metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Ferrocenyl-3-nitro-2H-chromene

aPost Graduate and Research Department of Physics, Agurchand Manmull Jain College, Chennai 600 114, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: seshadri_pr@yahoo.com

(Received 1 June 2013; accepted 5 June 2013; online 12 June 2013)

In the title compound, [Fe(C5H5)(C14H10NO3)], the cyclo­penta­dienyl rings are in an eclipsed conformation and the pyran ring adopts a half-chair conformation. The mean plane of the pyran ring makes dihedral angles of 79.33 (1) and 80.73 (1)°, respectively, with the substituted and unsubstituted cyclo­penta­dienyl rings. In the crystal, pairs of C—H⋯O hydrogen bonds link the mol­ecules into inversion dimers with R22(16) motifs.

Related literature

For the biological activity of ferrocenyl derivatives, see: Fouda et al. (2007[Fouda, M. F. R., Abd-Elzaher, M. M., Abdelsamaia, R. A. & Labib, A. A. (2007). Appl. Organomet. Chem. 21, 613-625.]); Jaouen et al. (2004[Jaouen, G., Top, S., Vessireres, A., Leclercq, G., Vaissermann, J. & & McGlinchey, M. J. (2004). Curr. Med. Chem. 11, 2505-2517.]); Biot et al. (2004[Biot, C., Dessolin, J., Richard, I. & Dive, D. (2004). J. Organomet. Chem. 689, 4678-4682.]); Edwards et al. (1975[Edwards, E. I., Epton, R. & Marr, G. (1975). J. Organomet. Chem. 85, C23-C25.]). For conformational analysis and puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related structures, see: Zora et al. (2006[Zora, M., Açıkgöz, C., Tumay, T. A., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. C62, m327-m330.]); Paramasivam et al. (2013[Paramasivam, S., Purushothaman, S., Seshadri, P. R. & Raghunathan, R. (2013). Acta Cryst. E69, m144.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C14H10NO3)]

  • Mr = 361.17

  • Monoclinic, P 21 /c

  • a = 10.047 (5) Å

  • b = 19.317 (5) Å

  • c = 8.135 (5) Å

  • β = 96.667 (5)°

  • V = 1568.1 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 298 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Ins., Madison, Wisconsin, USA.]) Tmin = 0.752, Tmax = 0.822

  • 14295 measured reflections

  • 3878 independent reflections

  • 3320 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.076

  • S = 1.01

  • 3878 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O3i 0.93 2.55 3.390 (3) 150
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Ins., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Ins., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As a continuation of our research related to ferrocenyl derivatives, we analyzed the crystal structure of (E)-1-ferrocenyl-3-[2-(2-hydroxyethoxy)phenyl]prop-2-en-1-one (Paramasivam et al., 2013). The present compound exhibits the pronounced similarity to the previous ones, either in bond lengths and angles as well as in molecular conformation.

Ferrocenyl derivatives exhibit antibacterial (Fouda et al., 2007), antitumor (Jaouen et al., 2004), antifungal and antimalarial (Biot et al., 2004) activities. It was proved that the replacement of the aromatic group by the ferrocenyl moiety in penicillins and cephalosporins could improve their antibiotic activity (Edwards et al., 1975). Against this background, the title compound was chosen for X-ray structure analysis (Fig. 1).

In the title compound, the pyran ring (O1/C1/C6–C9) adopts a half-chair conformation with the puckering parameters (Cremer & Pople, 1975) being q2 = 0.304 (1) Å, q3 = -0.138 (1) Å, QT = 0.334 (1) Å and it makes dihedral angles of 79.66 (1) and 80.65 (1)°, respectively, with the substituted (C10–C14) and unsubstituted (C15–C19) cyclopentadienyl (Cp) rings of the ferrocenyl unit. In ferrocenyl unit, the two Cp rings are planar and are essentially parallel to each other with a dihedral angle of 2.08 (1)° between them. The Fe atom lies in the middle of the two planes of Cp rings. The distances of the Fe1 atom from the centroids of the substituted and unsubstituted cyclopentadienyl rings are 1.636 (13) and 1.646 (14) Å, respectively. The Cg1—Fe1—Cg2 angle is 178.09 (4)°, where Cg1 and Cg2 are the centroids of (C10–C14) and (C15–C19) Cp rings, respectively. The C—C bond distances in the Cp rings range from 1.403 (3) to 1.429 (2) Å, while Fe—C bond lengths range between 2.028 (1) and 2.040 (2) Å and all of which are as expected (Zora et al., 2006). The torsion angles O1—C9—C10—C14 and C7—C8—N1—O2 [-42.8 (1)° and -6.1 (2)°, respectively] indicate the bent conformation of the molecule. The geometric parameters of the title compound (Fig. 1) agree well with the reported similar structures (Paramasivam et al., 2013).

The crystal packing reveals a weak C—H···O hydrogen bonds (Fig. 2). In the crystal structure, the molecules at (-x + 2, -y, -z + 1) are linked by C16—H16···O3 hydrogen bond, generating a centrosymmetric dimeric ring motif R22(16) (Bernstein et al., 1995).

Related literature top

For the biological activity of ferrocenyl derivatives, see: Fouda et al. (2007); Jaouen et al. (2004); Biot et al. (2004); Edwards et al. (1975). For conformational analysis and puckering parameters, see: Cremer & Pople (1975). For related structures, see: Zora et al. (2006); Paramasivam et al. (2013). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

To a solution of salicylaldehyde (2 equiv) and (E)-(2-nitrovinyl) ferrocene (1 equiv), 1,4 diazabicyclo[2.2.2]octane (DABCO) (0.5 equiv) was added, and in the absence of solvent the reaction mixture was stirred at 45 °C for 2 h. After completion of the reaction as indicated by TLC, the crude product was extracted with ethylacetate, The organic layer was dried with anhydrous sodium sulfate and concentrated in vacuo. Then the crude product was purified by column chromatography using hexane/EtOAc (9:1) as eluent.

Refinement top

Hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C).

Structure description top

As a continuation of our research related to ferrocenyl derivatives, we analyzed the crystal structure of (E)-1-ferrocenyl-3-[2-(2-hydroxyethoxy)phenyl]prop-2-en-1-one (Paramasivam et al., 2013). The present compound exhibits the pronounced similarity to the previous ones, either in bond lengths and angles as well as in molecular conformation.

Ferrocenyl derivatives exhibit antibacterial (Fouda et al., 2007), antitumor (Jaouen et al., 2004), antifungal and antimalarial (Biot et al., 2004) activities. It was proved that the replacement of the aromatic group by the ferrocenyl moiety in penicillins and cephalosporins could improve their antibiotic activity (Edwards et al., 1975). Against this background, the title compound was chosen for X-ray structure analysis (Fig. 1).

In the title compound, the pyran ring (O1/C1/C6–C9) adopts a half-chair conformation with the puckering parameters (Cremer & Pople, 1975) being q2 = 0.304 (1) Å, q3 = -0.138 (1) Å, QT = 0.334 (1) Å and it makes dihedral angles of 79.66 (1) and 80.65 (1)°, respectively, with the substituted (C10–C14) and unsubstituted (C15–C19) cyclopentadienyl (Cp) rings of the ferrocenyl unit. In ferrocenyl unit, the two Cp rings are planar and are essentially parallel to each other with a dihedral angle of 2.08 (1)° between them. The Fe atom lies in the middle of the two planes of Cp rings. The distances of the Fe1 atom from the centroids of the substituted and unsubstituted cyclopentadienyl rings are 1.636 (13) and 1.646 (14) Å, respectively. The Cg1—Fe1—Cg2 angle is 178.09 (4)°, where Cg1 and Cg2 are the centroids of (C10–C14) and (C15–C19) Cp rings, respectively. The C—C bond distances in the Cp rings range from 1.403 (3) to 1.429 (2) Å, while Fe—C bond lengths range between 2.028 (1) and 2.040 (2) Å and all of which are as expected (Zora et al., 2006). The torsion angles O1—C9—C10—C14 and C7—C8—N1—O2 [-42.8 (1)° and -6.1 (2)°, respectively] indicate the bent conformation of the molecule. The geometric parameters of the title compound (Fig. 1) agree well with the reported similar structures (Paramasivam et al., 2013).

The crystal packing reveals a weak C—H···O hydrogen bonds (Fig. 2). In the crystal structure, the molecules at (-x + 2, -y, -z + 1) are linked by C16—H16···O3 hydrogen bond, generating a centrosymmetric dimeric ring motif R22(16) (Bernstein et al., 1995).

For the biological activity of ferrocenyl derivatives, see: Fouda et al. (2007); Jaouen et al. (2004); Biot et al. (2004); Edwards et al. (1975). For conformational analysis and puckering parameters, see: Cremer & Pople (1975). For related structures, see: Zora et al. (2006); Paramasivam et al. (2013). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing arrangement of the title compound viewed down c axis, showing the formation of centrosymmetric R22(16) dimer. The dashed lines indicate C—H···O intermolecular interactions. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry code: (i) -x +2, -y, -z + 1.]
2-Ferrocenyl-3-nitro-2H-chromene top
Crystal data top
[Fe(C5H5)(C14H10NO3)]F(000) = 744
Mr = 361.17Monoclic
Monoclinic, P21/cDx = 1.530 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.047 (5) ÅCell parameters from 3878 reflections
b = 19.317 (5) Åθ = 2.0–28.3°
c = 8.135 (5) ŵ = 0.98 mm1
β = 96.667 (5)°T = 298 K
V = 1568.1 (13) Å3Block, colourless
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3878 independent reflections
Radiation source: fine-focus sealed tube3320 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and φ scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1213
Tmin = 0.752, Tmax = 0.822k = 2525
14295 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.033P)2 + 0.4857P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3878 reflectionsΔρmax = 0.27 e Å3
218 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0231 (10)
Crystal data top
[Fe(C5H5)(C14H10NO3)]V = 1568.1 (13) Å3
Mr = 361.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.047 (5) ŵ = 0.98 mm1
b = 19.317 (5) ÅT = 298 K
c = 8.135 (5) Å0.30 × 0.25 × 0.20 mm
β = 96.667 (5)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3878 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3320 reflections with I > 2σ(I)
Tmin = 0.752, Tmax = 0.822Rint = 0.032
14295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.01Δρmax = 0.27 e Å3
3878 reflectionsΔρmin = 0.27 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.86764 (2)0.122593 (11)0.36654 (3)0.03932 (9)
O10.53463 (10)0.08538 (5)0.40784 (12)0.0377 (2)
O30.67181 (11)0.10978 (6)0.34443 (16)0.0499 (3)
O20.48671 (13)0.13896 (6)0.19888 (17)0.0564 (3)
C80.52228 (13)0.02353 (7)0.26407 (16)0.0310 (3)
C70.41120 (13)0.00411 (7)0.17099 (16)0.0343 (3)
H70.35910.03640.10770.041*
N10.56204 (12)0.09583 (6)0.26937 (15)0.0380 (3)
C10.43906 (14)0.11112 (7)0.28951 (18)0.0358 (3)
C60.37266 (13)0.06792 (7)0.16975 (17)0.0350 (3)
C100.73280 (13)0.04854 (7)0.28505 (16)0.0334 (3)
C90.61296 (13)0.02649 (7)0.36567 (16)0.0311 (3)
H90.64600.00310.46930.037*
C140.73990 (16)0.10038 (8)0.16104 (18)0.0418 (3)
H140.66950.12790.11420.050*
C20.40451 (17)0.18034 (9)0.2994 (2)0.0503 (4)
H20.44810.20870.38090.060*
C110.86294 (14)0.01895 (8)0.3209 (2)0.0416 (3)
H110.88690.01610.39710.050*
C50.27019 (15)0.09517 (9)0.0577 (2)0.0459 (4)
H50.22450.06680.02230.055*
C40.23676 (18)0.16440 (10)0.0658 (2)0.0588 (5)
H40.16910.18270.00940.071*
C130.87430 (18)0.10230 (10)0.1222 (2)0.0540 (4)
H130.90710.13150.04540.065*
C30.3038 (2)0.20631 (9)0.1855 (3)0.0612 (5)
H30.28090.25290.18970.073*
C161.02060 (19)0.17053 (10)0.5089 (3)0.0621 (5)
H161.11140.16090.50980.074*
C190.8045 (2)0.16867 (11)0.5692 (3)0.0644 (5)
H190.72770.15750.61720.077*
C120.94954 (16)0.05243 (10)0.2199 (2)0.0538 (4)
H121.04020.04310.21840.065*
C150.9335 (2)0.13943 (10)0.6101 (2)0.0625 (5)
H150.95640.10560.68980.075*
C180.8136 (2)0.21766 (10)0.4431 (3)0.0651 (6)
H180.74370.24460.39320.078*
C170.9465 (2)0.21885 (9)0.4056 (3)0.0650 (5)
H170.97980.24660.32640.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.03815 (13)0.03059 (13)0.04735 (14)0.00762 (8)0.00298 (9)0.00190 (9)
O10.0411 (5)0.0328 (5)0.0384 (5)0.0026 (4)0.0010 (4)0.0087 (4)
O30.0464 (6)0.0370 (6)0.0652 (7)0.0085 (5)0.0013 (5)0.0051 (5)
O20.0640 (7)0.0295 (6)0.0730 (8)0.0069 (5)0.0030 (6)0.0103 (6)
C80.0352 (6)0.0250 (6)0.0334 (6)0.0023 (5)0.0069 (5)0.0014 (5)
C70.0360 (6)0.0327 (7)0.0340 (6)0.0044 (5)0.0037 (5)0.0034 (5)
N10.0439 (6)0.0279 (6)0.0430 (6)0.0000 (5)0.0084 (5)0.0001 (5)
C10.0362 (7)0.0309 (7)0.0415 (7)0.0011 (5)0.0093 (6)0.0016 (6)
C60.0333 (6)0.0347 (7)0.0375 (7)0.0009 (5)0.0066 (5)0.0027 (6)
C100.0364 (6)0.0287 (7)0.0345 (6)0.0050 (5)0.0014 (5)0.0040 (5)
C90.0341 (6)0.0265 (6)0.0320 (6)0.0002 (5)0.0017 (5)0.0008 (5)
C140.0469 (8)0.0400 (8)0.0375 (7)0.0105 (6)0.0002 (6)0.0000 (6)
C20.0538 (9)0.0317 (8)0.0660 (10)0.0031 (7)0.0102 (8)0.0049 (7)
C110.0380 (7)0.0324 (8)0.0541 (8)0.0029 (6)0.0036 (6)0.0054 (6)
C50.0397 (7)0.0520 (10)0.0455 (8)0.0051 (7)0.0032 (6)0.0061 (7)
C40.0503 (9)0.0566 (11)0.0687 (11)0.0174 (8)0.0043 (8)0.0200 (9)
C130.0576 (10)0.0572 (11)0.0495 (9)0.0189 (8)0.0160 (8)0.0018 (8)
C30.0619 (10)0.0364 (9)0.0867 (13)0.0153 (8)0.0147 (10)0.0118 (9)
C160.0506 (9)0.0501 (11)0.0791 (12)0.0092 (8)0.0194 (9)0.0113 (10)
C190.0669 (11)0.0591 (12)0.0667 (11)0.0139 (9)0.0056 (9)0.0302 (10)
C120.0408 (8)0.0514 (10)0.0717 (11)0.0085 (7)0.0167 (8)0.0104 (9)
C150.0843 (14)0.0448 (10)0.0527 (10)0.0026 (9)0.0159 (9)0.0089 (8)
C180.0631 (11)0.0386 (9)0.0864 (14)0.0045 (8)0.0213 (10)0.0170 (10)
C170.0699 (12)0.0370 (9)0.0823 (13)0.0202 (8)0.0154 (10)0.0009 (9)
Geometric parameters (Å, º) top
Fe1—C102.0280 (14)C9—H90.9800
Fe1—C172.0315 (18)C14—C131.423 (2)
Fe1—C142.0317 (17)C14—H140.9300
Fe1—C182.0330 (19)C2—C31.384 (3)
Fe1—C132.035 (2)C2—H20.9300
Fe1—C112.0358 (16)C11—C121.420 (2)
Fe1—C162.0364 (18)C11—H110.9300
Fe1—C192.039 (2)C5—C41.382 (3)
Fe1—C122.0407 (19)C5—H50.9300
Fe1—C152.041 (2)C4—C31.380 (3)
O1—C11.3715 (18)C4—H40.9300
O1—C91.4471 (16)C13—C121.411 (3)
O3—N11.2269 (17)C13—H130.9300
O2—N11.2227 (17)C3—H30.9300
C8—C71.328 (2)C16—C151.404 (3)
C8—N11.4519 (18)C16—C171.409 (3)
C8—C91.5072 (18)C16—H160.9300
C7—C61.444 (2)C19—C181.407 (3)
C7—H70.9300C19—C151.417 (3)
C1—C21.386 (2)C19—H190.9300
C1—C61.393 (2)C12—H120.9300
C6—C51.397 (2)C15—H150.9300
C10—C111.426 (2)C18—C171.403 (3)
C10—C141.429 (2)C18—H180.9300
C10—C91.4982 (19)C17—H170.9300
C10—Fe1—C17158.48 (7)O1—C9—H9107.4
C10—Fe1—C1441.22 (6)C10—C9—H9107.4
C17—Fe1—C14121.30 (7)C8—C9—H9107.4
C10—Fe1—C18123.06 (7)C13—C14—C10107.55 (15)
C17—Fe1—C1840.40 (9)C13—C14—Fe169.64 (10)
C14—Fe1—C18106.10 (8)C10—C14—Fe169.25 (8)
C10—Fe1—C1368.98 (6)C13—C14—H14126.2
C17—Fe1—C13105.82 (8)C10—C14—H14126.2
C14—Fe1—C1340.95 (7)Fe1—C14—H14126.5
C18—Fe1—C13120.90 (9)C3—C2—C1118.63 (17)
C10—Fe1—C1141.08 (6)C3—C2—H2120.7
C17—Fe1—C11158.28 (8)C1—C2—H2120.7
C14—Fe1—C1169.10 (7)C12—C11—C10107.93 (15)
C18—Fe1—C11160.53 (8)C12—C11—Fe169.80 (10)
C13—Fe1—C1168.61 (7)C10—C11—Fe169.17 (8)
C10—Fe1—C16159.72 (7)C12—C11—H11126.0
C17—Fe1—C1640.54 (8)C10—C11—H11126.0
C14—Fe1—C16157.95 (8)Fe1—C11—H11126.6
C18—Fe1—C1668.01 (8)C4—C5—C6119.88 (16)
C13—Fe1—C16122.33 (9)C4—C5—H5120.1
C11—Fe1—C16123.42 (7)C6—C5—H5120.1
C10—Fe1—C19108.28 (7)C3—C4—C5119.99 (16)
C17—Fe1—C1968.05 (9)C3—C4—H4120.0
C14—Fe1—C19122.11 (8)C5—C4—H4120.0
C18—Fe1—C1940.42 (9)C12—C13—C14108.49 (15)
C13—Fe1—C19157.35 (9)C12—C13—Fe169.96 (11)
C11—Fe1—C19125.02 (8)C14—C13—Fe169.41 (9)
C16—Fe1—C1968.08 (9)C12—C13—H13125.8
C10—Fe1—C1268.89 (7)C14—C13—H13125.8
C17—Fe1—C12121.53 (9)Fe1—C13—H13126.5
C14—Fe1—C1268.77 (8)C4—C3—C2121.23 (16)
C18—Fe1—C12156.79 (9)C4—C3—H3119.4
C13—Fe1—C1240.53 (8)C2—C3—H3119.4
C11—Fe1—C1240.77 (7)C15—C16—C17108.10 (18)
C16—Fe1—C12107.79 (8)C15—C16—Fe170.02 (11)
C19—Fe1—C12161.28 (9)C17—C16—Fe169.54 (10)
C10—Fe1—C15123.97 (8)C15—C16—H16126.0
C17—Fe1—C1568.02 (9)C17—C16—H16126.0
C14—Fe1—C15159.25 (8)Fe1—C16—H16126.1
C18—Fe1—C1568.06 (8)C18—C19—C15107.68 (19)
C13—Fe1—C15159.30 (9)C18—C19—Fe169.57 (12)
C11—Fe1—C15109.37 (7)C15—C19—Fe169.75 (11)
C16—Fe1—C1540.29 (9)C18—C19—H19126.2
C19—Fe1—C1540.66 (9)C15—C19—H19126.2
C12—Fe1—C15124.47 (9)Fe1—C19—H19126.1
C1—O1—C9118.31 (11)C13—C12—C11108.23 (15)
C7—C8—N1119.92 (12)C13—C12—Fe169.51 (11)
C7—C8—C9123.11 (13)C11—C12—Fe169.43 (10)
N1—C8—C9116.97 (11)C13—C12—H12125.9
C8—C7—C6118.89 (13)C11—C12—H12125.9
C8—C7—H7120.6Fe1—C12—H12126.8
C6—C7—H7120.6C16—C15—C19107.89 (19)
O2—N1—O3123.74 (13)C16—C15—Fe169.68 (11)
O2—N1—C8119.23 (13)C19—C15—Fe169.60 (11)
O3—N1—C8117.03 (12)C16—C15—H15126.1
O1—C1—C2117.93 (14)C19—C15—H15126.1
O1—C1—C6120.88 (13)Fe1—C15—H15126.2
C2—C1—C6121.06 (14)C17—C18—C19108.30 (17)
C1—C6—C5119.19 (14)C17—C18—Fe169.75 (11)
C1—C6—C7117.79 (12)C19—C18—Fe170.02 (11)
C5—C6—C7123.00 (14)C17—C18—H18125.8
C11—C10—C14107.80 (13)C19—C18—H18125.8
C11—C10—C9124.12 (13)Fe1—C18—H18126.0
C14—C10—C9128.07 (13)C18—C17—C16108.03 (19)
C11—C10—Fe169.75 (8)C18—C17—Fe169.86 (10)
C14—C10—Fe169.53 (8)C16—C17—Fe169.92 (10)
C9—C10—Fe1126.71 (10)C18—C17—H17126.0
O1—C9—C10111.54 (11)C16—C17—H17126.0
O1—C9—C8108.86 (11)Fe1—C17—H17125.8
C10—C9—C8114.05 (11)
N1—C8—C7—C6179.06 (12)C1—C2—C3—C41.2 (3)
C9—C8—C7—C61.8 (2)C10—Fe1—C16—C1545.6 (3)
C7—C8—N1—O26.1 (2)C17—Fe1—C16—C15119.24 (19)
C9—C8—N1—O2174.62 (13)C14—Fe1—C16—C15160.02 (18)
C7—C8—N1—O3173.14 (13)C18—Fe1—C16—C1581.56 (14)
C9—C8—N1—O36.09 (18)C13—Fe1—C16—C15164.86 (12)
C9—O1—C1—C2153.62 (13)C11—Fe1—C16—C1580.57 (14)
C9—O1—C1—C630.53 (18)C19—Fe1—C16—C1537.83 (13)
O1—C1—C6—C5176.06 (13)C12—Fe1—C16—C15122.74 (13)
C2—C1—C6—C50.3 (2)C10—Fe1—C16—C17164.87 (19)
O1—C1—C6—C72.15 (19)C14—Fe1—C16—C1740.8 (3)
C2—C1—C6—C7177.87 (14)C18—Fe1—C16—C1737.67 (14)
C8—C7—C6—C112.08 (19)C13—Fe1—C16—C1775.90 (16)
C8—C7—C6—C5169.79 (14)C11—Fe1—C16—C17160.19 (13)
C17—Fe1—C10—C11160.9 (2)C19—Fe1—C16—C1781.40 (15)
C14—Fe1—C10—C11119.05 (13)C12—Fe1—C16—C17118.03 (14)
C18—Fe1—C10—C11164.87 (11)C15—Fe1—C16—C17119.24 (19)
C13—Fe1—C10—C1181.15 (11)C10—Fe1—C19—C18119.88 (11)
C16—Fe1—C10—C1146.7 (2)C17—Fe1—C19—C1837.51 (11)
C19—Fe1—C10—C11122.75 (11)C14—Fe1—C19—C1876.59 (13)
C12—Fe1—C10—C1137.58 (10)C13—Fe1—C19—C1840.8 (2)
C15—Fe1—C10—C1180.55 (12)C11—Fe1—C19—C18162.33 (10)
C17—Fe1—C10—C1441.8 (2)C16—Fe1—C19—C1881.38 (12)
C18—Fe1—C10—C1476.08 (12)C12—Fe1—C19—C18162.08 (19)
C13—Fe1—C10—C1437.90 (10)C15—Fe1—C19—C18118.88 (17)
C11—Fe1—C10—C14119.05 (13)C10—Fe1—C19—C15121.24 (12)
C16—Fe1—C10—C14165.7 (2)C17—Fe1—C19—C1581.37 (13)
C19—Fe1—C10—C14118.20 (11)C14—Fe1—C19—C15164.53 (11)
C12—Fe1—C10—C1481.47 (11)C18—Fe1—C19—C15118.88 (17)
C15—Fe1—C10—C14160.40 (11)C13—Fe1—C19—C15159.69 (18)
C17—Fe1—C10—C981.0 (3)C11—Fe1—C19—C1578.79 (14)
C14—Fe1—C10—C9122.87 (16)C16—Fe1—C19—C1537.50 (12)
C18—Fe1—C10—C946.79 (15)C12—Fe1—C19—C1543.2 (3)
C13—Fe1—C10—C9160.77 (14)C14—C13—C12—C110.1 (2)
C11—Fe1—C10—C9118.08 (16)Fe1—C13—C12—C1158.80 (12)
C16—Fe1—C10—C971.4 (3)C14—C13—C12—Fe158.89 (12)
C19—Fe1—C10—C94.67 (14)C10—C11—C12—C130.01 (19)
C12—Fe1—C10—C9155.66 (14)Fe1—C11—C12—C1358.85 (13)
C15—Fe1—C10—C937.53 (15)C10—C11—C12—Fe158.85 (11)
C1—O1—C9—C1086.39 (14)C10—Fe1—C12—C1381.94 (10)
C1—O1—C9—C840.33 (15)C17—Fe1—C12—C1376.98 (12)
C11—C10—C9—O1137.94 (13)C14—Fe1—C12—C1337.58 (10)
C14—C10—C9—O142.85 (18)C18—Fe1—C12—C1343.7 (2)
Fe1—C10—C9—O148.87 (15)C11—Fe1—C12—C13119.80 (14)
C11—C10—C9—C898.24 (16)C16—Fe1—C12—C13119.29 (11)
C14—C10—C9—C880.98 (18)C19—Fe1—C12—C13166.7 (2)
Fe1—C10—C9—C8172.69 (10)C15—Fe1—C12—C13160.58 (11)
C7—C8—C9—O126.80 (17)C10—Fe1—C12—C1137.85 (9)
N1—C8—C9—O1153.99 (11)C17—Fe1—C12—C11163.23 (10)
C7—C8—C9—C1098.46 (16)C14—Fe1—C12—C1182.21 (10)
N1—C8—C9—C1080.76 (15)C18—Fe1—C12—C11163.54 (16)
C11—C10—C14—C130.15 (17)C13—Fe1—C12—C11119.80 (14)
C9—C10—C14—C13179.46 (14)C16—Fe1—C12—C11120.92 (11)
Fe1—C10—C14—C1359.33 (11)C19—Fe1—C12—C1146.9 (3)
C11—C10—C14—Fe159.48 (10)C15—Fe1—C12—C1179.63 (13)
C9—C10—C14—Fe1121.21 (14)C17—C16—C15—C190.0 (2)
C10—Fe1—C14—C13118.98 (15)Fe1—C16—C15—C1959.33 (13)
C17—Fe1—C14—C1377.66 (14)C17—C16—C15—Fe159.33 (13)
C18—Fe1—C14—C13118.88 (13)C18—C19—C15—C160.1 (2)
C11—Fe1—C14—C1381.04 (11)Fe1—C19—C15—C1659.38 (13)
C16—Fe1—C14—C1347.9 (2)C18—C19—C15—Fe159.46 (13)
C19—Fe1—C14—C13159.90 (12)C10—Fe1—C15—C16162.62 (11)
C12—Fe1—C14—C1337.20 (11)C17—Fe1—C15—C1637.71 (12)
C15—Fe1—C14—C13170.7 (2)C14—Fe1—C15—C16158.78 (19)
C17—Fe1—C14—C10163.36 (11)C18—Fe1—C15—C1681.42 (13)
C18—Fe1—C14—C10122.14 (11)C13—Fe1—C15—C1638.6 (3)
C13—Fe1—C14—C10118.98 (15)C11—Fe1—C15—C16119.22 (12)
C11—Fe1—C14—C1037.95 (9)C19—Fe1—C15—C16119.15 (18)
C16—Fe1—C14—C10166.84 (18)C12—Fe1—C15—C1676.30 (14)
C19—Fe1—C14—C1081.11 (12)C10—Fe1—C15—C1978.22 (14)
C12—Fe1—C14—C1081.78 (10)C17—Fe1—C15—C1981.44 (14)
C15—Fe1—C14—C1051.7 (2)C14—Fe1—C15—C1939.6 (3)
O1—C1—C2—C3177.03 (15)C18—Fe1—C15—C1937.73 (12)
C6—C1—C2—C31.2 (2)C13—Fe1—C15—C19157.8 (2)
C14—C10—C11—C120.10 (17)C11—Fe1—C15—C19121.63 (12)
C9—C10—C11—C12179.45 (13)C16—Fe1—C15—C19119.15 (18)
Fe1—C10—C11—C1259.24 (11)C12—Fe1—C15—C19164.54 (11)
C14—C10—C11—Fe159.34 (10)C15—C19—C18—C170.1 (2)
C9—C10—C11—Fe1121.31 (13)Fe1—C19—C18—C1759.45 (13)
C10—Fe1—C11—C12119.40 (14)C15—C19—C18—Fe159.57 (13)
C17—Fe1—C11—C1241.7 (2)C10—Fe1—C18—C17161.43 (11)
C14—Fe1—C11—C1281.33 (12)C14—Fe1—C18—C17119.68 (12)
C18—Fe1—C11—C12160.4 (2)C13—Fe1—C18—C1777.70 (13)
C13—Fe1—C11—C1237.27 (11)C11—Fe1—C18—C17167.60 (19)
C16—Fe1—C11—C1278.18 (14)C16—Fe1—C18—C1737.81 (13)
C19—Fe1—C11—C12163.38 (11)C19—Fe1—C18—C17119.36 (16)
C15—Fe1—C11—C12120.73 (12)C12—Fe1—C18—C1746.1 (2)
C17—Fe1—C11—C10161.06 (19)C15—Fe1—C18—C1781.41 (13)
C14—Fe1—C11—C1038.07 (9)C10—Fe1—C18—C1979.21 (13)
C18—Fe1—C11—C1041.0 (3)C17—Fe1—C18—C19119.36 (16)
C13—Fe1—C11—C1082.13 (10)C14—Fe1—C18—C19120.96 (12)
C16—Fe1—C11—C10162.42 (10)C13—Fe1—C18—C19162.94 (11)
C19—Fe1—C11—C1077.22 (12)C11—Fe1—C18—C1948.2 (3)
C12—Fe1—C11—C10119.40 (14)C16—Fe1—C18—C1981.56 (13)
C15—Fe1—C11—C10119.87 (10)C12—Fe1—C18—C19165.48 (17)
C1—C6—C5—C40.6 (2)C15—Fe1—C18—C1937.95 (12)
C7—C6—C5—C4178.67 (15)C19—C18—C17—C160.1 (2)
C6—C5—C4—C30.6 (3)Fe1—C18—C17—C1659.73 (13)
C10—C14—C13—C120.15 (19)C19—C18—C17—Fe159.62 (13)
Fe1—C14—C13—C1259.23 (13)C15—C16—C17—C180.1 (2)
C10—C14—C13—Fe159.08 (11)Fe1—C16—C17—C1859.70 (13)
C10—Fe1—C13—C1281.71 (10)C15—C16—C17—Fe159.63 (13)
C17—Fe1—C13—C12120.33 (11)C10—Fe1—C17—C1846.7 (3)
C14—Fe1—C13—C12119.85 (14)C14—Fe1—C17—C1877.66 (15)
C18—Fe1—C13—C12161.48 (10)C13—Fe1—C17—C18119.39 (13)
C11—Fe1—C13—C1237.49 (9)C11—Fe1—C17—C18168.85 (18)
C16—Fe1—C13—C1279.39 (12)C16—Fe1—C17—C18119.02 (19)
C19—Fe1—C13—C12168.93 (18)C19—Fe1—C17—C1837.53 (12)
C15—Fe1—C13—C1250.9 (3)C12—Fe1—C17—C18160.53 (12)
C10—Fe1—C13—C1438.14 (10)C15—Fe1—C17—C1881.53 (14)
C17—Fe1—C13—C14119.83 (11)C10—Fe1—C17—C16165.72 (18)
C18—Fe1—C13—C1478.67 (12)C14—Fe1—C17—C16163.32 (12)
C11—Fe1—C13—C1482.35 (10)C18—Fe1—C17—C16119.02 (19)
C16—Fe1—C13—C14160.76 (10)C13—Fe1—C17—C16121.60 (14)
C19—Fe1—C13—C1449.1 (2)C11—Fe1—C17—C1649.8 (3)
C12—Fe1—C13—C14119.85 (14)C19—Fe1—C17—C1681.49 (15)
C15—Fe1—C13—C14170.70 (19)C12—Fe1—C17—C1680.45 (16)
C5—C4—C3—C20.3 (3)C15—Fe1—C17—C1637.49 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O3i0.932.553.390 (3)150
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C14H10NO3)]
Mr361.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.047 (5), 19.317 (5), 8.135 (5)
β (°) 96.667 (5)
V3)1568.1 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.752, 0.822
No. of measured, independent and
observed [I > 2σ(I)] reflections
14295, 3878, 3320
Rint0.032
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.076, 1.01
No. of reflections3878
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.27

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O3i0.932.553.390 (3)150
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

The authors acknowledge the Technology Business Incubator (TBI), CAS in Crystallography, University of Madras, Chennai, India, for the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBiot, C., Dessolin, J., Richard, I. & Dive, D. (2004). J. Organomet. Chem. 689, 4678–4682.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Ins., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEdwards, E. I., Epton, R. & Marr, G. (1975). J. Organomet. Chem. 85, C23–C25.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFouda, M. F. R., Abd-Elzaher, M. M., Abdelsamaia, R. A. & Labib, A. A. (2007). Appl. Organomet. Chem. 21, 613–625.  Web of Science CrossRef CAS Google Scholar
First citationJaouen, G., Top, S., Vessireres, A., Leclercq, G., Vaissermann, J. & & McGlinchey, M. J. (2004). Curr. Med. Chem. 11, 2505–2517.  Web of Science CrossRef PubMed CAS Google Scholar
First citationParamasivam, S., Purushothaman, S., Seshadri, P. R. & Raghunathan, R. (2013). Acta Cryst. E69, m144.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZora, M., Açıkgöz, C., Tumay, T. A., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. C62, m327–m330.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds