organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[1-(2,3-di­methyl­phen­yl)piperazine-1,4-diium] bis­­(oxonium) cyclo­hexa­phosphate dihydrate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bPetrochemical Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
*Correspondence e-mail: sonia.abid@fsb.rnu.tn

(Received 24 May 2013; accepted 16 June 2013; online 22 June 2013)

In the title compound, 2C12H20N22+·2H3O+·P6O186−·2H2O, a protonated water mol­ecule bridges the centrosymmetrical anionic P6O18 ring via O—H⋯O hydrogen bonds. The centrosymmetric hydrogen-bonded rings formed by four oxonium cations and four phosphate anions can be described by an R48(36) graph-set motif. The ring motifs are connected by hydrogen bonds into inorganic layers perpendicular to [100]. The 1-(2,3-di­methyl­phen­yl)piperazine-1,4-diium cations are located between the layers, compensating their negative charge and establishing N—H⋯O hydrogen bonds with the O atoms of the anionic framework.

Related literature

For background to the chemistry of cyclo­hexa­phosphate, see: Durif (1995[Durif, A. (1995). In Crystal Chemistry of Condensed Phosphates. New York and London: Plenum Press.]); Amri et al. (2008[Amri, O., Abid, S. & Rzaigui, M. (2008). Phosphorus Sulfur Silicon Relat. Elem. 183, 1996-2005.]); Marouani et al. (2010[Marouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o2613.]). For applications of piperazine derivatives, see: Kaur et al. (2010[Kaur, K., Jain, M., Reddy, R. P. & Jain, R. (2010). Eur. J. Med. Chem. 45, 3245-3264.]); Eswaran et al. (2010[Eswaran, S., Adhikari, A. V., Chowdhury, I. H., Pal, N. K. & Thomas, K. D. (2010). Eur. J. Med. Chem. 45, 3374-3383.]); Chou et al. (2010[Chou, L. C., Tsai, M. T., Hsu, M. H., Wang, S. H., Way, T. D., Huang, C. H., Lin, H. Y., Qian, K., Dong, Y., Lee, K. H., Huang, L. J. & Kuo, S. C. (2010). J. Med. Chem. 53, 8047-8058.]); Chen et al. (2004[Chen, Y. L., Hung, H. M., Lu, C. M., Li, K. C. & Tzeng, C. C. (2004). Bioorg. Med. Chem. 12, 6539-6546.]); Shingalapur et al. (2009[Shingalapur, R. V., Hosamani, K. M. & Keri, R. S. (2009). Eur. J. Med. Chem. 44, 4244-4248.]). For related structures with cyclo­hexa­phosphate rings, see: Abid et al. (2011[Abid, S., Al-Deyab, S. S. & Rzaigui, M. (2011). Acta Cryst. E67, m1549-m1550.]); Ameur et al. (2013[Ameur, I., Abid, S., Al-Deyab, S. S. & Rzaigui, M. (2013). Acta Cryst. E69, m305-m306.]); Amri et al. (2009[Amri, O., Abid, S. & Rzaigui, M. (2009). Acta Cryst. E65, o654.]). For related structures with 1-phenyl­piperazine-1,4-diium salts, see: Marouani et al. (2010[Marouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o2613.]); Ben Gharbia et al. (2005[Ben Gharbia, I., Kefi, R., Rayes, A. & Ben Nasr, C. (2005). Z. Kristallogr. 220, 333-334.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995[Bernstein, J., David, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the synthesis of the precursor, see: Schülke & Kayser (1985[Schülke, U. & Kayser, R. (1985). Z. Anorg. Allg. Chem. 531, 167-175.]).

[Scheme 1]

Experimental

Crystal data
  • 2C12H20N22+·2H3O+·P6O186−·2H2O

  • Mr = 932.50

  • Monoclinic, P 21 /c

  • a = 8.630 (6) Å

  • b = 14.495 (4) Å

  • c = 17.072 (3) Å

  • β = 114.93 (4)°

  • V = 1936.6 (15) Å3

  • Z = 2

  • Ag Kα radiation

  • λ = 0.56085 Å

  • μ = 0.20 mm−1

  • T = 293 K

  • 0.60 × 0.40 × 0.10 mm

Data collection
  • Nonius MACH-3 diffractometer

  • Absorption correction: refined from ΔF (Walker & Stuart, 1983[Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.]) Tmin = 0.892, Tmax = 0.981

  • 12060 measured reflections

  • 9442 independent reflections

  • 5475 reflections with I > 2σ(I)

  • Rint = 0.031

  • 2 standard reflections every 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.152

  • S = 0.99

  • 9442 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
OW1—H1W1⋯O9 0.79 1.84 2.614 (3) 166
OW1—H2W1⋯O2i 0.86 1.97 2.781 (3) 159
OW2—H1W2⋯O8 0.82 1.69 2.487 (2) 167
OW2—H2W2⋯OW1ii 0.80 1.77 2.503 (3) 152
OW2—H3W2⋯O6iii 0.85 1.64 2.481 (2) 178
N1—H1⋯O1 0.91 1.82 2.690 (2) 160
N2—H2A⋯O5iv 0.90 1.87 2.714 (2) 156
N2—H2B⋯O2v 0.90 2.10 2.858 (3) 142
N2—H2B⋯O5v 0.90 2.28 2.916 (3) 127
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z; (v) x+1, y, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The literature reports several cyclohexaphosphates of organic cations and/or inorganic cations (Durif,1995). However, cyclohexaphosphates of mixed cations associating the oxoniumion are still relatively very limited. Up to now, only two examples have been known and structurally characterized (Amri et al., 2008, Marouani et al.,2010). In this work, we report the preparation and the structural investigation of a new organic oxonium cyclohexaphospohate, 2(C12H20N2)2+.2H3O+.P6O186-. 2H2O, (I), where the organic species is the piperazinium group. Piperazine derivatives have wide range of applications in pharmaceuticals as antimalarial (Kaur et al., 2010), anti-tuberculosis (Eswaran et al., 2010), antitumor (Chou et al., 2010), anticancer (Chen et al., 2004) and antiviral (Shingalapur et al., 2009) agents.

The asymmetric unit of (I) includes one-half of the P6O18 ring lying on an inversion center (1/2, 1/2, 0), one 1-(2,3-dimethylphenyl) piperazine-1,4-diium cation, one hydronium cation and one water molecule (Fig.1). As shown in Fig.2, the hydronium cations (OW2) bridge the anionic ring to form 2-D corrugated layers, located at x = 1/2 and parallel to the bc-plane. The result of these interactions is the formation of a 36-membered ring with an R48(36) graph-set motif (Bernstein et al., 1995). The centre of 36-membered ring is situated on a crystallographic centre of symmetry. Inside these layers, the phosphoric rings display a chair conformation with geometrical characteristics that show no significant difference in deviation from those observed in other cyclohexaphosphates having the same internal symmetry -1 (Amri et al., 2009; Abid et al., 2011; Ameur et al., 2013). The anchorage of the water molecule OW1 and the organic cations is made by short and long H-bonds, ensuring the interconnection between layers, and thus giving rise to a three-dimensional network. The benzyl ring (C5—C10) is essentially planar with an r.m.s. deviation of 0.0047 Å and is orientated at an angle of 54.09 (5)° with respect to the piperazine ring (Fig.3). The piperazine (N1–N2/C1–C4) ring adopts a chair conformation [puckering parameters: QT = 0.577 (2) Å, θ = 0.7 (2)° and φ = 326 (12) (Cremer & Pople, 1975)] with atoms N1 and N2 deviating by -0.683 (2) and 0.657 (2) Å from the least-squares plane defined by the remaining atoms in the ring. The interatomic bond lengths (C—C,N—C) and angles in (C—C—C,C—N—C) do not show significant deviation from those reported in a related 1-phenylpiperazine-1,4-diium salt (Ben Gharbia et al., 2005). An extensive network of N—H···O and O—H···O hydrogen-bonding interactions link the components of the structure into a three-dimensional network (Fig. 3).

Related literature top

For background to the chemistry of cyclohexaphosphate, see: Durif (1995); Amri et al. (2008); Marouani et al. (2010). For applications of piperazine derivatives, see: Kaur et al. (2010); Eswaran et al. (2010); Chou et al. (2010); Chen et al.(2004); Shingalapur et al. (2009). For related structures with cyclohexaphosphate rings, see: Abid et al. (2011); Ameur et al. (2013); Amri et al. (2009). For related structures with 1-phenylpiperazine-1,4-diium salts, see: Marouani et al. (2010); Ben Gharbia et al. (2005). For puckering parameters, see: Cremer & Pople (1975). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For the synthesis of the precursor, see: Schülke & Kayser (1985).

Experimental top

Crystals of the title compound were prepared by adding dropwise an ethanolic solution (5 ml) of 1-(2,3)dimethlphenylpiperazine (4 mmol) to an aqueous solution (10 ml) of cyclohexaphosphoric acid (2 mmol). The reaction mixture was stirred at room temperature for few minutes. X-ray quality crystals of the title compound appeared after a few days. The cyclohexaphosphoric acid H6P6O18, was produced from Li6P6O18.6H2O, prepared according to the procedure of Schülke and Kayser (Schülke & Kayser, 1985), through an ion-exchange resin in H-state (Amberlite IR 120).

Refinement top

H1W1, H1W2, H2W1, H2W2 and H3W2 were located by Fourier maps and refined as riding in their as-found relative positions with Uiso(H) = 1.5Ueq(O). All remaining H atoms were placed in their calculated positions and then refined using the riding model with atom-H lengths of 0.93 Å (CH), 0.97 Å (CH2), 0.96 Å (CH3), 0.91 Å (NH) and 0.90 Å (NH3). Uiso were set to 1.2 (CH, CH2), 1.5 (CH3) or 1.20 (NH) times Ueq of the parent atom.

Structure description top

The literature reports several cyclohexaphosphates of organic cations and/or inorganic cations (Durif,1995). However, cyclohexaphosphates of mixed cations associating the oxoniumion are still relatively very limited. Up to now, only two examples have been known and structurally characterized (Amri et al., 2008, Marouani et al.,2010). In this work, we report the preparation and the structural investigation of a new organic oxonium cyclohexaphospohate, 2(C12H20N2)2+.2H3O+.P6O186-. 2H2O, (I), where the organic species is the piperazinium group. Piperazine derivatives have wide range of applications in pharmaceuticals as antimalarial (Kaur et al., 2010), anti-tuberculosis (Eswaran et al., 2010), antitumor (Chou et al., 2010), anticancer (Chen et al., 2004) and antiviral (Shingalapur et al., 2009) agents.

The asymmetric unit of (I) includes one-half of the P6O18 ring lying on an inversion center (1/2, 1/2, 0), one 1-(2,3-dimethylphenyl) piperazine-1,4-diium cation, one hydronium cation and one water molecule (Fig.1). As shown in Fig.2, the hydronium cations (OW2) bridge the anionic ring to form 2-D corrugated layers, located at x = 1/2 and parallel to the bc-plane. The result of these interactions is the formation of a 36-membered ring with an R48(36) graph-set motif (Bernstein et al., 1995). The centre of 36-membered ring is situated on a crystallographic centre of symmetry. Inside these layers, the phosphoric rings display a chair conformation with geometrical characteristics that show no significant difference in deviation from those observed in other cyclohexaphosphates having the same internal symmetry -1 (Amri et al., 2009; Abid et al., 2011; Ameur et al., 2013). The anchorage of the water molecule OW1 and the organic cations is made by short and long H-bonds, ensuring the interconnection between layers, and thus giving rise to a three-dimensional network. The benzyl ring (C5—C10) is essentially planar with an r.m.s. deviation of 0.0047 Å and is orientated at an angle of 54.09 (5)° with respect to the piperazine ring (Fig.3). The piperazine (N1–N2/C1–C4) ring adopts a chair conformation [puckering parameters: QT = 0.577 (2) Å, θ = 0.7 (2)° and φ = 326 (12) (Cremer & Pople, 1975)] with atoms N1 and N2 deviating by -0.683 (2) and 0.657 (2) Å from the least-squares plane defined by the remaining atoms in the ring. The interatomic bond lengths (C—C,N—C) and angles in (C—C—C,C—N—C) do not show significant deviation from those reported in a related 1-phenylpiperazine-1,4-diium salt (Ben Gharbia et al., 2005). An extensive network of N—H···O and O—H···O hydrogen-bonding interactions link the components of the structure into a three-dimensional network (Fig. 3).

For background to the chemistry of cyclohexaphosphate, see: Durif (1995); Amri et al. (2008); Marouani et al. (2010). For applications of piperazine derivatives, see: Kaur et al. (2010); Eswaran et al. (2010); Chou et al. (2010); Chen et al.(2004); Shingalapur et al. (2009). For related structures with cyclohexaphosphate rings, see: Abid et al. (2011); Ameur et al. (2013); Amri et al. (2009). For related structures with 1-phenylpiperazine-1,4-diium salts, see: Marouani et al. (2010); Ben Gharbia et al. (2005). For puckering parameters, see: Cremer & Pople (1975). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For the synthesis of the precursor, see: Schülke & Kayser (1985).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 50% probability displacement ellipsoids. Dashed lines indicate O—H···O and N—H···O hydrogen bonds.
[Figure 2] Fig. 2. Fig, 2. Projection along the a axis, of an inorganic layer in the structure of (I). The dashed circles highlight the R48(36) centrosymmetric motifs.
[Figure 3] Fig. 3. (a) The three-dimensional network of (I), projected along the aaxis. (b) Relative orientation of the rings aryl and piperazine in the 1-(2,3-Dimethylphenyl)piperazine-1,4-diium cation.
Bis[1-(2,3-dimethylphenyl)piperazine-1,4-diium] bis(oxonium) cyclohexaphosphate dihydrate top
Crystal data top
2C12H20N22+·2H3O+·P6O186·2H2OF(000) = 976
Mr = 932.50Dx = 1.599 Mg m3
Monoclinic, P21/cAg Kα radiation, λ = 0.56085 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.630 (6) Åθ = 9.3–10.5°
b = 14.495 (4) ŵ = 0.20 mm1
c = 17.072 (3) ÅT = 293 K
β = 114.93 (4)°Prism, colourless
V = 1936.6 (15) Å30.60 × 0.40 × 0.10 mm
Z = 2
Data collection top
Nonius MACH-3
diffractometer
5475 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 28.0°, θmin = 2.1°
non–profiled ω scansh = 1414
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
k = 242
Tmin = 0.892, Tmax = 0.981l = 2816
12060 measured reflections2 standard reflections every 120 min
9442 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0763P)2]
where P = (Fo2 + 2Fc2)/3
9442 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.67 e Å3
0 constraints
Crystal data top
2C12H20N22+·2H3O+·P6O186·2H2OV = 1936.6 (15) Å3
Mr = 932.50Z = 2
Monoclinic, P21/cAg Kα radiation, λ = 0.56085 Å
a = 8.630 (6) ŵ = 0.20 mm1
b = 14.495 (4) ÅT = 293 K
c = 17.072 (3) Å0.60 × 0.40 × 0.10 mm
β = 114.93 (4)°
Data collection top
Nonius MACH-3
diffractometer
5475 reflections with I > 2σ(I)
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
Rint = 0.031
Tmin = 0.892, Tmax = 0.9812 standard reflections every 120 min
12060 measured reflections intensity decay: none
9442 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 0.99Δρmax = 0.87 e Å3
9442 reflectionsΔρmin = 0.67 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.31249 (5)0.34945 (3)0.07303 (3)0.02004 (9)
P20.37416 (6)0.39535 (3)0.10432 (3)0.02228 (10)
P30.69777 (6)0.49655 (3)0.18679 (3)0.02396 (10)
O10.42651 (16)0.30040 (10)0.10364 (9)0.0287 (3)
O20.14736 (17)0.30794 (10)0.08650 (11)0.0345 (3)
O30.2778 (2)0.45146 (10)0.11034 (11)0.0385 (4)
O40.42266 (17)0.36921 (13)0.02683 (9)0.0403 (4)
O50.19648 (16)0.42960 (10)0.07175 (10)0.0321 (3)
O60.4264 (2)0.31760 (10)0.16614 (10)0.0351 (3)
O70.49427 (17)0.48166 (9)0.14480 (10)0.0325 (3)
O80.7354 (2)0.55904 (12)0.26036 (10)0.0448 (4)
O90.7852 (2)0.40717 (10)0.19877 (12)0.0419 (4)
OW11.0380 (3)0.2895 (2)0.25912 (15)0.0936 (10)
H1W10.97120.33080.24740.140*
H2W11.07900.27340.31230.140*
OW20.79099 (19)0.72073 (11)0.31371 (10)0.0372 (3)
H1W20.75810.67060.29120.056*
H2W20.81820.73600.27640.056*
H3W20.71840.75470.32090.056*
C10.8112 (2)0.37054 (13)0.00581 (13)0.0295 (4)
H1A0.69350.38970.01210.035*
H1B0.88240.40740.05540.035*
C20.8290 (3)0.26990 (14)0.03063 (13)0.0302 (4)
H2C0.94840.25230.05320.036*
H2D0.79070.26050.07590.036*
C30.7820 (3)0.22745 (13)0.11665 (13)0.0282 (4)
H3A0.71340.19040.16670.034*
H3B0.90050.20930.09760.034*
C40.7625 (3)0.32817 (13)0.14143 (14)0.0299 (4)
H4A0.80120.33840.18650.036*
H4B0.64290.34540.16400.036*
C50.7366 (2)0.10980 (12)0.02396 (12)0.0258 (3)
C60.6060 (2)0.05226 (13)0.07716 (12)0.0265 (3)
C70.6213 (3)0.04254 (14)0.05737 (14)0.0335 (4)
C80.7617 (3)0.07472 (15)0.01414 (17)0.0421 (5)
H80.77080.13740.02700.051*
C90.8877 (3)0.01554 (16)0.06639 (17)0.0433 (5)
H90.98010.03830.11440.052*
C100.8771 (3)0.07749 (16)0.04755 (15)0.0364 (5)
H100.96230.11780.08210.044*
C110.4528 (3)0.08562 (15)0.15409 (13)0.0354 (4)
H130.44470.15150.15130.053*
H110.35170.05780.15440.053*
H140.46390.06900.20590.053*
C120.4877 (4)0.10878 (16)0.11266 (19)0.0477 (6)
H1220.37700.08660.12100.072*
H1210.50770.16800.08500.072*
H1230.49240.11440.16760.072*
N10.72640 (18)0.20991 (10)0.04534 (10)0.0227 (3)
H10.61500.22730.06490.027*
N20.8629 (2)0.38610 (11)0.06582 (12)0.0298 (3)
H2A0.84760.44590.08130.036*
H2B0.97460.37290.04750.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01473 (16)0.02149 (19)0.0252 (2)0.00054 (15)0.00971 (15)0.00045 (17)
P20.02042 (19)0.02102 (19)0.0271 (2)0.00034 (15)0.01164 (17)0.00057 (17)
P30.02164 (19)0.02002 (19)0.0283 (2)0.00048 (16)0.00867 (17)0.00217 (17)
O10.0217 (6)0.0296 (7)0.0363 (7)0.0055 (5)0.0137 (5)0.0021 (6)
O20.0221 (6)0.0335 (7)0.0522 (9)0.0093 (5)0.0197 (6)0.0100 (7)
O30.0558 (10)0.0228 (6)0.0560 (10)0.0102 (6)0.0420 (8)0.0084 (7)
O40.0196 (6)0.0758 (12)0.0257 (7)0.0018 (7)0.0099 (5)0.0072 (8)
O50.0205 (6)0.0297 (7)0.0475 (8)0.0007 (5)0.0157 (6)0.0001 (6)
O60.0388 (8)0.0270 (7)0.0420 (8)0.0021 (6)0.0195 (7)0.0086 (6)
O70.0224 (6)0.0209 (6)0.0518 (9)0.0013 (5)0.0132 (6)0.0039 (6)
O80.0574 (10)0.0368 (9)0.0331 (8)0.0078 (8)0.0122 (7)0.0075 (7)
O90.0328 (8)0.0290 (7)0.0603 (10)0.0119 (6)0.0160 (7)0.0105 (7)
OW10.0987 (18)0.134 (2)0.0705 (14)0.0923 (17)0.0579 (14)0.0573 (15)
OW20.0349 (7)0.0385 (8)0.0389 (8)0.0028 (6)0.0162 (7)0.0106 (7)
C10.0236 (8)0.0264 (8)0.0393 (10)0.0026 (7)0.0139 (8)0.0055 (8)
C20.0283 (9)0.0289 (9)0.0304 (9)0.0021 (7)0.0093 (7)0.0018 (8)
C30.0316 (9)0.0249 (8)0.0363 (10)0.0015 (7)0.0223 (8)0.0021 (7)
C40.0297 (9)0.0280 (9)0.0369 (10)0.0011 (7)0.0188 (8)0.0048 (8)
C50.0272 (8)0.0216 (8)0.0324 (9)0.0038 (6)0.0164 (7)0.0035 (7)
C60.0323 (9)0.0245 (8)0.0299 (9)0.0023 (7)0.0200 (7)0.0014 (7)
C70.0459 (11)0.0222 (8)0.0442 (11)0.0000 (8)0.0305 (10)0.0008 (8)
C80.0526 (14)0.0252 (9)0.0598 (15)0.0097 (9)0.0346 (12)0.0128 (10)
C90.0426 (12)0.0339 (11)0.0497 (13)0.0126 (9)0.0158 (10)0.0146 (10)
C100.0310 (10)0.0325 (10)0.0413 (11)0.0075 (8)0.0110 (9)0.0076 (9)
C110.0364 (10)0.0329 (10)0.0335 (10)0.0052 (8)0.0115 (8)0.0028 (8)
C120.0568 (15)0.0290 (10)0.0662 (17)0.0098 (10)0.0346 (13)0.0116 (11)
N10.0199 (6)0.0212 (6)0.0289 (7)0.0015 (5)0.0120 (6)0.0014 (6)
N20.0210 (6)0.0226 (7)0.0483 (10)0.0014 (6)0.0170 (7)0.0031 (7)
Geometric parameters (Å, º) top
P1—O21.4729 (16)C3—H3A0.9700
P1—O11.4766 (15)C3—H3B0.9700
P1—O31.5878 (15)C4—N21.476 (3)
P1—O41.5894 (16)C4—H4A0.9700
P2—O61.4785 (15)C4—H4B0.9700
P2—O51.4792 (17)C5—C61.388 (3)
P2—O71.5855 (15)C5—C101.390 (3)
P2—O41.5924 (15)C5—N11.490 (2)
P3—O81.4696 (17)C6—C71.408 (3)
P3—O91.4696 (15)C6—C111.497 (3)
P3—O3i1.5964 (15)C7—C81.389 (3)
P3—O71.6073 (19)C7—C121.491 (3)
O3—P3i1.5964 (15)C8—C91.377 (4)
OW1—H1W10.7950C8—H80.9300
OW1—H2W10.8565C9—C101.380 (3)
OW2—H1W20.8154C9—H90.9300
OW2—H2W20.7977C10—H100.9300
OW2—H3W20.8458C11—H130.9600
C1—N21.485 (3)C11—H110.9600
C1—C21.509 (3)C11—H140.9600
C1—H1A0.9700C12—H1220.9600
C1—H1B0.9700C12—H1210.9600
C2—N11.501 (2)C12—H1230.9600
C2—H2C0.9700N1—H10.9100
C2—H2D0.9700N2—H2A0.9000
C3—N11.506 (2)N2—H2B0.9000
C3—C41.509 (3)
O2—P1—O1119.56 (9)N2—C4—H4B109.6
O2—P1—O3108.13 (9)C3—C4—H4B109.6
O1—P1—O3110.35 (8)H4A—C4—H4B108.1
O2—P1—O4110.06 (9)C6—C5—C10122.63 (18)
O1—P1—O4106.25 (9)C6—C5—N1118.49 (16)
O3—P1—O4100.89 (10)C10—C5—N1118.88 (17)
O6—P2—O5118.69 (9)C5—C6—C7117.46 (18)
O6—P2—O7110.10 (9)C5—C6—C11123.56 (17)
O5—P2—O7106.42 (9)C7—C6—C11118.97 (18)
O6—P2—O4107.69 (10)C8—C7—C6119.8 (2)
O5—P2—O4111.19 (9)C8—C7—C12119.7 (2)
O7—P2—O4101.38 (9)C6—C7—C12120.5 (2)
O8—P3—O9120.58 (11)C9—C8—C7121.2 (2)
O8—P3—O3i110.49 (10)C9—C8—H8119.4
O9—P3—O3i107.03 (9)C7—C8—H8119.4
O8—P3—O7105.68 (10)C8—C9—C10120.0 (2)
O9—P3—O7110.14 (9)C8—C9—H9120.0
O3i—P3—O7101.25 (9)C10—C9—H9120.0
P1—O3—P3i134.42 (10)C9—C10—C5118.8 (2)
P1—O4—P2133.32 (10)C9—C10—H10120.6
P2—O7—P3133.71 (9)C5—C10—H10120.6
H1W1—OW1—H2W1113.9C6—C11—H13109.5
H1W2—OW2—H2W291.8C6—C11—H11109.5
H1W2—OW2—H3W2117.1H13—C11—H11109.5
H2W2—OW2—H3W2116.2C6—C11—H14109.5
N2—C1—C2110.34 (16)H13—C11—H14109.5
N2—C1—H1A109.6H11—C11—H14109.5
C2—C1—H1A109.6C7—C12—H122109.5
N2—C1—H1B109.6C7—C12—H121109.5
C2—C1—H1B109.6H122—C12—H121109.5
H1A—C1—H1B108.1C7—C12—H123109.5
N1—C2—C1111.36 (16)H122—C12—H123109.5
N1—C2—H2C109.4H121—C12—H123109.5
C1—C2—H2C109.4C5—N1—C2113.59 (15)
N1—C2—H2D109.4C5—N1—C3110.88 (14)
C1—C2—H2D109.4C2—N1—C3109.11 (14)
H2C—C2—H2D108.0C5—N1—H1107.7
N1—C3—C4110.72 (15)C2—N1—H1107.7
N1—C3—H3A109.5C3—N1—H1107.7
C4—C3—H3A109.5C4—N2—C1111.35 (15)
N1—C3—H3B109.5C4—N2—H2A109.4
C4—C3—H3B109.5C1—N2—H2A109.4
H3A—C3—H3B108.1C4—N2—H2B109.4
N2—C4—C3110.49 (16)C1—N2—H2B109.4
N2—C4—H4A109.6H2A—N2—H2B108.0
C3—C4—H4A109.6
O2—P1—O3—P3i116.25 (16)C5—C6—C7—C81.2 (3)
O1—P1—O3—P3i16.22 (19)C11—C6—C7—C8179.47 (19)
O4—P1—O3—P3i128.25 (16)C5—C6—C7—C12178.77 (18)
O2—P1—O4—P231.2 (2)C11—C6—C7—C120.6 (3)
O1—P1—O4—P2162.03 (16)C6—C7—C8—C90.2 (3)
O3—P1—O4—P282.82 (18)C12—C7—C8—C9179.7 (2)
O6—P2—O4—P1114.23 (17)C7—C8—C9—C100.8 (4)
O5—P2—O4—P117.4 (2)C8—C9—C10—C50.8 (4)
O7—P2—O4—P1130.16 (17)C6—C5—C10—C90.2 (3)
O6—P2—O7—P353.82 (17)N1—C5—C10—C9178.9 (2)
O5—P2—O7—P3176.32 (13)C6—C5—N1—C2157.24 (16)
O4—P2—O7—P359.98 (16)C10—C5—N1—C223.6 (2)
O8—P3—O7—P2140.97 (14)C6—C5—N1—C379.5 (2)
O9—P3—O7—P29.23 (18)C10—C5—N1—C399.7 (2)
O3i—P3—O7—P2103.78 (15)C1—C2—N1—C5178.79 (15)
N2—C1—C2—N156.9 (2)C1—C2—N1—C357.0 (2)
N1—C3—C4—N258.0 (2)C4—C3—N1—C5176.94 (15)
C10—C5—C6—C71.2 (3)C4—C3—N1—C257.2 (2)
N1—C5—C6—C7177.91 (16)C3—C4—N2—C157.5 (2)
C10—C5—C6—C11179.48 (19)C2—C1—N2—C456.8 (2)
N1—C5—C6—C111.4 (3)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—H1W1···O90.791.842.614 (3)166
OW1—H2W1···O2ii0.861.972.781 (3)159
OW2—H1W2···O80.821.692.487 (2)167
OW2—H2W2···OW1iii0.801.772.503 (3)152
OW2—H3W2···O6iv0.851.642.481 (2)178
N1—H1···O10.911.822.690 (2)160
N2—H2A···O5i0.901.872.714 (2)156
N2—H2B···O2v0.902.102.858 (3)142
N2—H2B···O5v0.902.282.916 (3)127
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x+2, y+1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula2C12H20N22+·2H3O+·P6O186·2H2O
Mr932.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.630 (6), 14.495 (4), 17.072 (3)
β (°) 114.93 (4)
V3)1936.6 (15)
Z2
Radiation typeAg Kα, λ = 0.56085 Å
µ (mm1)0.20
Crystal size (mm)0.60 × 0.40 × 0.10
Data collection
DiffractometerNonius MACH-3
Absorption correctionPart of the refinement model (ΔF)
(Walker & Stuart, 1983)
Tmin, Tmax0.892, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
12060, 9442, 5475
Rint0.031
(sin θ/λ)max1)0.836
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.152, 0.99
No. of reflections9442
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.67

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—H1W1···O90.791.842.614 (3)166.0
OW1—H2W1···O2i0.861.972.781 (3)158.8
OW2—H1W2···O80.821.692.487 (2)166.8
OW2—H2W2···OW1ii0.801.772.503 (3)151.5
OW2—H3W2···O6iii0.851.642.481 (2)178.2
N1—H1···O10.911.822.690 (2)160.1
N2—H2A···O5iv0.901.872.714 (2)156.3
N2—H2B···O2v0.902.102.858 (3)141.9
N2—H2B···O5v0.902.282.916 (3)127.4
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+1, z; (v) x+1, y, z.
 

Acknowledgements

This work was supported by the Tunisian Ministry of H. E. Sc. R. and the Deanship of Scientific Research at King Saud University (research group project No. RGP-VPP-089).

References

First citationAbid, S., Al-Deyab, S. S. & Rzaigui, M. (2011). Acta Cryst. E67, m1549–m1550.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAmeur, I., Abid, S., Al-Deyab, S. S. & Rzaigui, M. (2013). Acta Cryst. E69, m305–m306.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationAmri, O., Abid, S. & Rzaigui, M. (2008). Phosphorus Sulfur Silicon Relat. Elem. 183, 1996–2005.  Web of Science CSD CrossRef Google Scholar
First citationAmri, O., Abid, S. & Rzaigui, M. (2009). Acta Cryst. E65, o654.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBen Gharbia, I., Kefi, R., Rayes, A. & Ben Nasr, C. (2005). Z. Kristallogr. 220, 333–334.  Google Scholar
First citationBernstein, J., David, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationChen, Y. L., Hung, H. M., Lu, C. M., Li, K. C. & Tzeng, C. C. (2004). Bioorg. Med. Chem. 12, 6539–6546.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChou, L. C., Tsai, M. T., Hsu, M. H., Wang, S. H., Way, T. D., Huang, C. H., Lin, H. Y., Qian, K., Dong, Y., Lee, K. H., Huang, L. J. & Kuo, S. C. (2010). J. Med. Chem. 53, 8047–8058.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDurif, A. (1995). In Crystal Chemistry of Condensed Phosphates. New York and London: Plenum Press.  Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationEswaran, S., Adhikari, A. V., Chowdhury, I. H., Pal, N. K. & Thomas, K. D. (2010). Eur. J. Med. Chem. 45, 3374–3383.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKaur, K., Jain, M., Reddy, R. P. & Jain, R. (2010). Eur. J. Med. Chem. 45, 3245–3264.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMarouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o2613.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchülke, U. & Kayser, R. (1985). Z. Anorg. Allg. Chem. 531, 167–175.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShingalapur, R. V., Hosamani, K. M. & Keri, R. S. (2009). Eur. J. Med. Chem. 44, 4244–4248.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWalker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.  CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds