organic compounds
Bis[1-(2,3-dimethylphenyl)piperazine-1,4-diium] bis(oxonium) cyclohexaphosphate dihydrate
aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bPetrochemical Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
*Correspondence e-mail: sonia.abid@fsb.rnu.tn
In the title compound, 2C12H20N22+·2H3O+·P6O186−·2H2O, a protonated water molecule bridges the centrosymmetrical anionic P6O18 ring via O—H⋯O hydrogen bonds. The centrosymmetric hydrogen-bonded rings formed by four oxonium cations and four phosphate anions can be described by an R48(36) graph-set motif. The ring motifs are connected by hydrogen bonds into inorganic layers perpendicular to [100]. The 1-(2,3-dimethylphenyl)piperazine-1,4-diium cations are located between the layers, compensating their negative charge and establishing N—H⋯O hydrogen bonds with the O atoms of the anionic framework.
Related literature
For background to the chemistry of cyclohexaphosphate, see: Durif (1995); Amri et al. (2008); Marouani et al. (2010). For applications of piperazine derivatives, see: Kaur et al. (2010); Eswaran et al. (2010); Chou et al. (2010); Chen et al. (2004); Shingalapur et al. (2009). For related structures with cyclohexaphosphate rings, see: Abid et al. (2011); Ameur et al. (2013); Amri et al. (2009). For related structures with 1-phenylpiperazine-1,4-diium salts, see: Marouani et al. (2010); Ben Gharbia et al. (2005). For puckering parameters, see: Cremer & Pople (1975). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For the synthesis of the precursor, see: Schülke & Kayser (1985).
Experimental
Crystal data
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
https://doi.org/10.1107/S1600536813016759/jj2168sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813016759/jj2168Isup2.hkl
Crystals of the title compound were prepared by adding dropwise an ethanolic solution (5 ml) of 1-(2,3)dimethlphenylpiperazine (4 mmol) to an aqueous solution (10 ml) of cyclohexaphosphoric acid (2 mmol). The reaction mixture was stirred at room temperature for few minutes. X-ray quality crystals of the title compound appeared after a few days. The cyclohexaphosphoric acid H6P6O18, was produced from Li6P6O18.6H2O, prepared according to the procedure of Schülke and Kayser (Schülke & Kayser, 1985), through an ion-exchange resin in H-state (Amberlite IR 120).
H1W1, H1W2, H2W1, H2W2 and H3W2 were located by Fourier maps and refined as riding in their as-found relative positions with Uiso(H) = 1.5Ueq(O). All remaining H atoms were placed in their calculated positions and then refined using the riding model with atom-H lengths of 0.93 Å (CH), 0.97 Å (CH2), 0.96 Å (CH3), 0.91 Å (NH) and 0.90 Å (NH3). Uiso were set to 1.2 (CH, CH2), 1.5 (CH3) or 1.20 (NH) times Ueq of the parent atom.
The literature reports several cyclohexaphosphates of organic cations and/or inorganic cations (Durif,1995). However, cyclohexaphosphates of mixed cations associating the oxoniumion are still relatively very limited. Up to now, only two examples have been known and structurally characterized (Amri et al., 2008, Marouani et al.,2010). In this work, we report the preparation and the structural investigation of a new organic oxonium cyclohexaphospohate, 2(C12H20N2)2+.2H3O+.P6O186-. 2H2O, (I), where the organic species is the piperazinium group. Piperazine derivatives have wide range of applications in pharmaceuticals as antimalarial (Kaur et al., 2010), anti-tuberculosis (Eswaran et al., 2010), antitumor (Chou et al., 2010), anticancer (Chen et al., 2004) and antiviral (Shingalapur et al., 2009) agents.
The θ = 0.7 (2)° and φ = 326 (12) (Cremer & Pople, 1975)] with atoms N1 and N2 deviating by -0.683 (2) and 0.657 (2) Å from the least-squares plane defined by the remaining atoms in the ring. The interatomic bond lengths (C—C,N—C) and angles in (C—C—C,C—N—C) do not show significant deviation from those reported in a related 1-phenylpiperazine-1,4-diium salt (Ben Gharbia et al., 2005). An extensive network of N—H···O and O—H···O hydrogen-bonding interactions link the components of the structure into a three-dimensional network (Fig. 3).
of (I) includes one-half of the P6O18 ring lying on an inversion center (1/2, 1/2, 0), one 1-(2,3-dimethylphenyl) piperazine-1,4-diium cation, one hydronium cation and one water molecule (Fig.1). As shown in Fig.2, the hydronium cations (OW2) bridge the anionic ring to form 2-D corrugated layers, located at x = 1/2 and parallel to the bc-plane. The result of these interactions is the formation of a 36-membered ring with an R48(36) graph-set motif (Bernstein et al., 1995). The centre of 36-membered ring is situated on a crystallographic centre of symmetry. Inside these layers, the phosphoric rings display a chair conformation with geometrical characteristics that show no significant difference in deviation from those observed in other cyclohexaphosphates having the same internal symmetry -1 (Amri et al., 2009; Abid et al., 2011; Ameur et al., 2013). The anchorage of the water molecule OW1 and the organic cations is made by short and long H-bonds, ensuring the interconnection between layers, and thus giving rise to a three-dimensional network. The benzyl ring (C5—C10) is essentially planar with an r.m.s. deviation of 0.0047 Å and is orientated at an angle of 54.09 (5)° with respect to the piperazine ring (Fig.3). The piperazine (N1–N2/C1–C4) ring adopts a chair conformation [puckering parameters: QT = 0.577 (2) Å,For background to the chemistry of cyclohexaphosphate, see: Durif (1995); Amri et al. (2008); Marouani et al. (2010). For applications of piperazine derivatives, see: Kaur et al. (2010); Eswaran et al. (2010); Chou et al. (2010); Chen et al.(2004); Shingalapur et al. (2009). For related structures with cyclohexaphosphate rings, see: Abid et al. (2011); Ameur et al. (2013); Amri et al. (2009). For related structures with 1-phenylpiperazine-1,4-diium salts, see: Marouani et al. (2010); Ben Gharbia et al. (2005). For puckering parameters, see: Cremer & Pople (1975). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For the synthesis of the precursor, see: Schülke & Kayser (1985).
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. The molecular structure of (I) with 50% probability displacement ellipsoids. Dashed lines indicate O—H···O and N—H···O hydrogen bonds. | |
Fig. 2. Fig, 2. Projection along the a axis, of an inorganic layer in the structure of (I). The dashed circles highlight the R48(36) centrosymmetric motifs. | |
Fig. 3. (a) The three-dimensional network of (I), projected along the aaxis. (b) Relative orientation of the rings aryl and piperazine in the 1-(2,3-Dimethylphenyl)piperazine-1,4-diium cation. |
2C12H20N22+·2H3O+·P6O186−·2H2O | F(000) = 976 |
Mr = 932.50 | Dx = 1.599 Mg m−3 |
Monoclinic, P21/c | Ag Kα radiation, λ = 0.56085 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 8.630 (6) Å | θ = 9.3–10.5° |
b = 14.495 (4) Å | µ = 0.20 mm−1 |
c = 17.072 (3) Å | T = 293 K |
β = 114.93 (4)° | Prism, colourless |
V = 1936.6 (15) Å3 | 0.60 × 0.40 × 0.10 mm |
Z = 2 |
Nonius MACH-3 diffractometer | 5475 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.031 |
Graphite monochromator | θmax = 28.0°, θmin = 2.1° |
non–profiled ω scans | h = −14→14 |
Absorption correction: part of the (Walker & Stuart, 1983) | model (ΔF) k = −24→2 |
Tmin = 0.892, Tmax = 0.981 | l = −28→16 |
12060 measured reflections | 2 standard reflections every 120 min |
9442 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.152 | H-atom parameters constrained |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0763P)2] where P = (Fo2 + 2Fc2)/3 |
9442 reflections | (Δ/σ)max < 0.001 |
253 parameters | Δρmax = 0.87 e Å−3 |
0 restraints | Δρmin = −0.67 e Å−3 |
0 constraints |
2C12H20N22+·2H3O+·P6O186−·2H2O | V = 1936.6 (15) Å3 |
Mr = 932.50 | Z = 2 |
Monoclinic, P21/c | Ag Kα radiation, λ = 0.56085 Å |
a = 8.630 (6) Å | µ = 0.20 mm−1 |
b = 14.495 (4) Å | T = 293 K |
c = 17.072 (3) Å | 0.60 × 0.40 × 0.10 mm |
β = 114.93 (4)° |
Nonius MACH-3 diffractometer | 5475 reflections with I > 2σ(I) |
Absorption correction: part of the (Walker & Stuart, 1983) | model (ΔF) Rint = 0.031 |
Tmin = 0.892, Tmax = 0.981 | 2 standard reflections every 120 min |
12060 measured reflections | intensity decay: none |
9442 independent reflections |
R[F2 > 2σ(F2)] = 0.055 | 0 restraints |
wR(F2) = 0.152 | H-atom parameters constrained |
S = 0.99 | Δρmax = 0.87 e Å−3 |
9442 reflections | Δρmin = −0.67 e Å−3 |
253 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.31249 (5) | 0.34945 (3) | −0.07303 (3) | 0.02004 (9) | |
P2 | 0.37416 (6) | 0.39535 (3) | 0.10432 (3) | 0.02228 (10) | |
P3 | 0.69777 (6) | 0.49655 (3) | 0.18679 (3) | 0.02396 (10) | |
O1 | 0.42651 (16) | 0.30040 (10) | −0.10364 (9) | 0.0287 (3) | |
O2 | 0.14736 (17) | 0.30794 (10) | −0.08650 (11) | 0.0345 (3) | |
O3 | 0.2778 (2) | 0.45146 (10) | −0.11034 (11) | 0.0385 (4) | |
O4 | 0.42266 (17) | 0.36921 (13) | 0.02683 (9) | 0.0403 (4) | |
O5 | 0.19648 (16) | 0.42960 (10) | 0.07175 (10) | 0.0321 (3) | |
O6 | 0.4264 (2) | 0.31760 (10) | 0.16614 (10) | 0.0351 (3) | |
O7 | 0.49427 (17) | 0.48166 (9) | 0.14480 (10) | 0.0325 (3) | |
O8 | 0.7354 (2) | 0.55904 (12) | 0.26036 (10) | 0.0448 (4) | |
O9 | 0.7852 (2) | 0.40717 (10) | 0.19877 (12) | 0.0419 (4) | |
OW1 | 1.0380 (3) | 0.2895 (2) | 0.25912 (15) | 0.0936 (10) | |
H1W1 | 0.9712 | 0.3308 | 0.2474 | 0.140* | |
H2W1 | 1.0790 | 0.2734 | 0.3123 | 0.140* | |
OW2 | 0.79099 (19) | 0.72073 (11) | 0.31371 (10) | 0.0372 (3) | |
H1W2 | 0.7581 | 0.6706 | 0.2912 | 0.056* | |
H2W2 | 0.8182 | 0.7360 | 0.2764 | 0.056* | |
H3W2 | 0.7184 | 0.7547 | 0.3209 | 0.056* | |
C1 | 0.8112 (2) | 0.37054 (13) | 0.00581 (13) | 0.0295 (4) | |
H1A | 0.6935 | 0.3897 | −0.0121 | 0.035* | |
H1B | 0.8824 | 0.4074 | 0.0554 | 0.035* | |
C2 | 0.8290 (3) | 0.26990 (14) | 0.03063 (13) | 0.0302 (4) | |
H2C | 0.9484 | 0.2523 | 0.0532 | 0.036* | |
H2D | 0.7907 | 0.2605 | 0.0759 | 0.036* | |
C3 | 0.7820 (3) | 0.22745 (13) | −0.11665 (13) | 0.0282 (4) | |
H3A | 0.7134 | 0.1904 | −0.1667 | 0.034* | |
H3B | 0.9005 | 0.2093 | −0.0976 | 0.034* | |
C4 | 0.7625 (3) | 0.32817 (13) | −0.14143 (14) | 0.0299 (4) | |
H4A | 0.8012 | 0.3384 | −0.1865 | 0.036* | |
H4B | 0.6429 | 0.3454 | −0.1640 | 0.036* | |
C5 | 0.7366 (2) | 0.10980 (12) | −0.02396 (12) | 0.0258 (3) | |
C6 | 0.6060 (2) | 0.05226 (13) | −0.07716 (12) | 0.0265 (3) | |
C7 | 0.6213 (3) | −0.04254 (14) | −0.05737 (14) | 0.0335 (4) | |
C8 | 0.7617 (3) | −0.07472 (15) | 0.01414 (17) | 0.0421 (5) | |
H8 | 0.7708 | −0.1374 | 0.0270 | 0.051* | |
C9 | 0.8877 (3) | −0.01554 (16) | 0.06639 (17) | 0.0433 (5) | |
H9 | 0.9801 | −0.0383 | 0.1144 | 0.052* | |
C10 | 0.8771 (3) | 0.07749 (16) | 0.04755 (15) | 0.0364 (5) | |
H10 | 0.9623 | 0.1178 | 0.0821 | 0.044* | |
C11 | 0.4528 (3) | 0.08562 (15) | −0.15409 (13) | 0.0354 (4) | |
H13 | 0.4447 | 0.1515 | −0.1513 | 0.053* | |
H11 | 0.3517 | 0.0578 | −0.1544 | 0.053* | |
H14 | 0.4639 | 0.0690 | −0.2059 | 0.053* | |
C12 | 0.4877 (4) | −0.10878 (16) | −0.11266 (19) | 0.0477 (6) | |
H122 | 0.3770 | −0.0866 | −0.1210 | 0.072* | |
H121 | 0.5077 | −0.1680 | −0.0850 | 0.072* | |
H123 | 0.4924 | −0.1144 | −0.1676 | 0.072* | |
N1 | 0.72640 (18) | 0.20991 (10) | −0.04534 (10) | 0.0227 (3) | |
H1 | 0.6150 | 0.2273 | −0.0649 | 0.027* | |
N2 | 0.8629 (2) | 0.38610 (11) | −0.06582 (12) | 0.0298 (3) | |
H2A | 0.8476 | 0.4459 | −0.0813 | 0.036* | |
H2B | 0.9746 | 0.3729 | −0.0475 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.01473 (16) | 0.02149 (19) | 0.0252 (2) | −0.00054 (15) | 0.00971 (15) | −0.00045 (17) |
P2 | 0.02042 (19) | 0.02102 (19) | 0.0271 (2) | −0.00034 (15) | 0.01164 (17) | −0.00057 (17) |
P3 | 0.02164 (19) | 0.02002 (19) | 0.0283 (2) | 0.00048 (16) | 0.00867 (17) | 0.00217 (17) |
O1 | 0.0217 (6) | 0.0296 (7) | 0.0363 (7) | 0.0055 (5) | 0.0137 (5) | −0.0021 (6) |
O2 | 0.0221 (6) | 0.0335 (7) | 0.0522 (9) | −0.0093 (5) | 0.0197 (6) | −0.0100 (7) |
O3 | 0.0558 (10) | 0.0228 (6) | 0.0560 (10) | 0.0102 (6) | 0.0420 (8) | 0.0084 (7) |
O4 | 0.0196 (6) | 0.0758 (12) | 0.0257 (7) | 0.0018 (7) | 0.0099 (5) | −0.0072 (8) |
O5 | 0.0205 (6) | 0.0297 (7) | 0.0475 (8) | 0.0007 (5) | 0.0157 (6) | −0.0001 (6) |
O6 | 0.0388 (8) | 0.0270 (7) | 0.0420 (8) | 0.0021 (6) | 0.0195 (7) | 0.0086 (6) |
O7 | 0.0224 (6) | 0.0209 (6) | 0.0518 (9) | −0.0013 (5) | 0.0132 (6) | −0.0039 (6) |
O8 | 0.0574 (10) | 0.0368 (9) | 0.0331 (8) | −0.0078 (8) | 0.0122 (7) | −0.0075 (7) |
O9 | 0.0328 (8) | 0.0290 (7) | 0.0603 (10) | 0.0119 (6) | 0.0160 (7) | 0.0105 (7) |
OW1 | 0.0987 (18) | 0.134 (2) | 0.0705 (14) | 0.0923 (17) | 0.0579 (14) | 0.0573 (15) |
OW2 | 0.0349 (7) | 0.0385 (8) | 0.0389 (8) | −0.0028 (6) | 0.0162 (7) | −0.0106 (7) |
C1 | 0.0236 (8) | 0.0264 (8) | 0.0393 (10) | −0.0026 (7) | 0.0139 (8) | −0.0055 (8) |
C2 | 0.0283 (9) | 0.0289 (9) | 0.0304 (9) | −0.0021 (7) | 0.0093 (7) | −0.0018 (8) |
C3 | 0.0316 (9) | 0.0249 (8) | 0.0363 (10) | 0.0015 (7) | 0.0223 (8) | 0.0021 (7) |
C4 | 0.0297 (9) | 0.0280 (9) | 0.0369 (10) | 0.0011 (7) | 0.0188 (8) | 0.0048 (8) |
C5 | 0.0272 (8) | 0.0216 (8) | 0.0324 (9) | 0.0038 (6) | 0.0164 (7) | 0.0035 (7) |
C6 | 0.0323 (9) | 0.0245 (8) | 0.0299 (9) | 0.0023 (7) | 0.0200 (7) | 0.0014 (7) |
C7 | 0.0459 (11) | 0.0222 (8) | 0.0442 (11) | 0.0000 (8) | 0.0305 (10) | −0.0008 (8) |
C8 | 0.0526 (14) | 0.0252 (9) | 0.0598 (15) | 0.0097 (9) | 0.0346 (12) | 0.0128 (10) |
C9 | 0.0426 (12) | 0.0339 (11) | 0.0497 (13) | 0.0126 (9) | 0.0158 (10) | 0.0146 (10) |
C10 | 0.0310 (10) | 0.0325 (10) | 0.0413 (11) | 0.0075 (8) | 0.0110 (9) | 0.0076 (9) |
C11 | 0.0364 (10) | 0.0329 (10) | 0.0335 (10) | −0.0052 (8) | 0.0115 (8) | −0.0028 (8) |
C12 | 0.0568 (15) | 0.0290 (10) | 0.0662 (17) | −0.0098 (10) | 0.0346 (13) | −0.0116 (11) |
N1 | 0.0199 (6) | 0.0212 (6) | 0.0289 (7) | 0.0015 (5) | 0.0120 (6) | 0.0014 (6) |
N2 | 0.0210 (6) | 0.0226 (7) | 0.0483 (10) | 0.0014 (6) | 0.0170 (7) | 0.0031 (7) |
P1—O2 | 1.4729 (16) | C3—H3A | 0.9700 |
P1—O1 | 1.4766 (15) | C3—H3B | 0.9700 |
P1—O3 | 1.5878 (15) | C4—N2 | 1.476 (3) |
P1—O4 | 1.5894 (16) | C4—H4A | 0.9700 |
P2—O6 | 1.4785 (15) | C4—H4B | 0.9700 |
P2—O5 | 1.4792 (17) | C5—C6 | 1.388 (3) |
P2—O7 | 1.5855 (15) | C5—C10 | 1.390 (3) |
P2—O4 | 1.5924 (15) | C5—N1 | 1.490 (2) |
P3—O8 | 1.4696 (17) | C6—C7 | 1.408 (3) |
P3—O9 | 1.4696 (15) | C6—C11 | 1.497 (3) |
P3—O3i | 1.5964 (15) | C7—C8 | 1.389 (3) |
P3—O7 | 1.6073 (19) | C7—C12 | 1.491 (3) |
O3—P3i | 1.5964 (15) | C8—C9 | 1.377 (4) |
OW1—H1W1 | 0.7950 | C8—H8 | 0.9300 |
OW1—H2W1 | 0.8565 | C9—C10 | 1.380 (3) |
OW2—H1W2 | 0.8154 | C9—H9 | 0.9300 |
OW2—H2W2 | 0.7977 | C10—H10 | 0.9300 |
OW2—H3W2 | 0.8458 | C11—H13 | 0.9600 |
C1—N2 | 1.485 (3) | C11—H11 | 0.9600 |
C1—C2 | 1.509 (3) | C11—H14 | 0.9600 |
C1—H1A | 0.9700 | C12—H122 | 0.9600 |
C1—H1B | 0.9700 | C12—H121 | 0.9600 |
C2—N1 | 1.501 (2) | C12—H123 | 0.9600 |
C2—H2C | 0.9700 | N1—H1 | 0.9100 |
C2—H2D | 0.9700 | N2—H2A | 0.9000 |
C3—N1 | 1.506 (2) | N2—H2B | 0.9000 |
C3—C4 | 1.509 (3) | ||
O2—P1—O1 | 119.56 (9) | N2—C4—H4B | 109.6 |
O2—P1—O3 | 108.13 (9) | C3—C4—H4B | 109.6 |
O1—P1—O3 | 110.35 (8) | H4A—C4—H4B | 108.1 |
O2—P1—O4 | 110.06 (9) | C6—C5—C10 | 122.63 (18) |
O1—P1—O4 | 106.25 (9) | C6—C5—N1 | 118.49 (16) |
O3—P1—O4 | 100.89 (10) | C10—C5—N1 | 118.88 (17) |
O6—P2—O5 | 118.69 (9) | C5—C6—C7 | 117.46 (18) |
O6—P2—O7 | 110.10 (9) | C5—C6—C11 | 123.56 (17) |
O5—P2—O7 | 106.42 (9) | C7—C6—C11 | 118.97 (18) |
O6—P2—O4 | 107.69 (10) | C8—C7—C6 | 119.8 (2) |
O5—P2—O4 | 111.19 (9) | C8—C7—C12 | 119.7 (2) |
O7—P2—O4 | 101.38 (9) | C6—C7—C12 | 120.5 (2) |
O8—P3—O9 | 120.58 (11) | C9—C8—C7 | 121.2 (2) |
O8—P3—O3i | 110.49 (10) | C9—C8—H8 | 119.4 |
O9—P3—O3i | 107.03 (9) | C7—C8—H8 | 119.4 |
O8—P3—O7 | 105.68 (10) | C8—C9—C10 | 120.0 (2) |
O9—P3—O7 | 110.14 (9) | C8—C9—H9 | 120.0 |
O3i—P3—O7 | 101.25 (9) | C10—C9—H9 | 120.0 |
P1—O3—P3i | 134.42 (10) | C9—C10—C5 | 118.8 (2) |
P1—O4—P2 | 133.32 (10) | C9—C10—H10 | 120.6 |
P2—O7—P3 | 133.71 (9) | C5—C10—H10 | 120.6 |
H1W1—OW1—H2W1 | 113.9 | C6—C11—H13 | 109.5 |
H1W2—OW2—H2W2 | 91.8 | C6—C11—H11 | 109.5 |
H1W2—OW2—H3W2 | 117.1 | H13—C11—H11 | 109.5 |
H2W2—OW2—H3W2 | 116.2 | C6—C11—H14 | 109.5 |
N2—C1—C2 | 110.34 (16) | H13—C11—H14 | 109.5 |
N2—C1—H1A | 109.6 | H11—C11—H14 | 109.5 |
C2—C1—H1A | 109.6 | C7—C12—H122 | 109.5 |
N2—C1—H1B | 109.6 | C7—C12—H121 | 109.5 |
C2—C1—H1B | 109.6 | H122—C12—H121 | 109.5 |
H1A—C1—H1B | 108.1 | C7—C12—H123 | 109.5 |
N1—C2—C1 | 111.36 (16) | H122—C12—H123 | 109.5 |
N1—C2—H2C | 109.4 | H121—C12—H123 | 109.5 |
C1—C2—H2C | 109.4 | C5—N1—C2 | 113.59 (15) |
N1—C2—H2D | 109.4 | C5—N1—C3 | 110.88 (14) |
C1—C2—H2D | 109.4 | C2—N1—C3 | 109.11 (14) |
H2C—C2—H2D | 108.0 | C5—N1—H1 | 107.7 |
N1—C3—C4 | 110.72 (15) | C2—N1—H1 | 107.7 |
N1—C3—H3A | 109.5 | C3—N1—H1 | 107.7 |
C4—C3—H3A | 109.5 | C4—N2—C1 | 111.35 (15) |
N1—C3—H3B | 109.5 | C4—N2—H2A | 109.4 |
C4—C3—H3B | 109.5 | C1—N2—H2A | 109.4 |
H3A—C3—H3B | 108.1 | C4—N2—H2B | 109.4 |
N2—C4—C3 | 110.49 (16) | C1—N2—H2B | 109.4 |
N2—C4—H4A | 109.6 | H2A—N2—H2B | 108.0 |
C3—C4—H4A | 109.6 | ||
O2—P1—O3—P3i | −116.25 (16) | C5—C6—C7—C8 | 1.2 (3) |
O1—P1—O3—P3i | 16.22 (19) | C11—C6—C7—C8 | −179.47 (19) |
O4—P1—O3—P3i | 128.25 (16) | C5—C6—C7—C12 | −178.77 (18) |
O2—P1—O4—P2 | −31.2 (2) | C11—C6—C7—C12 | 0.6 (3) |
O1—P1—O4—P2 | −162.03 (16) | C6—C7—C8—C9 | −0.2 (3) |
O3—P1—O4—P2 | 82.82 (18) | C12—C7—C8—C9 | 179.7 (2) |
O6—P2—O4—P1 | 114.23 (17) | C7—C8—C9—C10 | −0.8 (4) |
O5—P2—O4—P1 | −17.4 (2) | C8—C9—C10—C5 | 0.8 (4) |
O7—P2—O4—P1 | −130.16 (17) | C6—C5—C10—C9 | 0.2 (3) |
O6—P2—O7—P3 | 53.82 (17) | N1—C5—C10—C9 | −178.9 (2) |
O5—P2—O7—P3 | −176.32 (13) | C6—C5—N1—C2 | 157.24 (16) |
O4—P2—O7—P3 | −59.98 (16) | C10—C5—N1—C2 | −23.6 (2) |
O8—P3—O7—P2 | −140.97 (14) | C6—C5—N1—C3 | −79.5 (2) |
O9—P3—O7—P2 | −9.23 (18) | C10—C5—N1—C3 | 99.7 (2) |
O3i—P3—O7—P2 | 103.78 (15) | C1—C2—N1—C5 | −178.79 (15) |
N2—C1—C2—N1 | −56.9 (2) | C1—C2—N1—C3 | 57.0 (2) |
N1—C3—C4—N2 | 58.0 (2) | C4—C3—N1—C5 | 176.94 (15) |
C10—C5—C6—C7 | −1.2 (3) | C4—C3—N1—C2 | −57.2 (2) |
N1—C5—C6—C7 | 177.91 (16) | C3—C4—N2—C1 | −57.5 (2) |
C10—C5—C6—C11 | 179.48 (19) | C2—C1—N2—C4 | 56.8 (2) |
N1—C5—C6—C11 | −1.4 (3) |
Symmetry code: (i) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
OW1—H1W1···O9 | 0.79 | 1.84 | 2.614 (3) | 166 |
OW1—H2W1···O2ii | 0.86 | 1.97 | 2.781 (3) | 159 |
OW2—H1W2···O8 | 0.82 | 1.69 | 2.487 (2) | 167 |
OW2—H2W2···OW1iii | 0.80 | 1.77 | 2.503 (3) | 152 |
OW2—H3W2···O6iv | 0.85 | 1.64 | 2.481 (2) | 178 |
N1—H1···O1 | 0.91 | 1.82 | 2.690 (2) | 160 |
N2—H2A···O5i | 0.90 | 1.87 | 2.714 (2) | 156 |
N2—H2B···O2v | 0.90 | 2.10 | 2.858 (3) | 142 |
N2—H2B···O5v | 0.90 | 2.28 | 2.916 (3) | 127 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x+1, −y+1/2, z+1/2; (iii) −x+2, y+1/2, −z+1/2; (iv) −x+1, y+1/2, −z+1/2; (v) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | 2C12H20N22+·2H3O+·P6O186−·2H2O |
Mr | 932.50 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 8.630 (6), 14.495 (4), 17.072 (3) |
β (°) | 114.93 (4) |
V (Å3) | 1936.6 (15) |
Z | 2 |
Radiation type | Ag Kα, λ = 0.56085 Å |
µ (mm−1) | 0.20 |
Crystal size (mm) | 0.60 × 0.40 × 0.10 |
Data collection | |
Diffractometer | Nonius MACH-3 |
Absorption correction | Part of the refinement model (ΔF) (Walker & Stuart, 1983) |
Tmin, Tmax | 0.892, 0.981 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12060, 9442, 5475 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.836 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.055, 0.152, 0.99 |
No. of reflections | 9442 |
No. of parameters | 253 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.87, −0.67 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).
D—H···A | D—H | H···A | D···A | D—H···A |
OW1—H1W1···O9 | 0.79 | 1.84 | 2.614 (3) | 166.0 |
OW1—H2W1···O2i | 0.86 | 1.97 | 2.781 (3) | 158.8 |
OW2—H1W2···O8 | 0.82 | 1.69 | 2.487 (2) | 166.8 |
OW2—H2W2···OW1ii | 0.80 | 1.77 | 2.503 (3) | 151.5 |
OW2—H3W2···O6iii | 0.85 | 1.64 | 2.481 (2) | 178.2 |
N1—H1···O1 | 0.91 | 1.82 | 2.690 (2) | 160.1 |
N2—H2A···O5iv | 0.90 | 1.87 | 2.714 (2) | 156.3 |
N2—H2B···O2v | 0.90 | 2.10 | 2.858 (3) | 141.9 |
N2—H2B···O5v | 0.90 | 2.28 | 2.916 (3) | 127.4 |
Symmetry codes: (i) x+1, −y+1/2, z+1/2; (ii) −x+2, y+1/2, −z+1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) −x+1, −y+1, −z; (v) x+1, y, z. |
Acknowledgements
This work was supported by the Tunisian Ministry of H. E. Sc. R. and the Deanship of Scientific Research at King Saud University (research group project No. RGP-VPP-089).
References
Abid, S., Al-Deyab, S. S. & Rzaigui, M. (2011). Acta Cryst. E67, m1549–m1550. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ameur, I., Abid, S., Al-Deyab, S. S. & Rzaigui, M. (2013). Acta Cryst. E69, m305–m306. CSD CrossRef CAS IUCr Journals Google Scholar
Amri, O., Abid, S. & Rzaigui, M. (2008). Phosphorus Sulfur Silicon Relat. Elem. 183, 1996–2005. Web of Science CSD CrossRef Google Scholar
Amri, O., Abid, S. & Rzaigui, M. (2009). Acta Cryst. E65, o654. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ben Gharbia, I., Kefi, R., Rayes, A. & Ben Nasr, C. (2005). Z. Kristallogr. 220, 333–334. Google Scholar
Bernstein, J., David, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Chen, Y. L., Hung, H. M., Lu, C. M., Li, K. C. & Tzeng, C. C. (2004). Bioorg. Med. Chem. 12, 6539–6546. Web of Science CrossRef PubMed CAS Google Scholar
Chou, L. C., Tsai, M. T., Hsu, M. H., Wang, S. H., Way, T. D., Huang, C. H., Lin, H. Y., Qian, K., Dong, Y., Lee, K. H., Huang, L. J. & Kuo, S. C. (2010). J. Med. Chem. 53, 8047–8058. Web of Science CrossRef CAS PubMed Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Durif, A. (1995). In Crystal Chemistry of Condensed Phosphates. New York and London: Plenum Press. Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Eswaran, S., Adhikari, A. V., Chowdhury, I. H., Pal, N. K. & Thomas, K. D. (2010). Eur. J. Med. Chem. 45, 3374–3383. Web of Science CSD CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany. Google Scholar
Kaur, K., Jain, M., Reddy, R. P. & Jain, R. (2010). Eur. J. Med. Chem. 45, 3245–3264. Web of Science CrossRef CAS PubMed Google Scholar
Marouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o2613. Web of Science CSD CrossRef IUCr Journals Google Scholar
Schülke, U. & Kayser, R. (1985). Z. Anorg. Allg. Chem. 531, 167–175. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shingalapur, R. V., Hosamani, K. M. & Keri, R. S. (2009). Eur. J. Med. Chem. 44, 4244–4248. Web of Science CrossRef PubMed CAS Google Scholar
Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166. CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The literature reports several cyclohexaphosphates of organic cations and/or inorganic cations (Durif,1995). However, cyclohexaphosphates of mixed cations associating the oxoniumion are still relatively very limited. Up to now, only two examples have been known and structurally characterized (Amri et al., 2008, Marouani et al.,2010). In this work, we report the preparation and the structural investigation of a new organic oxonium cyclohexaphospohate, 2(C12H20N2)2+.2H3O+.P6O186-. 2H2O, (I), where the organic species is the piperazinium group. Piperazine derivatives have wide range of applications in pharmaceuticals as antimalarial (Kaur et al., 2010), anti-tuberculosis (Eswaran et al., 2010), antitumor (Chou et al., 2010), anticancer (Chen et al., 2004) and antiviral (Shingalapur et al., 2009) agents.
The asymmetric unit of (I) includes one-half of the P6O18 ring lying on an inversion center (1/2, 1/2, 0), one 1-(2,3-dimethylphenyl) piperazine-1,4-diium cation, one hydronium cation and one water molecule (Fig.1). As shown in Fig.2, the hydronium cations (OW2) bridge the anionic ring to form 2-D corrugated layers, located at x = 1/2 and parallel to the bc-plane. The result of these interactions is the formation of a 36-membered ring with an R48(36) graph-set motif (Bernstein et al., 1995). The centre of 36-membered ring is situated on a crystallographic centre of symmetry. Inside these layers, the phosphoric rings display a chair conformation with geometrical characteristics that show no significant difference in deviation from those observed in other cyclohexaphosphates having the same internal symmetry -1 (Amri et al., 2009; Abid et al., 2011; Ameur et al., 2013). The anchorage of the water molecule OW1 and the organic cations is made by short and long H-bonds, ensuring the interconnection between layers, and thus giving rise to a three-dimensional network. The benzyl ring (C5—C10) is essentially planar with an r.m.s. deviation of 0.0047 Å and is orientated at an angle of 54.09 (5)° with respect to the piperazine ring (Fig.3). The piperazine (N1–N2/C1–C4) ring adopts a chair conformation [puckering parameters: QT = 0.577 (2) Å, θ = 0.7 (2)° and φ = 326 (12) (Cremer & Pople, 1975)] with atoms N1 and N2 deviating by -0.683 (2) and 0.657 (2) Å from the least-squares plane defined by the remaining atoms in the ring. The interatomic bond lengths (C—C,N—C) and angles in (C—C—C,C—N—C) do not show significant deviation from those reported in a related 1-phenylpiperazine-1,4-diium salt (Ben Gharbia et al., 2005). An extensive network of N—H···O and O—H···O hydrogen-bonding interactions link the components of the structure into a three-dimensional network (Fig. 3).