organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3-[(chloro­meth­­oxy)carbon­yl­oxy]-7-hy­dr­oxy­cholan-24-oate

aShanghai Institute of Pharmaceutical Industry, Shanghai 200040, People's Republic of China, and bBeijing Chao-Yang Hospital Affiliated with Beijing Capital Medical University, Beijing 100020, People's Republic of China
*Correspondence e-mail: liuheliuhe@126.com

(Received 1 June 2013; accepted 22 June 2013; online 29 June 2013)

The title compound, C27H43ClO6, is a derivative of urso­deoxy­cholic acid, in which the OH group at the 3-position is substituted by a chloro­meth­oxy­carbon­yloxy substituent and the carb­oxy­lic acid group at the 24-position is methyl­ated. The A and B rings are cis-fused, while all other rings are trans-fused. In the crystal, two adjacent mol­ecules located along the b-axis direction are inter­locked head-to-tail due to weak C—H⋯O hydrogen bonds. Therefore each mol­ecule is linked to four neighbouring mol­ecules by four C—H⋯O hydrogen bonds, with the OH group at the 7-position and the carbonyl O atom of the ester group acting as the acceptor sites.

Related literature

For the synthesis of the title compound, see: von Geldern et al. (2004[Geldern, T. W. von, Tu, N., Kym, P. R., Link, J. T., Jae, H.-S., Lai, C., Apelqvist, T., Rhonnstad, P., Hagberg, L., Koehler, K., Grynfarb, M., Goos-Nilsson, A., Sandberg, J., Österlund, M., Barkhem, T., Höglund, M., Färnegårdh, M., Kauppi, B., Öhman, L. & Jacobson, P. B. (2004). J. Med. Chem. 47, 4213-4230.]); For similar structures, see: Kannan et al. (2001[Kannan, A., De Clercq, E., Pannecouque, C., Witvrouw, M., Hartman, T. L., Turpin, J. A., Buckheit, R. W. Jr & Cushman, M. (2001). Tetrahedron, 57, 9385-9391.]); Lindley & Carey et al. (1987[Lindley, P. F. & Carey, M. C. (1987). J. Crystallogr. Spectrosc. Res. 17, 231-249.]).

[Scheme 1]

Experimental

Crystal data
  • C27H43ClO6

  • Mr = 499.06

  • Orthorhombic, P 21 21 21

  • a = 7.8896 (13) Å

  • b = 10.9493 (17) Å

  • c = 30.683 (5) Å

  • V = 2650.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 294 K

  • 0.24 × 0.20 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 15292 measured reflections

  • 5411 independent reflections

  • 3191 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.118

  • S = 0.94

  • 5411 reflections

  • 311 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2309 Friedel pairs

  • Flack parameter: −0.10 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯O2i 0.97 2.49 3.339 (4) 146
C27—H27B⋯O5ii 0.97 2.40 3.270 (4) 149
Symmetry codes: (i) x+1, y, z; (ii) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010)[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.].

Supporting information


Comment top

The title compound, (I) (Fig. 1), methyl 3-((chloromethoxy)carbonyloxy-7- hydroxycholan-24-oate was synthesized according to a general literature procedure (von Geldern et al., 2004).

Bile acid is a widely studied and used pharmaceutical molecule (Kannan et al., 2001). It can be used to treat jaundice, gallstones (Lindley & Carey, 1987) etc. Ursodeoxycholic acid (UDCA) and chenodeoxycholic acid (CDCA) are two most famous analogues of bile acid. Here we report the crystal structure of a UDCA derivative.

In the crystal structure, rings A and B are cis fused while rings B/C/D are trans fused. The dihedral angles of A/B, B/C, C/D are 62.89 (8)°, 2.70 (14)° and 5.05 (17)°, respectively. So the skeleton of the title compound exhibits a V shape with the 3-α and 17-β side chains stretched as the arms. In the crystal packing (Fig. 2), two adjacent molecules located along the b axis are interlocked head to tail due to weak hydrogen bondings (C11—H11B···O2 and C27—H27B···O5, Table 1). Therefore each molecule of the title compound is linked to four neighboring molecules by four C—H···O hydrogen bonds.

Related literature top

For the synthesis of the title compound, see: von Geldern et al. (2004); For similar structures, see: Kannan et al. (2001); Lindley & Carey et al. (1987).

Experimental top

Chloromethyl-chloroformate was slowly added to a solution of methyl 3,7- dihydroxycholan-24-oate and anhydrous pyridine in anhydrous CH2Cl2 under nitrogen at 273 K. The resulting mixture was allowed to warm to room temperature, was then stirred for 7 h and then extracted with CH2Cl2. The organic extract was dried over Na2SO4, filtered and evaporated under reduced pressure. The residue was washed with diethyl ether to afford the title compound as a white solid (>95% yield). No further purification was necessary. Crystals appropriate for X-ray diffraction data collection were obtained by slow evaporation of a saturated DMF/H2O solution at room temperature.

Refinement top

The H atom of the OH-group in 7-position was located from the difference Fourier map and restraind to ride on its parent O atom. All other H atoms were placed in geometically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.93 Å (0.96 for methyl group) and Uiso(H) = 1.2 (1.5 for CH3)Ueq(C) for CH.

Structure description top

The title compound, (I) (Fig. 1), methyl 3-((chloromethoxy)carbonyloxy-7- hydroxycholan-24-oate was synthesized according to a general literature procedure (von Geldern et al., 2004).

Bile acid is a widely studied and used pharmaceutical molecule (Kannan et al., 2001). It can be used to treat jaundice, gallstones (Lindley & Carey, 1987) etc. Ursodeoxycholic acid (UDCA) and chenodeoxycholic acid (CDCA) are two most famous analogues of bile acid. Here we report the crystal structure of a UDCA derivative.

In the crystal structure, rings A and B are cis fused while rings B/C/D are trans fused. The dihedral angles of A/B, B/C, C/D are 62.89 (8)°, 2.70 (14)° and 5.05 (17)°, respectively. So the skeleton of the title compound exhibits a V shape with the 3-α and 17-β side chains stretched as the arms. In the crystal packing (Fig. 2), two adjacent molecules located along the b axis are interlocked head to tail due to weak hydrogen bondings (C11—H11B···O2 and C27—H27B···O5, Table 1). Therefore each molecule of the title compound is linked to four neighboring molecules by four C—H···O hydrogen bonds.

For the synthesis of the title compound, see: von Geldern et al. (2004); For similar structures, see: Kannan et al. (2001); Lindley & Carey et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing of the title compound, viewed down the a axis. Dashed lines indicate the C—H···O hydrogen bonds.
Methyl 3-[(chloromethoxy)carbonyloxy]-7-hydroxycholan-24-oate top
Crystal data top
C27H43ClO6F(000) = 1080
Mr = 499.06Dx = 1.251 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2869 reflections
a = 7.8896 (13) Åθ = 2.3–20.2°
b = 10.9493 (17) ŵ = 0.18 mm1
c = 30.683 (5) ÅT = 294 K
V = 2650.6 (7) Å3Block, colorless
Z = 40.24 × 0.20 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
3191 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
Graphite monochromatorθmax = 26.4°, θmin = 2.0°
φ and ω scansh = 99
15292 measured reflectionsk = 1313
5411 independent reflectionsl = 3824
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0543P)2 + 0.1843P]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max = 0.006
5411 reflectionsΔρmax = 0.15 e Å3
311 parametersΔρmin = 0.19 e Å3
0 restraintsAbsolute structure: Flack (1983), 2309 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.10 (9)
Crystal data top
C27H43ClO6V = 2650.6 (7) Å3
Mr = 499.06Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.8896 (13) ŵ = 0.18 mm1
b = 10.9493 (17) ÅT = 294 K
c = 30.683 (5) Å0.24 × 0.20 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
3191 reflections with I > 2σ(I)
15292 measured reflectionsRint = 0.054
5411 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.118Δρmax = 0.15 e Å3
S = 0.94Δρmin = 0.19 e Å3
5411 reflectionsAbsolute structure: Flack (1983), 2309 Friedel pairs
311 parametersAbsolute structure parameter: 0.10 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.32107 (15)0.26524 (10)0.18096 (3)0.0899 (4)
O10.2665 (3)0.37444 (17)0.31505 (6)0.0499 (5)
O20.3225 (2)0.4663 (2)0.46546 (7)0.0736 (7)
H20.32700.41000.48310.110*
O30.1100 (3)0.4228 (2)0.25576 (7)0.0717 (7)
O40.2450 (3)0.24219 (18)0.26367 (6)0.0657 (7)
O50.1643 (4)0.0724 (2)0.72053 (8)0.0823 (8)
O60.2415 (3)0.18771 (19)0.77669 (7)0.0623 (6)
C10.3092 (4)0.6337 (2)0.39347 (9)0.0435 (7)
H1A0.30160.70110.37300.052*
H1B0.39920.65270.41390.052*
C20.3587 (3)0.5194 (2)0.36840 (9)0.0408 (7)
H2A0.46390.53340.35280.049*
H2B0.37580.45210.38850.049*
C30.2202 (3)0.4882 (3)0.33670 (9)0.0416 (7)
H30.20970.55350.31500.050*
C40.0533 (3)0.4714 (3)0.35987 (9)0.0439 (7)
H4A0.06130.40120.37910.053*
H4B0.03420.45450.33850.053*
C50.0019 (3)0.5833 (3)0.38662 (10)0.0415 (7)
H50.01580.65020.36590.050*
C60.1667 (4)0.5618 (3)0.40940 (9)0.0508 (8)
H6A0.24740.53020.38840.061*
H6B0.20970.63940.41990.061*
C70.1550 (3)0.4733 (3)0.44751 (9)0.0462 (7)
H70.12270.39260.43650.055*
C80.0229 (3)0.5153 (3)0.48090 (9)0.0351 (6)
H80.06000.59400.49270.042*
C90.1503 (3)0.5350 (2)0.45808 (8)0.0342 (6)
H90.18190.45580.44570.041*
C100.1415 (3)0.6260 (2)0.41883 (9)0.0361 (6)
C110.2904 (4)0.5677 (3)0.49034 (9)0.0459 (8)
H11A0.26990.64940.50140.055*
H11B0.39790.56880.47500.055*
C120.3042 (3)0.4796 (3)0.52914 (9)0.0442 (7)
H12A0.33930.39980.51880.053*
H12B0.38970.50910.54920.053*
C130.1340 (3)0.4681 (2)0.55303 (9)0.0359 (7)
C140.0003 (3)0.4264 (3)0.51936 (9)0.0380 (7)
H140.04330.35040.50670.046*
C150.1512 (4)0.3896 (3)0.54761 (10)0.0517 (8)
H15A0.21900.32770.53320.062*
H15B0.22230.45970.55390.062*
C160.0713 (4)0.3389 (3)0.58960 (10)0.0576 (9)
H16A0.09170.25170.59180.069*
H16B0.12060.37840.61490.069*
C170.1219 (4)0.3648 (3)0.58750 (9)0.0426 (7)
H170.17540.29240.57480.051*
C180.1007 (4)0.7560 (3)0.43452 (10)0.0541 (8)
H18A0.19430.78710.45110.081*
H18B0.00100.75430.45250.081*
H18C0.08120.80780.40980.081*
C190.0859 (4)0.5906 (2)0.57389 (9)0.0462 (8)
H19A0.06790.65030.55150.069*
H19B0.17580.61720.59270.069*
H19C0.01620.58090.59060.069*
C200.2012 (4)0.3833 (3)0.63295 (9)0.0481 (8)
H200.14230.45170.64690.058*
C210.1710 (4)0.2695 (3)0.66091 (9)0.0549 (8)
H21A0.05320.24550.65800.066*
H21B0.23990.20340.64950.066*
C220.2112 (5)0.2856 (3)0.70923 (10)0.0659 (10)
H22A0.32440.31920.71210.079*
H22B0.13250.34410.72160.079*
C230.2014 (4)0.1701 (3)0.73474 (10)0.0535 (8)
C240.2399 (5)0.0802 (3)0.80385 (11)0.0825 (12)
H24A0.12990.04290.80270.124*
H24B0.26530.10280.83340.124*
H24C0.32360.02340.79360.124*
C250.3888 (4)0.4142 (4)0.63165 (12)0.0798 (12)
H25A0.44740.35470.61430.120*
H25B0.43360.41350.66070.120*
H25C0.40380.49380.61910.120*
C260.1968 (4)0.3558 (3)0.27627 (10)0.0494 (8)
C270.1876 (5)0.2065 (3)0.22191 (9)0.0642 (10)
H27A0.07310.23620.21740.077*
H27B0.18540.11810.22010.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1037 (8)0.1095 (8)0.0566 (5)0.0270 (6)0.0159 (6)0.0190 (5)
O10.0637 (13)0.0502 (12)0.0358 (11)0.0123 (10)0.0067 (11)0.0087 (10)
O20.0304 (11)0.126 (2)0.0641 (15)0.0057 (12)0.0029 (12)0.0148 (14)
O30.0891 (18)0.0694 (15)0.0566 (14)0.0211 (14)0.0233 (15)0.0142 (12)
O40.1050 (19)0.0487 (12)0.0433 (12)0.0106 (13)0.0066 (13)0.0096 (10)
O50.124 (2)0.0533 (14)0.0699 (16)0.0114 (15)0.0356 (17)0.0132 (13)
O60.0814 (17)0.0611 (13)0.0445 (12)0.0078 (12)0.0031 (13)0.0078 (11)
C10.0495 (19)0.0389 (16)0.0421 (16)0.0033 (14)0.0036 (15)0.0019 (14)
C20.0362 (15)0.0453 (16)0.0410 (16)0.0001 (14)0.0027 (14)0.0016 (14)
C30.0423 (16)0.0417 (16)0.0407 (16)0.0044 (14)0.0009 (15)0.0064 (13)
C40.0414 (17)0.0485 (17)0.0417 (18)0.0028 (14)0.0091 (15)0.0070 (15)
C50.0396 (17)0.0435 (17)0.0414 (17)0.0053 (14)0.0066 (15)0.0038 (15)
C60.0355 (16)0.066 (2)0.0505 (18)0.0099 (15)0.0055 (16)0.0017 (16)
C70.0289 (15)0.063 (2)0.0468 (18)0.0007 (15)0.0016 (15)0.0029 (16)
C80.0299 (14)0.0360 (15)0.0395 (16)0.0043 (12)0.0013 (13)0.0072 (13)
C90.0304 (14)0.0336 (15)0.0387 (15)0.0060 (12)0.0013 (13)0.0043 (12)
C100.0365 (15)0.0327 (15)0.0392 (15)0.0028 (13)0.0012 (14)0.0045 (13)
C110.0340 (16)0.0604 (19)0.0434 (17)0.0018 (15)0.0007 (15)0.0012 (15)
C120.0372 (16)0.0516 (17)0.0438 (17)0.0012 (14)0.0047 (15)0.0025 (14)
C130.0360 (15)0.0339 (15)0.0379 (16)0.0008 (13)0.0009 (14)0.0016 (13)
C140.0327 (16)0.0367 (15)0.0444 (17)0.0038 (13)0.0021 (15)0.0075 (14)
C150.0417 (17)0.058 (2)0.0554 (19)0.0081 (15)0.0026 (17)0.0066 (16)
C160.0531 (19)0.063 (2)0.057 (2)0.0165 (16)0.0101 (18)0.0185 (18)
C170.0471 (17)0.0352 (16)0.0455 (17)0.0026 (13)0.0017 (16)0.0015 (14)
C180.065 (2)0.0400 (17)0.0569 (19)0.0126 (16)0.0005 (18)0.0009 (15)
C190.0553 (19)0.0382 (17)0.0452 (18)0.0000 (15)0.0015 (16)0.0002 (14)
C200.0547 (19)0.0418 (16)0.0478 (18)0.0083 (15)0.0081 (17)0.0067 (14)
C210.059 (2)0.0509 (19)0.0547 (19)0.0017 (16)0.0068 (18)0.0086 (15)
C220.096 (3)0.050 (2)0.0516 (19)0.0089 (19)0.014 (2)0.0100 (16)
C230.055 (2)0.051 (2)0.054 (2)0.0046 (17)0.0109 (18)0.0041 (17)
C240.121 (3)0.072 (2)0.054 (2)0.017 (2)0.002 (2)0.0246 (19)
C250.069 (2)0.105 (3)0.065 (2)0.031 (2)0.023 (2)0.026 (2)
C260.058 (2)0.049 (2)0.0415 (18)0.0017 (17)0.0030 (18)0.0060 (16)
C270.091 (3)0.060 (2)0.0418 (18)0.0061 (19)0.000 (2)0.0203 (16)
Geometric parameters (Å, º) top
Cl1—C271.761 (3)C11—H11B0.9700
O1—C261.327 (3)C12—C131.535 (4)
O1—C31.458 (3)C12—H12A0.9700
O2—C71.433 (3)C12—H12B0.9700
O2—H20.8200C13—C191.534 (4)
O3—C261.185 (4)C13—C141.549 (4)
O4—C261.357 (3)C13—C171.551 (4)
O4—C271.414 (3)C14—C151.526 (4)
O5—C231.191 (4)C14—H140.9800
O6—C231.340 (4)C15—C161.538 (4)
O6—C241.442 (3)C15—H15A0.9700
C1—C21.520 (4)C15—H15B0.9700
C1—C101.537 (4)C16—C171.552 (4)
C1—H1A0.9700C16—H16A0.9700
C1—H1B0.9700C16—H16B0.9700
C2—C31.502 (3)C17—C201.542 (4)
C2—H2A0.9700C17—H170.9800
C2—H2B0.9700C18—H18A0.9600
C3—C41.508 (4)C18—H18B0.9600
C3—H30.9800C18—H18C0.9600
C4—C51.530 (4)C19—H19A0.9600
C4—H4A0.9700C19—H19B0.9600
C4—H4B0.9700C19—H19C0.9600
C5—C61.521 (4)C20—C251.519 (4)
C5—C101.552 (4)C20—C211.531 (4)
C5—H50.9800C20—H200.9800
C6—C71.522 (4)C21—C221.526 (4)
C6—H6A0.9700C21—H21A0.9700
C6—H6B0.9700C21—H21B0.9700
C7—C81.533 (4)C22—C231.489 (4)
C7—H70.9800C22—H22A0.9700
C8—C141.540 (4)C22—H22B0.9700
C8—C91.550 (4)C24—H24A0.9600
C8—H80.9800C24—H24B0.9600
C9—C111.526 (4)C24—H24C0.9600
C9—C101.564 (4)C25—H25A0.9600
C9—H90.9800C25—H25B0.9600
C10—C181.537 (4)C25—H25C0.9600
C11—C121.536 (4)C27—H27A0.9700
C11—H11A0.9700C27—H27B0.9700
C26—O1—C3115.8 (2)C12—C13—C17116.1 (2)
C7—O2—H2109.5C14—C13—C17101.4 (2)
C26—O4—C27114.9 (3)C15—C14—C8120.8 (2)
C23—O6—C24115.8 (3)C15—C14—C13103.4 (2)
C2—C1—C10115.6 (2)C8—C14—C13113.8 (2)
C2—C1—H1A108.4C15—C14—H14105.9
C10—C1—H1A108.4C8—C14—H14105.9
C2—C1—H1B108.4C13—C14—H14105.9
C10—C1—H1B108.4C14—C15—C16104.6 (2)
H1A—C1—H1B107.4C14—C15—H15A110.8
C3—C2—C1109.2 (2)C16—C15—H15A110.8
C3—C2—H2A109.9C14—C15—H15B110.8
C1—C2—H2A109.9C16—C15—H15B110.8
C3—C2—H2B109.9H15A—C15—H15B108.9
C1—C2—H2B109.9C15—C16—C17107.5 (2)
H2A—C2—H2B108.3C15—C16—H16A110.2
O1—C3—C2107.9 (2)C17—C16—H16A110.2
O1—C3—C4109.2 (2)C15—C16—H16B110.2
C2—C3—C4111.0 (2)C17—C16—H16B110.2
O1—C3—H3109.6H16A—C16—H16B108.5
C2—C3—H3109.6C20—C17—C13119.8 (2)
C4—C3—H3109.6C20—C17—C16112.6 (2)
C3—C4—C5112.7 (2)C13—C17—C16102.8 (2)
C3—C4—H4A109.0C20—C17—H17107.0
C5—C4—H4A109.0C13—C17—H17107.0
C3—C4—H4B109.0C16—C17—H17107.0
C5—C4—H4B109.0C10—C18—H18A109.5
H4A—C4—H4B107.8C10—C18—H18B109.5
C6—C5—C4110.8 (2)H18A—C18—H18B109.5
C6—C5—C10112.0 (2)C10—C18—H18C109.5
C4—C5—C10113.3 (2)H18A—C18—H18C109.5
C6—C5—H5106.8H18B—C18—H18C109.5
C4—C5—H5106.8C13—C19—H19A109.5
C10—C5—H5106.8C13—C19—H19B109.5
C5—C6—C7113.5 (2)H19A—C19—H19B109.5
C5—C6—H6A108.9C13—C19—H19C109.5
C7—C6—H6A108.9H19A—C19—H19C109.5
C5—C6—H6B108.9H19B—C19—H19C109.5
C7—C6—H6B108.9C25—C20—C21110.3 (3)
H6A—C6—H6B107.7C25—C20—C17113.6 (3)
O2—C7—C6105.9 (2)C21—C20—C17109.7 (2)
O2—C7—C8112.7 (2)C25—C20—H20107.7
C6—C7—C8111.3 (2)C21—C20—H20107.7
O2—C7—H7108.9C17—C20—H20107.7
C6—C7—H7108.9C22—C21—C20114.7 (2)
C8—C7—H7108.9C22—C21—H21A108.6
C7—C8—C14113.6 (2)C20—C21—H21A108.6
C7—C8—C9109.8 (2)C22—C21—H21B108.6
C14—C8—C9109.4 (2)C20—C21—H21B108.6
C7—C8—H8107.9H21A—C21—H21B107.6
C14—C8—H8107.9C23—C22—C21113.7 (3)
C9—C8—H8107.9C23—C22—H22A108.8
C11—C9—C8112.2 (2)C21—C22—H22A108.8
C11—C9—C10112.5 (2)C23—C22—H22B108.8
C8—C9—C10113.4 (2)C21—C22—H22B108.8
C11—C9—H9106.0H22A—C22—H22B107.7
C8—C9—H9106.0O5—C23—O6122.6 (3)
C10—C9—H9106.0O5—C23—C22125.6 (3)
C18—C10—C1106.7 (2)O6—C23—C22111.7 (3)
C18—C10—C5109.3 (2)O6—C24—H24A109.5
C1—C10—C5107.8 (2)O6—C24—H24B109.5
C18—C10—C9111.0 (2)H24A—C24—H24B109.5
C1—C10—C9112.7 (2)O6—C24—H24C109.5
C5—C10—C9109.3 (2)H24A—C24—H24C109.5
C9—C11—C12114.0 (2)H24B—C24—H24C109.5
C9—C11—H11A108.7C20—C25—H25A109.5
C12—C11—H11A108.7C20—C25—H25B109.5
C9—C11—H11B108.7H25A—C25—H25B109.5
C12—C11—H11B108.7C20—C25—H25C109.5
H11A—C11—H11B107.6H25A—C25—H25C109.5
C13—C12—C11111.1 (2)H25B—C25—H25C109.5
C13—C12—H12A109.4O3—C26—O1128.4 (3)
C11—C12—H12A109.4O3—C26—O4125.3 (3)
C13—C12—H12B109.4O1—C26—O4106.3 (3)
C11—C12—H12B109.4O4—C27—Cl1110.7 (2)
H12A—C12—H12B108.0O4—C27—H27A109.5
C19—C13—C12110.1 (2)Cl1—C27—H27A109.5
C19—C13—C14111.5 (2)O4—C27—H27B109.5
C12—C13—C14107.7 (2)Cl1—C27—H27B109.5
C19—C13—C17109.7 (2)H27A—C27—H27B108.1
C10—C1—C2—C357.9 (3)C11—C12—C13—C1456.6 (3)
C26—O1—C3—C2156.1 (2)C11—C12—C13—C17169.4 (2)
C26—O1—C3—C483.2 (3)C7—C8—C14—C1556.4 (3)
C1—C2—C3—O1176.6 (2)C9—C8—C14—C15179.6 (2)
C1—C2—C3—C457.1 (3)C7—C8—C14—C13179.6 (2)
O1—C3—C4—C5175.3 (2)C9—C8—C14—C1356.4 (3)
C2—C3—C4—C556.5 (3)C19—C13—C14—C1571.7 (3)
C3—C4—C5—C6179.9 (2)C12—C13—C14—C15167.4 (2)
C3—C4—C5—C1053.1 (3)C17—C13—C14—C1545.0 (3)
C4—C5—C6—C772.7 (3)C19—C13—C14—C861.2 (3)
C10—C5—C6—C754.9 (3)C12—C13—C14—C859.7 (3)
C5—C6—C7—O2178.7 (2)C17—C13—C14—C8177.9 (2)
C5—C6—C7—C855.9 (3)C8—C14—C15—C16161.5 (3)
O2—C7—C8—C1463.5 (3)C13—C14—C15—C1632.8 (3)
C6—C7—C8—C14177.7 (2)C14—C15—C16—C178.1 (3)
O2—C7—C8—C9173.5 (2)C19—C13—C17—C2046.8 (3)
C6—C7—C8—C954.7 (3)C12—C13—C17—C2078.8 (3)
C7—C8—C9—C11175.7 (2)C14—C13—C17—C20164.8 (2)
C14—C8—C9—C1150.3 (3)C19—C13—C17—C1679.0 (3)
C7—C8—C9—C1055.5 (3)C12—C13—C17—C16155.4 (2)
C14—C8—C9—C10179.1 (2)C14—C13—C17—C1639.0 (3)
C2—C1—C10—C18170.0 (2)C15—C16—C17—C20149.8 (3)
C2—C1—C10—C552.7 (3)C15—C16—C17—C1319.5 (3)
C2—C1—C10—C967.9 (3)C13—C17—C20—C2556.5 (4)
C6—C5—C10—C1869.4 (3)C16—C17—C20—C25177.5 (3)
C4—C5—C10—C18164.4 (2)C13—C17—C20—C21179.5 (3)
C6—C5—C10—C1175.0 (2)C16—C17—C20—C2158.5 (3)
C4—C5—C10—C148.8 (3)C25—C20—C21—C2265.9 (4)
C6—C5—C10—C952.2 (3)C17—C20—C21—C22168.2 (3)
C4—C5—C10—C974.0 (3)C20—C21—C22—C23172.9 (3)
C11—C9—C10—C1862.0 (3)C24—O6—C23—O51.0 (5)
C8—C9—C10—C1866.7 (3)C24—O6—C23—C22178.4 (3)
C11—C9—C10—C157.7 (3)C21—C22—C23—O50.9 (5)
C8—C9—C10—C1173.7 (2)C21—C22—C23—O6178.5 (3)
C11—C9—C10—C5177.5 (2)C3—O1—C26—O35.0 (5)
C8—C9—C10—C553.9 (3)C3—O1—C26—O4175.2 (2)
C8—C9—C11—C1251.3 (3)C27—O4—C26—O31.9 (5)
C10—C9—C11—C12179.4 (2)C27—O4—C26—O1177.9 (2)
C9—C11—C12—C1355.0 (3)C26—O4—C27—Cl182.3 (3)
C11—C12—C13—C1965.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O2i0.972.493.339 (4)146
C27—H27B···O5ii0.972.403.270 (4)149
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC27H43ClO6
Mr499.06
Crystal system, space groupOrthorhombic, P212121
Temperature (K)294
a, b, c (Å)7.8896 (13), 10.9493 (17), 30.683 (5)
V3)2650.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.24 × 0.20 × 0.12
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15292, 5411, 3191
Rint0.054
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.118, 0.94
No. of reflections5411
No. of parameters311
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.19
Absolute structureFlack (1983), 2309 Friedel pairs
Absolute structure parameter0.10 (9)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O2i0.972.493.339 (4)145.6
C27—H27B···O5ii0.972.403.270 (4)149.2
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y, z1/2.
 

Acknowledgements

We gratefully acknowledge financial support from the National Natural Science Foundation of China (Nos. 81072530 and 30772653).

References

First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGeldern, T. W. von, Tu, N., Kym, P. R., Link, J. T., Jae, H.-S., Lai, C., Apelqvist, T., Rhonnstad, P., Hagberg, L., Koehler, K., Grynfarb, M., Goos-Nilsson, A., Sandberg, J., Österlund, M., Barkhem, T., Höglund, M., Färnegårdh, M., Kauppi, B., Öhman, L. & Jacobson, P. B. (2004). J. Med. Chem. 47, 4213–4230.  Web of Science PubMed Google Scholar
First citationKannan, A., De Clercq, E., Pannecouque, C., Witvrouw, M., Hartman, T. L., Turpin, J. A., Buckheit, R. W. Jr & Cushman, M. (2001). Tetrahedron, 57, 9385–9391.  Web of Science CrossRef CAS Google Scholar
First citationLindley, P. F. & Carey, M. C. (1987). J. Crystallogr. Spectrosc. Res. 17, 231–249.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds