII ions and one NiII ion using its two carboxylate groups with µ1-η1:η1-chelate and µ2-η1:η1-bis-monodentate coordination modes while the pyridyl group is free of coordination, the other one coordinates to two TbIII ions through the carboxylate groups with µ1-η1:η1-chelate coordination mode and to one NiII ion through the pyridyl group. Based on the coordination modes of the carboxylate and pyridyl groups, a complicated three-dimensional network is formed (Fig. 2), which is similar to the complexes {[LnCo0.5(INAIP)2(H2O)2].2H2O}n (Chen et al., 2011; Deng et al., 2011).

For background to hetero-metallic complexes, see: Gu & Xue (2006); Liang et al. (2000); Prasad et al. (2007); Zhao et al. (2003, 2004). For related structures, see: Chen et al. (2011); Deng et al. (2011).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (A) x, y, -1+z; (B) 2-x, 1-y, 2-z; (C) 2-x, 1-y, 1-z; (D) x, -1+y, z; (E) -1+x, y, z.]
[Figure 2] Fig. 2. A view showing the three-dimensional network of the title compound.
Poly[[tetraaquatetrakis[µ3-5-(pyridine-4-carboxamido)isophthalato]nickel(II)diterbium(III)] tetrahydrate] top
Crystal data top
[NiTb2(C14H8N2O5)4(H2O)4]·4H2OZ = 1
Mr = 1657.57F(000) = 822
Triclinic, P1Dx = 1.872 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.2347 (12) ÅCell parameters from 3746 reflections
b = 10.8608 (13) Åθ = 2.1–24.8°
c = 13.7452 (17) ŵ = 2.80 mm1
α = 79.053 (2)°T = 293 K
β = 78.745 (1)°Block, green
γ = 86.326 (2)°0.22 × 0.16 × 0.08 mm
V = 1470.7 (3) Å3
Data collection top
Bruker APEX CCD
diffractometer
5088 independent reflections
Radiation source: fine-focus sealed tube4486 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
φ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1210
Tmin = 0.578, Tmax = 0.807k = 1212
7345 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0233P)2]
where P = (Fo2 + 2Fc2)/3
5088 reflections(Δ/σ)max = 0.013
434 parametersΔρmax = 1.24 e Å3
1 restraintΔρmin = 0.85 e Å3
Crystal data top
[NiTb2(C14H8N2O5)4(H2O)4]·4H2Oγ = 86.326 (2)°
Mr = 1657.57V = 1470.7 (3) Å3
Triclinic, P1Z = 1
a = 10.2347 (12) ÅMo Kα radiation
b = 10.8608 (13) ŵ = 2.80 mm1
c = 13.7452 (17) ÅT = 293 K
α = 79.053 (2)°0.22 × 0.16 × 0.08 mm
β = 78.745 (1)°
Data collection top
Bruker APEX CCD
diffractometer
5088 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4486 reflections with I > 2σ(I)
Tmin = 0.578, Tmax = 0.807Rint = 0.045
7345 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 1.24 e Å3
5088 reflectionsΔρmin = 0.85 e Å3
434 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.00000.50000.50000.0250 (2)
Tb10.68072 (2)0.07753 (2)0.702898 (17)0.01601 (8)
C10.7020 (4)0.4733 (4)0.7262 (3)0.0183 (11)
C20.6789 (4)0.4175 (4)0.8277 (3)0.0183 (11)
H20.67360.33080.84590.022*
C30.6638 (4)0.4905 (4)0.9018 (3)0.0175 (11)
C40.6652 (4)0.6204 (4)0.8744 (3)0.0178 (10)
H40.65360.67030.92360.021*
C50.6839 (4)0.6748 (4)0.7733 (3)0.0158 (10)
C60.7036 (4)0.6024 (4)0.6993 (3)0.0193 (11)
H60.71790.64020.63170.023*
C70.6867 (4)0.8146 (4)0.7468 (3)0.0175 (10)
C80.7334 (5)0.3941 (4)0.6453 (4)0.0204 (11)
C90.6652 (5)0.4829 (5)1.0811 (4)0.0273 (12)
C100.6518 (5)0.4003 (5)1.1831 (4)0.0236 (12)
C110.6510 (5)0.2706 (5)1.2016 (4)0.0289 (13)
H110.65370.22741.14890.035*
C120.6461 (5)0.2065 (5)1.2977 (4)0.0335 (14)
H120.64610.11941.30840.040*
C130.6395 (6)0.3855 (6)1.3606 (4)0.0377 (14)
H130.63410.42571.41540.045*
C140.6452 (5)0.4584 (5)1.2657 (4)0.0338 (13)
H140.64460.54541.25740.041*
C151.0258 (4)0.1208 (4)0.8319 (3)0.0182 (11)
C161.1580 (5)0.1051 (4)0.7839 (3)0.0202 (11)
H161.17590.08850.71860.024*
C171.2619 (4)0.1142 (4)0.8325 (3)0.0188 (11)
C181.2340 (5)0.1428 (4)0.9301 (3)0.0199 (11)
H181.30340.14840.96360.024*
C191.1034 (5)0.1627 (4)0.9764 (3)0.0202 (11)
C200.9994 (5)0.1486 (4)0.9280 (3)0.0202 (11)
H200.91160.15780.96050.024*
C210.9089 (5)0.1091 (4)0.7832 (4)0.0190 (11)
C221.4064 (5)0.0981 (4)0.7846 (4)0.0209 (11)
C230.9939 (5)0.2964 (5)1.0918 (4)0.0243 (12)
C240.9908 (5)0.3390 (5)1.1902 (4)0.0239 (12)
C250.9825 (5)0.2574 (5)1.2813 (4)0.0249 (12)
H250.98180.17111.28470.030*
C260.9751 (5)0.3078 (5)1.3671 (4)0.0259 (12)
H260.96680.25311.42870.031*
C270.9848 (5)0.5064 (5)1.2781 (4)0.0260 (12)
H270.98630.59241.27620.031*
C280.9886 (5)0.4653 (5)1.1899 (4)0.0254 (12)
H280.98970.52241.13010.031*
N10.6471 (4)0.4307 (4)1.0036 (3)0.0198 (9)
H10.62330.35391.01750.024*
N20.6415 (4)0.2613 (4)1.3772 (3)0.0351 (12)
N31.0796 (4)0.2002 (4)1.0719 (3)0.0215 (9)
H31.12050.16091.11820.026*
N40.9792 (4)0.4297 (4)1.3670 (3)0.0230 (10)
O10.8077 (3)0.4367 (3)0.5645 (2)0.0279 (8)
O20.6811 (3)0.2878 (3)0.6642 (2)0.0299 (9)
O30.6713 (4)0.8705 (3)0.6617 (2)0.0331 (9)
O40.7068 (4)0.8772 (3)0.8101 (2)0.0339 (9)
O50.6912 (5)0.5911 (4)1.0737 (3)0.0543 (13)
O60.9267 (3)0.0947 (3)0.6916 (2)0.0292 (9)
O70.7926 (3)0.1150 (3)0.8333 (2)0.0223 (8)
O81.4397 (3)0.0991 (3)0.6916 (2)0.0279 (8)
O91.4954 (3)0.0850 (4)0.8377 (2)0.0389 (10)
O100.9241 (4)0.3510 (4)1.0333 (3)0.0367 (10)
O1W0.9258 (3)0.6831 (3)0.4332 (2)0.0304 (9)
H1WB0.86530.71990.47030.036*
H1WA0.98870.72460.39920.036*
O2W0.7196 (4)0.0949 (4)0.5260 (3)0.0384 (10)
H2WA0.762 (6)0.038 (5)0.497 (5)0.08 (3)*
H2WB0.68460.16250.49850.046*
O3W0.2999 (4)0.1656 (5)0.5331 (3)0.0711 (15)
H3WC0.32760.14620.47540.085*
H3WD0.35690.13830.57050.085*
O4W0.4141 (5)0.8386 (4)0.9854 (3)0.0655 (15)
H4WA0.43300.90200.93900.079*
H4WB0.43870.85271.03780.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0299 (6)0.0268 (5)0.0192 (5)0.0041 (4)0.0022 (4)0.0074 (4)
Tb10.01649 (14)0.01550 (13)0.01686 (13)0.00072 (9)0.00436 (9)0.00362 (9)
C10.018 (3)0.017 (3)0.019 (3)0.001 (2)0.004 (2)0.002 (2)
C20.019 (3)0.015 (3)0.017 (3)0.002 (2)0.001 (2)0.001 (2)
C30.011 (2)0.023 (3)0.016 (3)0.001 (2)0.001 (2)0.002 (2)
C40.015 (3)0.020 (3)0.019 (3)0.001 (2)0.006 (2)0.004 (2)
C50.014 (2)0.014 (2)0.019 (3)0.0025 (19)0.003 (2)0.001 (2)
C60.019 (3)0.020 (3)0.017 (3)0.002 (2)0.001 (2)0.000 (2)
C70.016 (3)0.017 (3)0.021 (3)0.000 (2)0.005 (2)0.005 (2)
C80.021 (3)0.018 (3)0.024 (3)0.004 (2)0.010 (2)0.003 (2)
C90.026 (3)0.031 (3)0.023 (3)0.002 (2)0.002 (2)0.001 (2)
C100.016 (3)0.030 (3)0.023 (3)0.002 (2)0.004 (2)0.001 (2)
C110.034 (3)0.028 (3)0.025 (3)0.006 (2)0.009 (3)0.002 (2)
C120.038 (3)0.030 (3)0.032 (3)0.011 (3)0.011 (3)0.005 (3)
C130.046 (4)0.052 (4)0.018 (3)0.005 (3)0.008 (3)0.012 (3)
C140.040 (4)0.034 (3)0.027 (3)0.002 (3)0.007 (3)0.004 (3)
C150.017 (3)0.019 (3)0.020 (3)0.001 (2)0.006 (2)0.004 (2)
C160.022 (3)0.024 (3)0.015 (2)0.001 (2)0.003 (2)0.006 (2)
C170.013 (3)0.024 (3)0.020 (3)0.001 (2)0.005 (2)0.002 (2)
C180.017 (3)0.022 (3)0.024 (3)0.003 (2)0.011 (2)0.007 (2)
C190.020 (3)0.024 (3)0.020 (3)0.001 (2)0.003 (2)0.010 (2)
C200.016 (3)0.024 (3)0.022 (3)0.001 (2)0.002 (2)0.010 (2)
C210.022 (3)0.016 (3)0.022 (3)0.001 (2)0.008 (2)0.006 (2)
C220.022 (3)0.017 (3)0.024 (3)0.000 (2)0.004 (2)0.003 (2)
C230.020 (3)0.032 (3)0.023 (3)0.005 (2)0.002 (2)0.012 (2)
C240.014 (3)0.039 (3)0.020 (3)0.000 (2)0.004 (2)0.010 (2)
C250.024 (3)0.032 (3)0.022 (3)0.002 (2)0.005 (2)0.011 (2)
C260.028 (3)0.029 (3)0.019 (3)0.009 (2)0.003 (2)0.001 (2)
C270.027 (3)0.025 (3)0.026 (3)0.002 (2)0.002 (2)0.006 (2)
C280.029 (3)0.032 (3)0.016 (3)0.001 (2)0.005 (2)0.005 (2)
N10.024 (2)0.016 (2)0.017 (2)0.0011 (17)0.0026 (18)0.0018 (17)
N20.041 (3)0.040 (3)0.023 (3)0.010 (2)0.009 (2)0.004 (2)
N30.020 (2)0.030 (2)0.016 (2)0.0027 (18)0.0079 (18)0.0040 (18)
N40.020 (2)0.034 (3)0.017 (2)0.0042 (19)0.0025 (18)0.0100 (19)
O10.028 (2)0.037 (2)0.0188 (19)0.0097 (17)0.0015 (16)0.0089 (16)
O20.046 (2)0.0134 (19)0.030 (2)0.0048 (16)0.0039 (18)0.0058 (15)
O30.068 (3)0.0138 (19)0.0196 (19)0.0010 (17)0.0143 (19)0.0012 (15)
O40.067 (3)0.0150 (19)0.028 (2)0.0044 (17)0.027 (2)0.0068 (15)
O50.111 (4)0.026 (2)0.031 (2)0.024 (2)0.023 (2)0.0010 (18)
O60.019 (2)0.050 (2)0.023 (2)0.0029 (17)0.0051 (16)0.0159 (17)
O70.0126 (18)0.035 (2)0.0232 (19)0.0012 (15)0.0038 (15)0.0134 (15)
O80.0151 (19)0.050 (2)0.022 (2)0.0009 (16)0.0038 (15)0.0162 (17)
O90.0142 (19)0.082 (3)0.021 (2)0.0050 (19)0.0062 (16)0.0094 (19)
O100.038 (2)0.050 (3)0.029 (2)0.0195 (19)0.0152 (19)0.0220 (18)
O1W0.035 (2)0.031 (2)0.0230 (19)0.0021 (17)0.0013 (17)0.0064 (16)
O2W0.064 (3)0.030 (2)0.018 (2)0.004 (2)0.009 (2)0.0003 (17)
O3W0.059 (3)0.124 (5)0.027 (2)0.027 (3)0.013 (2)0.012 (3)
O4W0.137 (5)0.035 (3)0.027 (2)0.031 (3)0.014 (3)0.0027 (19)
Geometric parameters (Å, º) top
Ni1—O12.096 (3)C15—C201.383 (6)
Ni1—N4i2.161 (4)C15—C161.399 (6)
Ni1—O1W2.181 (3)C15—C211.504 (6)
Tb1—O22.245 (3)C16—C171.379 (6)
Tb1—O2W2.359 (4)C16—H160.9300
Tb1—O9ii2.388 (3)C17—C181.405 (6)
Tb1—O72.413 (3)C17—C221.511 (6)
Tb1—O4iii2.416 (3)C18—C191.386 (6)
Tb1—O3iii2.433 (3)C18—H180.9300
Tb1—O8ii2.495 (3)C19—C201.392 (6)
Tb1—O62.509 (3)C19—N31.418 (6)
C1—C61.381 (6)C20—H200.9300
C1—C21.392 (6)C21—O71.257 (5)
C1—C81.506 (6)C21—O61.275 (5)
C2—C31.385 (6)C22—O81.255 (5)
C2—H20.9300C22—O91.259 (6)
C3—C41.389 (6)C23—O101.225 (6)
C3—N11.409 (6)C23—N31.354 (6)
C4—C51.384 (6)C23—C241.505 (7)
C4—H40.9300C24—C281.370 (7)
C5—C61.377 (6)C24—C251.381 (7)
C5—C71.493 (6)C25—C261.379 (6)
C6—H60.9300C25—H250.9300
C7—O31.246 (5)C26—N41.327 (6)
C7—O41.255 (5)C26—H260.9300
C8—O11.243 (5)C27—N41.336 (6)
C8—O21.264 (5)C27—C281.361 (7)
C9—O51.203 (6)C27—H270.9300
C9—N11.345 (6)C28—H280.9300
C9—C101.500 (7)N1—H10.8600
C10—C111.384 (7)N3—H30.8600
C10—C141.389 (7)O1W—H1WB0.8524
C11—C121.365 (7)O1W—H1WA0.8227
C11—H110.9300O2W—H2WA0.849 (5)
C12—N21.331 (7)O2W—H2WB0.8506
C12—H120.9300O3W—H3WC0.8494
C13—N21.324 (7)O3W—H3WD0.8540
C13—C141.384 (7)O4W—H4WA0.8486
C13—H130.9300O4W—H4WB0.8510
C14—H140.9300
O1—Ni1—O1iv180.000 (1)O5—C9—C10118.2 (5)
O1—Ni1—N4i87.40 (13)N1—C9—C10117.6 (5)
O1iv—Ni1—N4i92.60 (13)C11—C10—C14117.0 (5)
O1—Ni1—N4v92.60 (13)C11—C10—C9125.5 (5)
O1iv—Ni1—N4v87.40 (13)C14—C10—C9117.4 (5)
N4i—Ni1—N4v180.000 (1)C12—C11—C10119.5 (5)
O1—Ni1—O1W92.84 (13)C12—C11—H11120.3
O1iv—Ni1—O1W87.16 (13)C10—C11—H11120.3
N4i—Ni1—O1W88.99 (14)N2—C12—C11123.9 (5)
N4v—Ni1—O1W91.01 (14)N2—C12—H12118.0
O1—Ni1—O1Wiv87.16 (13)C11—C12—H12118.0
O1iv—Ni1—O1Wiv92.84 (13)N2—C13—C14123.1 (5)
N4i—Ni1—O1Wiv91.01 (14)N2—C13—H13118.4
N4v—Ni1—O1Wiv88.99 (14)C14—C13—H13118.4
O1W—Ni1—O1Wiv180.00 (17)C13—C14—C10119.4 (5)
O2—Tb1—O2W82.73 (13)C13—C14—H14120.3
O2—Tb1—O9ii90.98 (13)C10—C14—H14120.3
O2W—Tb1—O9ii138.08 (13)C20—C15—C16119.6 (4)
O2—Tb1—O781.89 (12)C20—C15—C21117.5 (4)
O2W—Tb1—O7139.50 (13)C16—C15—C21122.8 (4)
O9ii—Tb1—O779.42 (11)C17—C16—C15120.7 (4)
O2—Tb1—O4iii154.16 (12)C17—C16—H16119.7
O2W—Tb1—O4iii120.54 (13)C15—C16—H16119.7
O9ii—Tb1—O4iii78.80 (13)C16—C17—C18119.3 (4)
O7—Tb1—O4iii72.98 (11)C16—C17—C22123.0 (4)
O2—Tb1—O3iii152.82 (12)C18—C17—C22117.7 (4)
O2W—Tb1—O3iii70.93 (12)C19—C18—C17120.2 (4)
O9ii—Tb1—O3iii103.96 (13)C19—C18—H18119.9
O7—Tb1—O3iii122.74 (11)C17—C18—H18119.9
O4iii—Tb1—O3iii52.81 (11)C18—C19—C20119.8 (4)
O2—Tb1—O8ii85.77 (12)C18—C19—N3118.6 (4)
O2W—Tb1—O8ii85.49 (13)C20—C19—N3121.5 (4)
O9ii—Tb1—O8ii52.66 (11)C15—C20—C19120.3 (4)
O7—Tb1—O8ii130.18 (10)C15—C20—H20119.8
O4iii—Tb1—O8ii105.78 (12)C19—C20—H20119.8
O3iii—Tb1—O8ii85.57 (12)O7—C21—O6119.9 (4)
O2—Tb1—O684.52 (12)O7—C21—C15119.5 (4)
O2W—Tb1—O688.54 (13)O6—C21—C15120.6 (4)
O9ii—Tb1—O6132.24 (11)O8—C22—O9119.1 (4)
O7—Tb1—O652.86 (10)O8—C22—C17120.7 (4)
O4iii—Tb1—O685.04 (12)O9—C22—C17120.1 (4)
O3iii—Tb1—O6101.01 (12)O8—C22—Tb1vii62.0 (2)
O8ii—Tb1—O6169.17 (11)O9—C22—Tb1vii57.1 (2)
O2—Tb1—C7iii178.33 (13)C17—C22—Tb1vii176.4 (3)
O2W—Tb1—C7iii96.05 (14)O10—C23—N3123.5 (5)
O9ii—Tb1—C7iii90.69 (14)O10—C23—C24119.8 (5)
O7—Tb1—C7iii98.38 (12)N3—C23—C24116.6 (5)
O4iii—Tb1—C7iii26.52 (12)C28—C24—C25118.6 (5)
O3iii—Tb1—C7iii26.32 (12)C28—C24—C23118.2 (4)
O8ii—Tb1—C7iii95.29 (12)C25—C24—C23123.1 (5)
O6—Tb1—C7iii94.32 (12)C26—C25—C24117.9 (5)
O2—Tb1—C22ii87.76 (13)C26—C25—H25121.0
O2W—Tb1—C22ii111.81 (15)C24—C25—H25121.0
O9ii—Tb1—C22ii26.29 (12)N4—C26—C25124.0 (5)
O7—Tb1—C22ii104.77 (12)N4—C26—H26118.0
O4iii—Tb1—C22ii92.83 (13)C25—C26—H26118.0
O3iii—Tb1—C22ii95.67 (13)N4—C27—C28123.4 (5)
O8ii—Tb1—C22ii26.37 (12)N4—C27—H27118.3
O6—Tb1—C22ii157.14 (13)C28—C27—H27118.3
C7iii—Tb1—C22ii93.76 (13)C27—C28—C24119.4 (5)
C6—C1—C2119.8 (4)C27—C28—H28120.3
C6—C1—C8119.5 (4)C24—C28—H28120.3
C2—C1—C8120.6 (4)C9—N1—C3125.9 (4)
C3—C2—C1120.4 (4)C9—N1—H1117.1
C3—C2—H2119.8C3—N1—H1117.1
C1—C2—H2119.8C13—N2—C12117.1 (5)
C2—C3—C4119.5 (4)C23—N3—C19121.5 (4)
C2—C3—N1118.9 (4)C23—N3—H3119.3
C4—C3—N1121.6 (4)C19—N3—H3119.3
C5—C4—C3119.5 (4)C26—N4—C27116.7 (4)
C5—C4—H4120.3C26—N4—Ni1viii121.8 (3)
C3—C4—H4120.3C27—N4—Ni1viii121.1 (3)
C6—C5—C4121.1 (4)C8—O1—Ni1144.0 (3)
C6—C5—C7121.0 (4)C8—O2—Tb1154.9 (3)
C4—C5—C7117.9 (4)C7—O3—Tb1vi93.7 (3)
C5—C6—C1119.6 (4)C7—O4—Tb1vi94.2 (3)
C5—C6—H6120.2C21—O6—Tb191.1 (3)
C1—C6—H6120.2C21—O7—Tb196.0 (3)
O3—C7—O4119.1 (4)C22—O8—Tb1vii91.6 (3)
O3—C7—C5120.9 (4)C22—O9—Tb1vii96.6 (3)
O4—C7—C5120.0 (4)Ni1—O1W—H1WB117.5
O3—C7—Tb1vi60.0 (2)Ni1—O1W—H1WA109.4
O4—C7—Tb1vi59.2 (2)H1WB—O1W—H1WA118.0
C5—C7—Tb1vi177.4 (3)Tb1—O2W—H2WA122 (5)
O1—C8—O2124.1 (4)Tb1—O2W—H2WB111.0
O1—C8—C1118.7 (4)H2WA—O2W—H2WB127.1
O2—C8—C1117.2 (4)H3WC—O3W—H3WD108.6
O5—C9—N1124.2 (5)H4WA—O4W—H4WB107.8
C6—C1—C2—C33.1 (7)O5—C9—N1—C34.3 (8)
C8—C1—C2—C3173.3 (4)C10—C9—N1—C3175.7 (4)
C1—C2—C3—C43.2 (7)C2—C3—N1—C9161.9 (5)
C1—C2—C3—N1176.9 (4)C4—C3—N1—C918.2 (7)
C2—C3—C4—C51.1 (7)C14—C13—N2—C121.5 (8)
N1—C3—C4—C5179.0 (4)C11—C12—N2—C131.0 (8)
C3—C4—C5—C61.2 (7)O10—C23—N3—C195.8 (7)
C3—C4—C5—C7179.1 (4)C24—C23—N3—C19171.8 (4)
C4—C5—C6—C11.3 (7)C18—C19—N3—C23133.0 (5)
C7—C5—C6—C1179.2 (4)C20—C19—N3—C2345.5 (7)
C2—C1—C6—C50.8 (7)C25—C26—N4—C273.1 (7)
C8—C1—C6—C5175.6 (4)C25—C26—N4—Ni1viii169.7 (4)
C6—C5—C7—O319.3 (7)C28—C27—N4—C261.1 (7)
C4—C5—C7—O3162.8 (4)C28—C27—N4—Ni1viii171.7 (4)
C6—C5—C7—O4159.6 (4)O2—C8—O1—Ni1119.0 (5)
C4—C5—C7—O418.3 (7)C1—C8—O1—Ni161.6 (7)
C6—C1—C8—O127.8 (7)N4i—Ni1—O1—C8148.5 (6)
C2—C1—C8—O1148.5 (5)N4v—Ni1—O1—C831.5 (6)
C6—C1—C8—O2151.7 (4)O1W—Ni1—O1—C8122.6 (6)
C2—C1—C8—O232.0 (7)O1Wiv—Ni1—O1—C857.4 (6)
O5—C9—C10—C11165.2 (5)O1—C8—O2—Tb174.5 (9)
N1—C9—C10—C1114.7 (8)C1—C8—O2—Tb1106.0 (7)
O5—C9—C10—C1412.0 (8)O2W—Tb1—O2—C892.7 (8)
N1—C9—C10—C14168.1 (5)O9ii—Tb1—O2—C8128.9 (8)
C14—C10—C11—C121.1 (8)O7—Tb1—O2—C849.7 (7)
C9—C10—C11—C12176.1 (5)O4iii—Tb1—O2—C863.1 (8)
C10—C11—C12—N20.3 (8)O3iii—Tb1—O2—C8107.0 (8)
N2—C13—C14—C100.7 (9)O8ii—Tb1—O2—C8178.7 (8)
C11—C10—C14—C130.6 (8)O6—Tb1—O2—C83.5 (7)
C9—C10—C14—C13176.8 (5)C22ii—Tb1—O2—C8154.9 (8)
C20—C15—C16—C171.6 (7)O4—C7—O3—Tb1vi3.9 (5)
C21—C15—C16—C17178.7 (4)C5—C7—O3—Tb1vi177.1 (4)
C15—C16—C17—C181.7 (7)O3—C7—O4—Tb1vi4.0 (5)
C15—C16—C17—C22179.9 (4)C5—C7—O4—Tb1vi177.1 (4)
C16—C17—C18—C190.6 (7)O7—C21—O6—Tb13.3 (4)
C22—C17—C18—C19177.9 (4)C15—C21—O6—Tb1177.3 (4)
C17—C18—C19—C203.0 (7)O2—Tb1—O6—C2185.9 (3)
C17—C18—C19—N3175.6 (4)O2W—Tb1—O6—C21168.7 (3)
C16—C15—C20—C190.9 (7)O9ii—Tb1—O6—C210.5 (3)
C21—C15—C20—C19178.9 (4)O7—Tb1—O6—C211.9 (2)
C18—C19—C20—C153.2 (7)O4iii—Tb1—O6—C2170.5 (3)
N3—C19—C20—C15175.3 (4)O3iii—Tb1—O6—C21121.1 (3)
C20—C15—C21—O75.5 (7)O8ii—Tb1—O6—C21112.2 (6)
C16—C15—C21—O7174.7 (4)C7iii—Tb1—O6—C2195.3 (3)
C20—C15—C21—O6173.8 (4)C22ii—Tb1—O6—C2115.1 (5)
C16—C15—C21—O66.0 (7)O6—C21—O7—Tb13.5 (5)
C16—C17—C22—O813.6 (7)C15—C21—O7—Tb1177.2 (4)
C18—C17—C22—O8164.8 (4)O2—Tb1—O7—C2191.2 (3)
C16—C17—C22—O9167.3 (5)O2W—Tb1—O7—C2122.5 (4)
C18—C17—C22—O914.3 (7)O9ii—Tb1—O7—C21176.3 (3)
O10—C23—C24—C2841.8 (7)O4iii—Tb1—O7—C2194.9 (3)
N3—C23—C24—C28136.0 (5)O3iii—Tb1—O7—C2176.4 (3)
O10—C23—C24—C25134.5 (5)O8ii—Tb1—O7—C21168.6 (3)
N3—C23—C24—C2547.8 (7)O6—Tb1—O7—C211.9 (3)
C28—C24—C25—C261.3 (7)C7iii—Tb1—O7—C2187.1 (3)
C23—C24—C25—C26177.5 (4)C22ii—Tb1—O7—C21176.7 (3)
C24—C25—C26—N41.9 (8)O9—C22—O8—Tb1vii1.7 (5)
N4—C27—C28—C242.0 (8)C17—C22—O8—Tb1vii177.4 (4)
C25—C24—C28—C273.2 (7)O8—C22—O9—Tb1vii1.8 (5)
C23—C24—C28—C27179.5 (4)C17—C22—O9—Tb1vii177.3 (4)
Symmetry codes: (i) x, y, z1; (ii) x1, y, z; (iii) x, y1, z; (iv) x+2, y+1, z+1; (v) x+2, y+1, z+2; (vi) x, y+1, z; (vii) x+1, y, z; (viii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4Wix0.862.163.000 (6)166
N3—H3···O4v0.862.172.958 (6)153
O1W—H1WA···O6iv0.822.242.988 (4)151
O1W—H1WB···O3Wx0.852.042.763 (6)143
O2W—H2WA···O3Wxi0.85 (6)2.47 (6)3.117 (7)134 (5)
O2W—H2WB···N2i0.851.922.672 (6)147
O3W—H3WC···O3x0.851.922.736 (5)159
O3W—H3WD···O8ii0.851.982.793 (5)160
O4W—H4WA···O9xii0.852.253.088 (6)170
O4W—H4WB···O9v0.852.193.034 (5)172
Symmetry codes: (i) x, y, z1; (ii) x1, y, z; (iv) x+2, y+1, z+1; (v) x+2, y+1, z+2; (ix) x+1, y+1, z+2; (x) x+1, y+1, z+1; (xi) x+1, y, z+1; (xii) x1, y+1, z.

Experimental details

Crystal data
Chemical formula[NiTb2(C14H8N2O5)4(H2O)4]·4H2O
Mr1657.57
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.2347 (12), 10.8608 (13), 13.7452 (17)
α, β, γ (°)79.053 (2), 78.745 (1), 86.326 (2)
V3)1470.7 (3)
Z1
Radiation typeMo Kα
µ (mm1)2.80
Crystal size (mm)0.22 × 0.16 × 0.08
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.578, 0.807
No. of measured, independent and
observed [I > 2σ(I)] reflections
7345, 5088, 4486
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.074, 1.03
No. of reflections5088
No. of parameters434
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.24, 0.85

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4Wi0.862.163.000 (6)166
N3—H3···O4ii0.862.172.958 (6)153
O1W—H1WA···O6iii0.822.242.988 (4)151
O1W—H1WB···O3Wiv0.852.042.763 (6)143
O2W—H2WA···O3Wv0.85 (6)2.47 (6)3.117 (7)134 (5)
O2W—H2WB···N2vi0.851.922.672 (6)147
O3W—H3WC···O3iv0.851.922.736 (5)159
O3W—H3WD···O8vii0.851.982.793 (5)160
O4W—H4WA···O9viii0.852.253.088 (6)170
O4W—H4WB···O9ii0.852.193.034 (5)172
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y+1, z+2; (iii) x+2, y+1, z+1; (iv) x+1, y+1, z+1; (v) x+1, y, z+1; (vi) x, y, z1; (vii) x1, y, z; (viii) x1, y+1, z.
 

Acknowledgements

This work was supported by the Open Fund Project of Key Laboratories in Hunan Universities (grant No. 11 K009) and the Hunan Provincial Natural Science Foundation of China (grant No.13 J J6069).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, M.-S., Zhao, Y., Okamura, T.-A., Su, Z., Sun, W.-Y. & Ueyama, N. (2011). Supramol. Chem. 23, 117–124.  Web of Science CSD CrossRef CAS Google Scholar
First citationDeng, Y.-F., Chen, M.-S., Zhang, C.-H. & Kuang, D.-Z. (2011). Acta Cryst. E67, m1431–m1432.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGu, X.-J. & Xue, D.-F. (2006). Inorg. Chem. 45, 9257–9261.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiang, Y.-C., Cao, R., Su, W.-P., Hong, M.-C. & Zhang, W.-J. (2000). Angew. Chem. Int. Ed. 39, 3304–3307.  Web of Science CrossRef CAS Google Scholar
First citationPrasad, T. K., Rajasekharan, M. V. & Costes, J. P. (2007). Angew. Chem. Int. Ed. 46, 2851–2854.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, B., Cheng, P., Chen, X.-Y., Cheng, C., Shi, W., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2004). J. Am. Chem. Soc. 126, 3012–3013.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhao, B., Cheng, P., Dai, Y., Cheng, C., Liao, D.-Z., Yan, S.-P., Jiang, Z.-H. & Wang, G.-L. (2003). Angew. Chem. Int. Ed. 42, 934–936.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds