metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2,2′-[(1,2-Di­cyano­ethene-1,2-di­yl)bis­­(nitrilo­methanylyl­­idyne)]diphenolato-κ4O,N,N′,O′}(methanol-κO)zinc

aCollege of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
*Correspondence e-mail: shzhzhan@scut.edu.cn

(Received 7 May 2013; accepted 18 June 2013; online 29 June 2013)

In the title complex, [Zn(C18H10N4O2)(CH4O)], the Zn2+ cation is located on a mirror plane and is coordinated by a tetradentate Schiff base ligand anion (L2−) and a methanol mol­ecule. The Zn2+ cation is surrounded by two N atoms and two O atoms from L2−, in a nearly planar configuration, and one methanol O atom, forming a slightly distorted square-pyramidal geometry. The methanol molecule is disordered over two sets of sites in a 0.5:0.5 ratio. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules into chains parallel to [001].

Related literature

For background to tetra­dentate Schiff-base complexes of transition metal ions, see: Bottcher et al. (1997[Bottcher, A., Takeuchi, T., Hardcastle, K. I., Meade, T. J., Gray, H. B., Cwikel, D. & Kapon, M. (1997). Inorg. Chem. 36, 2498-2504.]); Mukherjee et al. (2008[Mukherjee, P., Drew, M. G. B., Estrader, M., Diaz, C. & Ghosh, A. (2008). Inorg. Chim. Acta, 361, 161-172.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C18H10N4O2)(CH4O)]

  • Mr = 411.71

  • Orthorhombic, P n m a

  • a = 18.052 (2) Å

  • b = 19.846 (2) Å

  • c = 5.0388 (6) Å

  • V = 1805.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.39 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.769, Tmax = 0.874

  • 5185 measured reflections

  • 1608 independent reflections

  • 1090 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.104

  • S = 1.02

  • 1608 reflections

  • 133 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.93 1.85 2.776 (5) 178
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012)[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title complex is an example of a tetradentate Schiff-base group coordinated to a transition metal ion (Bottcher et al., 1997; Mukherjee et al., 2008). It consists of a Zn2+ ion, coordinated to a Schiff-base ligand ion (L2-), and a CH3OH molecule (Fig. 1). The zinc ion, located on an inversion center is surrounded by two nitrogen atoms and two oxygen atoms from L2-, and one oxygen atom from CH3OH molecule which upon symmetry expansion forms a slightly distorted quadrangular pyramid configuration. In the crystal, O—H···O hydrogen bonds (Table 1) link the molecules into one-dimensional chains (Fig. 2).

Related literature top

For background to tetradentate Schiff-base complexes of transition metal ions, see: Bottcher et al. (1997); Mukherjee et al. (2008)

Experimental top

To a solution, containing 2,3-bis(2-hydroxybenzylideneimino)-2,3-butenedinitrile (H2L)(0.948 g, 3 mmol) andtriethylamine (0.600 g, 6 mmol) in methanol (30 ml), Zn(CH3CO2).2H2O(0.659 g, 3 mmol) was added andthe mixture was stirred for 15 min. The solution was allowed to slowly evaporate,affording brown crystals, which were collected and dried in vacuo (0.786 g, 68%). Calcd for C19H14ZnN4O3:C, 55.38; H, 3.40; N, 13.60. Found: C, 56.19; H, 3.55; N, 13.81.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C-H = 0.93-0.97 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).The C and O atoms of methano (C10, O2) are disordered over two positions (0.50:0.50). The geometric parameters of two disordered components in each groups were restrained by using SADI restraints and ISOR constraints. The bond lengths of the disordered atoms were restrained by using DFIX. All non-hydrogen atoms were treated anisotropically.

Structure description top

The title complex is an example of a tetradentate Schiff-base group coordinated to a transition metal ion (Bottcher et al., 1997; Mukherjee et al., 2008). It consists of a Zn2+ ion, coordinated to a Schiff-base ligand ion (L2-), and a CH3OH molecule (Fig. 1). The zinc ion, located on an inversion center is surrounded by two nitrogen atoms and two oxygen atoms from L2-, and one oxygen atom from CH3OH molecule which upon symmetry expansion forms a slightly distorted quadrangular pyramid configuration. In the crystal, O—H···O hydrogen bonds (Table 1) link the molecules into one-dimensional chains (Fig. 2).

For background to tetradentate Schiff-base complexes of transition metal ions, see: Bottcher et al. (1997); Mukherjee et al. (2008)

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Ortep view of the title compound, at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the b axis. Dashed lines indicate O2—H2···O1 hydrogen bonds.
{2,2'-[(1,2-Dicyanoethene-1,2-diyl)bis(nitrilomethanylylidyne)]diphenolato-κ4O,N,N',O'}(methanol-κO)zinc top
Crystal data top
[Zn(C18H10N4O2)(CH4O)]F(000) = 840
Mr = 411.71Dx = 1.515 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 5185 reflections
a = 18.052 (2) Åθ = 2.1–25°
b = 19.846 (2) ŵ = 1.39 mm1
c = 5.0388 (6) ÅT = 293 K
V = 1805.2 (4) Å3Block, orange
Z = 40.2 × 0.15 × 0.1 mm
Data collection top
Bruker APEXII
diffractometer
1608 independent reflections
Radiation source: fine-focus sealed tube1090 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 0.8409 pixels mm-1θmax = 25.0°, θmin = 2.1°
ω scanh = 1921
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
k = 2023
Tmin = 0.769, Tmax = 0.874l = 35
5185 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0537P)2]
where P = (Fo2 + 2Fc2)/3
1608 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 0.39 e Å3
12 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Zn(C18H10N4O2)(CH4O)]V = 1805.2 (4) Å3
Mr = 411.71Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 18.052 (2) ŵ = 1.39 mm1
b = 19.846 (2) ÅT = 293 K
c = 5.0388 (6) Å0.2 × 0.15 × 0.1 mm
Data collection top
Bruker APEXII
diffractometer
1608 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
1090 reflections with I > 2σ(I)
Tmin = 0.769, Tmax = 0.874Rint = 0.044
5185 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03612 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.02Δρmax = 0.39 e Å3
1608 reflectionsΔρmin = 0.24 e Å3
133 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.36935 (3)0.75000.52857 (11)0.0500 (2)
O10.34404 (15)0.67853 (13)0.2792 (5)0.0617 (7)
O20.2889 (2)0.7701 (2)0.8065 (9)0.0519 (16)0.50
H20.30850.78770.96240.062*0.50
N10.44377 (14)0.68348 (14)0.7145 (5)0.0450 (7)
N20.5754 (2)0.64994 (18)1.2118 (8)0.0825 (11)
C10.3527 (2)0.61308 (19)0.3065 (7)0.0520 (9)
C20.3159 (2)0.5695 (2)0.1276 (8)0.0611 (11)
H2A0.28570.58790.00320.073*
C30.3233 (2)0.5009 (2)0.1413 (8)0.0634 (11)
H30.29870.47390.01880.076*
C40.3672 (2)0.4708 (2)0.3366 (8)0.0603 (10)
H40.37120.42420.34660.072*
C50.4036 (2)0.51024 (18)0.5092 (8)0.0552 (9)
H50.43300.49010.63820.066*
C60.39885 (19)0.58166 (19)0.5023 (7)0.0489 (9)
C70.44203 (19)0.61794 (19)0.6914 (7)0.0509 (9)
H70.47120.59300.80740.061*
C80.49009 (18)0.71569 (16)0.8927 (6)0.0439 (8)
C90.5382 (2)0.67901 (18)1.0708 (8)0.0528 (9)
C100.2165 (4)0.7640 (8)0.8168 (19)0.090 (4)0.50
H10A0.20100.76100.99870.135*0.50
H10B0.20170.72400.72390.135*0.50
H10C0.19390.80260.73540.135*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0500 (4)0.0662 (4)0.0338 (3)0.0000.0057 (3)0.000
O10.0808 (18)0.0637 (17)0.0407 (15)0.0081 (13)0.0153 (13)0.0054 (13)
O20.047 (2)0.069 (5)0.040 (2)0.006 (2)0.003 (2)0.005 (2)
N10.0451 (16)0.0554 (18)0.0346 (16)0.0042 (13)0.0033 (13)0.0055 (14)
N20.086 (3)0.081 (2)0.080 (3)0.000 (2)0.034 (2)0.016 (2)
C10.053 (2)0.066 (2)0.037 (2)0.0128 (17)0.0024 (17)0.0018 (19)
C20.066 (3)0.072 (3)0.045 (2)0.016 (2)0.005 (2)0.000 (2)
C30.068 (3)0.071 (3)0.052 (2)0.022 (2)0.001 (2)0.010 (2)
C40.056 (2)0.060 (2)0.064 (3)0.005 (2)0.005 (2)0.009 (2)
C50.0480 (19)0.062 (2)0.056 (2)0.0038 (17)0.0036 (19)0.002 (2)
C60.0430 (17)0.062 (2)0.042 (2)0.0059 (16)0.0011 (17)0.0050 (19)
C70.045 (2)0.065 (2)0.043 (2)0.0025 (17)0.0014 (18)0.0003 (19)
C80.0398 (18)0.0580 (18)0.0338 (18)0.0036 (15)0.0024 (16)0.0016 (16)
C90.053 (2)0.058 (2)0.048 (2)0.0058 (18)0.0068 (19)0.0028 (19)
C100.064 (4)0.095 (10)0.111 (6)0.017 (5)0.001 (4)0.004 (6)
Geometric parameters (Å, º) top
Zn1—O11.949 (2)C2—H2A0.9300
Zn1—O1i1.949 (2)C3—C41.398 (5)
Zn1—O22.057 (4)C3—H30.9300
Zn1—O2i2.057 (4)C4—C51.341 (5)
Zn1—N1i2.104 (3)C4—H40.9300
Zn1—N12.104 (3)C5—C61.420 (5)
O1—C11.315 (4)C5—H50.9300
O2—C101.313 (8)C6—C71.426 (5)
O2—H20.9300C7—H70.9300
N1—C71.306 (4)C8—C8i1.362 (6)
N1—C81.383 (4)C8—C91.445 (5)
N2—C91.135 (5)C10—H10A0.9600
C1—C21.416 (5)C10—H10B0.9600
C1—C61.434 (5)C10—H10C0.9600
C2—C31.369 (5)
O1—Zn1—O1i93.38 (15)C1—C2—H2A119.0
O1—Zn1—O2114.48 (14)C2—C3—C4121.1 (4)
O1i—Zn1—O297.60 (14)C2—C3—H3119.5
O1—Zn1—O2i97.60 (14)C4—C3—H3119.5
O1i—Zn1—O2i114.48 (14)C5—C4—C3119.0 (4)
O2—Zn1—O2i22.4 (2)C5—C4—H4120.5
O1—Zn1—N1i153.31 (12)C3—C4—H4120.5
O1i—Zn1—N1i88.86 (10)C4—C5—C6122.5 (4)
O2—Zn1—N1i91.51 (14)C4—C5—H5118.8
O2i—Zn1—N1i105.64 (14)C6—C5—H5118.8
O1—Zn1—N188.86 (10)C5—C6—C7117.0 (3)
O1i—Zn1—N1153.31 (12)C5—C6—C1119.1 (3)
O2—Zn1—N1105.64 (14)C7—C6—C1123.9 (3)
O2i—Zn1—N191.51 (14)N1—C7—C6125.1 (3)
N1i—Zn1—N177.74 (15)N1—C7—H7117.4
C1—O1—Zn1128.6 (2)C6—C7—H7117.4
C10—O2—Zn1135.4 (6)C8i—C8—N1117.52 (18)
C10—O2—H2112.3C8i—C8—C9120.23 (18)
Zn1—O2—H2112.3N1—C8—C9122.2 (3)
C7—N1—C8122.2 (3)N2—C9—C8179.3 (4)
C7—N1—Zn1124.7 (2)O2—C10—H10A109.5
C8—N1—Zn1112.6 (2)O2—C10—H10B109.5
O1—C1—C2118.8 (3)H10A—C10—H10B109.5
O1—C1—C6124.8 (3)O2—C10—H10C109.5
C2—C1—C6116.4 (4)H10A—C10—H10C109.5
C3—C2—C1122.0 (4)H10B—C10—H10C109.5
C3—C2—H2A119.0
O1i—Zn1—O1—C1174.4 (2)O1—C1—C2—C3178.9 (4)
O2—Zn1—O1—C185.6 (3)C6—C1—C2—C30.5 (6)
O2i—Zn1—O1—C170.3 (3)C1—C2—C3—C40.9 (6)
N1i—Zn1—O1—C180.2 (4)C2—C3—C4—C51.3 (6)
N1—Zn1—O1—C121.1 (3)C3—C4—C5—C60.3 (6)
O1—Zn1—O2—C1027.0 (11)C4—C5—C6—C7178.1 (3)
O1i—Zn1—O2—C1070.3 (10)C4—C5—C6—C11.0 (5)
O2i—Zn1—O2—C1070.5 (10)O1—C1—C6—C5179.7 (3)
N1i—Zn1—O2—C10159.3 (10)C2—C1—C6—C51.4 (5)
N1—Zn1—O2—C10123.0 (10)O1—C1—C6—C70.7 (6)
O1—Zn1—N1—C719.1 (3)C2—C1—C6—C7177.6 (3)
O1i—Zn1—N1—C7114.4 (3)C8—N1—C7—C6176.3 (3)
O2—Zn1—N1—C796.0 (3)Zn1—N1—C7—C611.9 (5)
O2i—Zn1—N1—C778.5 (3)C5—C6—C7—N1179.3 (3)
N1i—Zn1—N1—C7175.9 (2)C1—C6—C7—N11.7 (5)
O1—Zn1—N1—C8168.4 (2)C7—N1—C8—C8i177.1 (2)
O1i—Zn1—N1—C873.1 (3)Zn1—N1—C8—C8i10.2 (2)
O2—Zn1—N1—C876.4 (2)C7—N1—C8—C91.8 (5)
O2i—Zn1—N1—C894.0 (2)Zn1—N1—C8—C9170.9 (3)
N1i—Zn1—N1—C811.7 (2)C8i—C8—C9—N2119 (38)
Zn1—O1—C1—C2166.1 (3)N1—C8—C9—N262 (38)
Zn1—O1—C1—C615.6 (5)
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1ii0.931.852.776 (5)178
Symmetry code: (ii) x, y+3/2, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C18H10N4O2)(CH4O)]
Mr411.71
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)18.052 (2), 19.846 (2), 5.0388 (6)
V3)1805.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.39
Crystal size (mm)0.2 × 0.15 × 0.1
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.769, 0.874
No. of measured, independent and
observed [I > 2σ(I)] reflections
5185, 1608, 1090
Rint0.044
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.104, 1.02
No. of reflections1608
No. of parameters133
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.931.852.776 (5)177.7
Symmetry code: (i) x, y+3/2, z+1.
 

References

First citationBottcher, A., Takeuchi, T., Hardcastle, K. I., Meade, T. J., Gray, H. B., Cwikel, D. & Kapon, M. (1997). Inorg. Chem. 36, 2498–2504.  Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMukherjee, P., Drew, M. G. B., Estrader, M., Diaz, C. & Ghosh, A. (2008). Inorg. Chim. Acta, 361, 161–172.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds