organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-methyl­pyridinium 3-hy­dr­oxy­pyridine-2-carboxyl­ate

aSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Physics, Faculty of Science, University of Mazandaran, Babolsar, Iran
*Correspondence e-mail: arazaki@usm.my

(Received 6 June 2013; accepted 12 June 2013; online 19 June 2013)

In the 3-hy­droxy­picolinate anion of the title salt, C6H9N2+·C6H4NO3, an intra­molecular O—H⋯O hydrogen bond with an S(6) graph-set motif is formed, so that the anion is essentially planar, with a dihedral angle of 9.55 (9)° between the pyridine ring and the carboxyl­ate group. In the crystal, the cations and anions are linked via N—H⋯O hydrogen bonds, forming a centrosymmetric 2 + 2 aggregate with R22(8) and R42(8) ring motifs. The crystal structure also features N—H⋯N and weak C—H⋯π inter­actions.

Related literature

For details of non-covalent inter­actions, see: Desiraju (2007[Desiraju, G. R. (2007). Angew. Chem. Int. Ed. 46, 8342-8356.]); Aakeroy & Seddon (1993[Aakeroy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397-407.]). For related structures, see: Nahringbauer & Kvick (1977[Nahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902-2905.]); Robert et al. (2001[Robert, J. J., Raj, S. B. & Muthiah, P. T. (2001). Acta Cryst. E57, o1206-o1208.]); Thanigaimani et al. (2010[Thanigaimani, K., Devi, P., Muthiah, P. T., Lynch, D. E. & Butcher, R. J. (2010). Acta Cryst. C66, o324-o328.], 2013[Thanigaimani, K., Khalib, N. C., Arshad, S. & Razak, I. A. (2013). Acta Cryst. E69, o318.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C6H4NO3

  • Mr = 247.25

  • Monoclinic, P 21 /c

  • a = 7.3443 (4) Å

  • b = 16.4321 (9) Å

  • c = 10.8235 (5) Å

  • β = 118.250 (3)°

  • V = 1150.62 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.58 × 0.29 × 0.16 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.942, Tmax = 0.984

  • 15996 measured reflections

  • 4132 independent reflections

  • 3596 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.115

  • S = 1.04

  • 4132 reflections

  • 180 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C1–C5 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2 0.93 (2) 1.66 (2) 2.5239 (10) 152 (2)
N3—H2N3⋯O3i 0.885 (15) 1.969 (15) 2.8504 (11) 174.0 (14)
N3—H1N3⋯O3ii 0.859 (14) 2.248 (15) 2.8093 (10) 123.0 (12)
N3—H1N3⋯N1ii 0.859 (14) 2.416 (14) 3.2481 (10) 163.2 (13)
N2—H1N2⋯O2i 0.943 (16) 1.796 (16) 2.7327 (10) 171.4 (13)
C9—H9ACg1 0.95 2.59 3.4702 (10) 154
C11—H11ACg1iii 0.95 2.71 3.3956 (8) 130
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Supramolecular architectures assembled via various delicate noncovalent interactions such as hydrogen bonds, ππ stacking and electrostatic interactions, etc., have attracted intense interest in recent years because of their fascinating structural diversity and potential applications for functional materials (Desiraju, 2007). Especially, the application of intermolecular hydrogen bonds is a well known and efficient tool in the field of organic crystal design owing to its strength and directional properties (Aakeroy & Seddon, 1993). In order to study potential hydrogen bonding interactions, the crystal structure determination of the title compound (I) was carried out.

The asymmetric unit (Fig. 1) contains one 2-amino-5-methylpyridinium cation and one 3-hydroxypicolinate anion. An intramolecular O1—H1O1···O2 hydrogen bond in the 3-hydroxypicolinate anion generates an S(6) ring motif. (Bernstein et al., 1995). This motif is also observed in the crystal structure of acetoguanaminium 3-hydroxypicolinate monohydrate (Thanigaimani et al., 2010). The proton transfers from the one of the carboxyl group oxygen atom (O2) to atom N1 of 2-amino-5-methylpyrimidine resulted in the widening of C7—N2—C11 angle of the pyridinium ring to 122.89 (7)°, compared to the corresponding angle of 117.4 (3)° in neutral 2-amino-5-methylpyridine (Nahringbauer & Kvick, 1977). The 2-amino-5-methylpyridinium cation is essentially planar, with a maximum deviation of 0.011 (1) Å for atom C9. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal packing (Fig. 2), the protonated N2 atom and a nitrogen atom of the 2-amino group (N3) are hydrogen-bonded to the carboxylate oxygen atoms (O2 and O3) via a pair of intramolecular N2—H1N2···O2i and N3—H2N3···O3i hydrogen bonds (symmetry code in Table 1), forming a ring motif R22(8) (Bernstein et al., 1995). These motifs are linked by N3—H1N3···O3ii hydrogen bonds (symmetry code in Table 1), forming a ring spanning the centre of symmetry at (1, -3/2, 1/2) to produce a DDAA array (where D is a hydrogen-bond donor and A is a hydrogen-bond acceptor) of four hydrogen bonds. This set of fused rings can be represented by the graph-set notations R22(8), R42(8) and R22(8) arrangement. This type of motif has been reported in the crystal structures of trimethoprim hydrogen glutarate (Robert et al., 2001), acetoguanaminium 3-hydroxypicolinate monohydrate (Thanigaimani et al., 2010) and 2-amino-6-methylpyridinium 3-chlorobenzoate (Thanigaimani et al., 2013). The 2-aminogroup at N3 forms a bifurcated hydrogen bond (Table 1) with carboxyl atom O3ii and atom N1ii of a 3-hydroxypicolinate anion [graph-set R12(5)]. The crystal structure is further stabilized by weak C—H···π interactions (Table 1) involving the N1/C1–C5 (centroid Cg1) ring.

Related literature top

For details of non-covalent interactions, see: Desiraju (2007); Aakeroy & Seddon (1993). For related structures, see: Nahringbauer & Kvick (1977); Robert et al. (2001); Thanigaimani et al. (2010, 2013). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

Hot methanol solutions (20 ml) of 2-amino5-methylpyridine (54 mg, Aldrich) and 3-hydoxypicolinic acid (34 mg, Aldrich) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound (I) appeared after a few days.

Refinement top

O- and N-bound H atoms were located in a difference Fourier map and were refined freely [O—H = 0.926 (19) Å and N—H = 0.859 (14)–0.927 (15) Å]. The remaining hydrogen atoms were positioned geometrically (C—H = 0.95–0.98 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). A rotating group model was used for the methyl group. Five outliers were omitted (2 4 1, 2 1 5, 1 0 2, 3 3 4 and 1 6 0) in the final refinement.

Structure description top

Supramolecular architectures assembled via various delicate noncovalent interactions such as hydrogen bonds, ππ stacking and electrostatic interactions, etc., have attracted intense interest in recent years because of their fascinating structural diversity and potential applications for functional materials (Desiraju, 2007). Especially, the application of intermolecular hydrogen bonds is a well known and efficient tool in the field of organic crystal design owing to its strength and directional properties (Aakeroy & Seddon, 1993). In order to study potential hydrogen bonding interactions, the crystal structure determination of the title compound (I) was carried out.

The asymmetric unit (Fig. 1) contains one 2-amino-5-methylpyridinium cation and one 3-hydroxypicolinate anion. An intramolecular O1—H1O1···O2 hydrogen bond in the 3-hydroxypicolinate anion generates an S(6) ring motif. (Bernstein et al., 1995). This motif is also observed in the crystal structure of acetoguanaminium 3-hydroxypicolinate monohydrate (Thanigaimani et al., 2010). The proton transfers from the one of the carboxyl group oxygen atom (O2) to atom N1 of 2-amino-5-methylpyrimidine resulted in the widening of C7—N2—C11 angle of the pyridinium ring to 122.89 (7)°, compared to the corresponding angle of 117.4 (3)° in neutral 2-amino-5-methylpyridine (Nahringbauer & Kvick, 1977). The 2-amino-5-methylpyridinium cation is essentially planar, with a maximum deviation of 0.011 (1) Å for atom C9. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal packing (Fig. 2), the protonated N2 atom and a nitrogen atom of the 2-amino group (N3) are hydrogen-bonded to the carboxylate oxygen atoms (O2 and O3) via a pair of intramolecular N2—H1N2···O2i and N3—H2N3···O3i hydrogen bonds (symmetry code in Table 1), forming a ring motif R22(8) (Bernstein et al., 1995). These motifs are linked by N3—H1N3···O3ii hydrogen bonds (symmetry code in Table 1), forming a ring spanning the centre of symmetry at (1, -3/2, 1/2) to produce a DDAA array (where D is a hydrogen-bond donor and A is a hydrogen-bond acceptor) of four hydrogen bonds. This set of fused rings can be represented by the graph-set notations R22(8), R42(8) and R22(8) arrangement. This type of motif has been reported in the crystal structures of trimethoprim hydrogen glutarate (Robert et al., 2001), acetoguanaminium 3-hydroxypicolinate monohydrate (Thanigaimani et al., 2010) and 2-amino-6-methylpyridinium 3-chlorobenzoate (Thanigaimani et al., 2013). The 2-aminogroup at N3 forms a bifurcated hydrogen bond (Table 1) with carboxyl atom O3ii and atom N1ii of a 3-hydroxypicolinate anion [graph-set R12(5)]. The crystal structure is further stabilized by weak C—H···π interactions (Table 1) involving the N1/C1–C5 (centroid Cg1) ring.

For details of non-covalent interactions, see: Desiraju (2007); Aakeroy & Seddon (1993). For related structures, see: Nahringbauer & Kvick (1977); Robert et al. (2001); Thanigaimani et al. (2010, 2013). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
2-Amino-5-methylpyridinium 3-hydroxypyridine-2-carboxylate top
Crystal data top
C6H9N2+·C6H4NO3F(000) = 520
Mr = 247.25Dx = 1.427 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8234 reflections
a = 7.3443 (4) Åθ = 2.5–32.6°
b = 16.4321 (9) ŵ = 0.11 mm1
c = 10.8235 (5) ÅT = 100 K
β = 118.250 (3)°Block, colourless
V = 1150.62 (10) Å30.58 × 0.29 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
4132 independent reflections
Radiation source: fine-focus sealed tube3596 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 32.6°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 119
Tmin = 0.942, Tmax = 0.984k = 2424
15996 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0686P)2 + 0.2463P]
where P = (Fo2 + 2Fc2)/3
4132 reflections(Δ/σ)max = 0.001
180 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C6H9N2+·C6H4NO3V = 1150.62 (10) Å3
Mr = 247.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.3443 (4) ŵ = 0.11 mm1
b = 16.4321 (9) ÅT = 100 K
c = 10.8235 (5) Å0.58 × 0.29 × 0.16 mm
β = 118.250 (3)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
4132 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3596 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.984Rint = 0.020
15996 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.47 e Å3
4132 reflectionsΔρmin = 0.22 e Å3
180 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38403 (10)0.83927 (4)0.52572 (6)0.02228 (14)
O20.41088 (9)0.89008 (4)0.31488 (7)0.01954 (13)
O30.12614 (10)0.90599 (4)0.10825 (6)0.01974 (13)
N10.10602 (10)0.82189 (4)0.20289 (7)0.01502 (13)
C10.22027 (12)0.78730 (5)0.25475 (8)0.01684 (14)
H1A0.35980.77380.19200.020*
C20.14303 (13)0.77021 (4)0.39745 (8)0.01669 (14)
H2A0.22970.74650.43070.020*
C30.06046 (13)0.78818 (4)0.48931 (8)0.01635 (14)
H3A0.11590.77730.58670.020*
C40.18388 (12)0.82274 (4)0.43669 (8)0.01437 (14)
C50.09352 (11)0.83951 (4)0.29191 (7)0.01291 (13)
C60.21674 (12)0.88142 (4)0.23125 (8)0.01460 (14)
N20.39598 (10)0.50115 (4)0.27137 (7)0.01444 (13)
N30.70889 (12)0.55236 (5)0.44004 (8)0.02005 (14)
C70.50370 (12)0.55708 (4)0.37131 (8)0.01518 (14)
C80.38865 (14)0.61797 (5)0.39723 (8)0.01833 (15)
H8A0.45810.65900.46550.022*
C90.17762 (14)0.61731 (5)0.32352 (9)0.01811 (15)
H9A0.10200.65760.34310.022*
C100.06826 (12)0.55828 (4)0.21858 (8)0.01489 (14)
C110.18508 (12)0.50126 (4)0.19649 (8)0.01427 (14)
H11A0.11790.46060.12720.017*
C120.16380 (13)0.56034 (5)0.13631 (9)0.01984 (16)
H12A0.21340.51090.07930.030*
H12B0.20720.60820.07500.030*
H12C0.22200.56330.20110.030*
H2N30.766 (2)0.5071 (9)0.4311 (15)0.030 (3)*
H1N30.779 (2)0.5866 (8)0.5053 (15)0.029 (3)*
H1O10.437 (3)0.8585 (12)0.469 (2)0.058 (5)*
H1N20.465 (2)0.4611 (9)0.2494 (15)0.036 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0138 (3)0.0296 (3)0.0167 (3)0.0022 (2)0.0017 (2)0.0055 (2)
O20.0115 (3)0.0238 (3)0.0219 (3)0.0005 (2)0.0067 (2)0.0054 (2)
O30.0173 (3)0.0264 (3)0.0151 (3)0.0030 (2)0.0073 (2)0.0024 (2)
N10.0137 (3)0.0162 (3)0.0150 (3)0.0018 (2)0.0067 (2)0.0012 (2)
C10.0144 (3)0.0181 (3)0.0183 (3)0.0032 (2)0.0080 (3)0.0014 (2)
C20.0187 (3)0.0156 (3)0.0190 (3)0.0011 (3)0.0116 (3)0.0000 (2)
C30.0202 (4)0.0150 (3)0.0148 (3)0.0006 (2)0.0090 (3)0.0010 (2)
C40.0136 (3)0.0139 (3)0.0139 (3)0.0007 (2)0.0050 (3)0.0007 (2)
C50.0123 (3)0.0130 (3)0.0136 (3)0.0005 (2)0.0063 (3)0.0003 (2)
C60.0135 (3)0.0148 (3)0.0165 (3)0.0001 (2)0.0079 (3)0.0001 (2)
N20.0137 (3)0.0146 (3)0.0148 (3)0.0010 (2)0.0066 (2)0.0013 (2)
N30.0148 (3)0.0217 (3)0.0187 (3)0.0003 (2)0.0039 (3)0.0020 (2)
C70.0162 (3)0.0151 (3)0.0130 (3)0.0005 (2)0.0058 (3)0.0006 (2)
C80.0217 (4)0.0153 (3)0.0162 (3)0.0011 (3)0.0076 (3)0.0024 (2)
C90.0216 (4)0.0155 (3)0.0185 (3)0.0044 (3)0.0105 (3)0.0004 (2)
C100.0154 (3)0.0150 (3)0.0153 (3)0.0023 (2)0.0082 (3)0.0028 (2)
C110.0141 (3)0.0147 (3)0.0141 (3)0.0003 (2)0.0067 (3)0.0001 (2)
C120.0152 (3)0.0223 (3)0.0230 (4)0.0034 (3)0.0098 (3)0.0051 (3)
Geometric parameters (Å, º) top
O1—C41.3499 (9)N2—H1N20.927 (15)
O1—H1O10.926 (19)N3—C71.3301 (10)
O2—C61.2848 (9)N3—H2N30.883 (15)
O3—C61.2408 (9)N3—H1N30.859 (14)
N1—C11.3372 (10)C7—C81.4207 (11)
N1—C51.3502 (10)C8—C91.3668 (12)
C1—C21.3989 (11)C8—H8A0.9500
C1—H1A0.9500C9—C101.4187 (11)
C2—C31.3793 (11)C9—H9A0.9500
C2—H2A0.9500C10—C111.3657 (10)
C3—C41.3990 (11)C10—C121.5040 (11)
C3—H3A0.9500C11—H11A0.9500
C4—C51.4098 (10)C12—H12A0.9800
C5—C61.5122 (10)C12—H12B0.9800
N2—C71.3529 (10)C12—H12C0.9800
N2—C111.3666 (10)
C4—O1—H1O1104.5 (12)C7—N3—H1N3120.3 (10)
C1—N1—C5118.45 (6)H2N3—N3—H1N3120.5 (13)
N1—C1—C2122.80 (7)N3—C7—N2119.11 (7)
N1—C1—H1A118.6N3—C7—C8123.57 (7)
C2—C1—H1A118.6N2—C7—C8117.32 (7)
C3—C2—C1119.19 (7)C9—C8—C7119.69 (7)
C3—C2—H2A120.4C9—C8—H8A120.2
C1—C2—H2A120.4C7—C8—H8A120.2
C2—C3—C4118.90 (7)C8—C9—C10121.91 (7)
C2—C3—H3A120.6C8—C9—H9A119.0
C4—C3—H3A120.6C10—C9—H9A119.0
O1—C4—C3119.18 (7)C11—C10—C9116.40 (7)
O1—C4—C5122.33 (7)C11—C10—C12122.79 (7)
C3—C4—C5118.49 (7)C9—C10—C12120.80 (7)
N1—C5—C4122.15 (7)C10—C11—N2121.78 (7)
N1—C5—C6117.28 (6)C10—C11—H11A119.1
C4—C5—C6120.53 (7)N2—C11—H11A119.1
O3—C6—O2124.93 (7)C10—C12—H12A109.5
O3—C6—C5119.13 (7)C10—C12—H12B109.5
O2—C6—C5115.92 (6)H12A—C12—H12B109.5
C7—N2—C11122.89 (6)C10—C12—H12C109.5
C7—N2—H1N2120.2 (9)H12A—C12—H12C109.5
C11—N2—H1N2116.9 (9)H12B—C12—H12C109.5
C7—N3—H2N3117.5 (9)
C5—N1—C1—C21.36 (11)N1—C5—C6—O2173.26 (6)
N1—C1—C2—C31.19 (12)C4—C5—C6—O29.01 (10)
C1—C2—C3—C40.26 (11)C11—N2—C7—N3179.59 (7)
C2—C3—C4—O1178.95 (7)C11—N2—C7—C80.11 (11)
C2—C3—C4—C51.41 (11)N3—C7—C8—C9178.71 (7)
C1—N1—C5—C40.11 (11)N2—C7—C8—C90.97 (11)
C1—N1—C5—C6177.80 (6)C7—C8—C9—C101.42 (12)
O1—C4—C5—N1179.10 (7)C8—C9—C10—C110.95 (11)
C3—C4—C5—N11.28 (11)C8—C9—C10—C12178.32 (7)
O1—C4—C5—C63.29 (11)C9—C10—C11—N20.06 (11)
C3—C4—C5—C6176.34 (6)C12—C10—C11—N2179.19 (6)
N1—C5—C6—O38.08 (10)C7—N2—C11—C100.35 (11)
C4—C5—C6—O3169.65 (7)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C1–C5 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.93 (2)1.66 (2)2.5239 (10)152 (2)
N3—H2N3···O3i0.885 (15)1.969 (15)2.8504 (11)174.0 (14)
N3—H1N3···O3ii0.859 (14)2.248 (15)2.8093 (10)123.0 (12)
N3—H1N3···N1ii0.859 (14)2.416 (14)3.2481 (10)163.2 (13)
N2—H1N2···O2i0.943 (16)1.796 (16)2.7327 (10)171.4 (13)
C9—H9A···Cg10.952.593.4702 (10)154
C11—H11A···Cg1iii0.952.713.3956 (8)130
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+3/2, z+1/2; (iii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C6H4NO3
Mr247.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.3443 (4), 16.4321 (9), 10.8235 (5)
β (°) 118.250 (3)
V3)1150.62 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.58 × 0.29 × 0.16
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.942, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
15996, 4132, 3596
Rint0.020
(sin θ/λ)max1)0.759
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.115, 1.04
No. of reflections4132
No. of parameters180
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.22

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C1–C5 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.93 (2)1.66 (2)2.5239 (10)152 (2)
N3—H2N3···O3i0.885 (15)1.969 (15)2.8504 (11)174.0 (14)
N3—H1N3···O3ii0.859 (14)2.248 (15)2.8093 (10)123.0 (12)
N3—H1N3···N1ii0.859 (14)2.416 (14)3.2481 (10)163.2 (13)
N2—H1N2···O2i0.943 (16)1.796 (16)2.7327 (10)171.4 (13)
C9—H9A···Cg10.95002.593.4702 (10)154
C11—H11A···Cg1iii0.95002.713.3956 (8)130
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+3/2, z+1/2; (iii) x, y1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities and USM Short Term Grant, No. 304/PFIZIK/6312078 to conduct this work. KT thanks The Academy of Sciences for the Developing World and USM for the TWAS–USM fellowship.

References

First citationAakeroy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397–407.  CrossRef CAS Web of Science Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDesiraju, G. R. (2007). Angew. Chem. Int. Ed. 46, 8342–8356.  Web of Science CrossRef CAS Google Scholar
First citationNahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902–2905.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRobert, J. J., Raj, S. B. & Muthiah, P. T. (2001). Acta Cryst. E57, o1206–o1208.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThanigaimani, K., Devi, P., Muthiah, P. T., Lynch, D. E. & Butcher, R. J. (2010). Acta Cryst. C66, o324–o328.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationThanigaimani, K., Khalib, N. C., Arshad, S. & Razak, I. A. (2013). Acta Cryst. E69, o318.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds