organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-5-(4-nitro­benzyl­­idene)-2-oxo-2,5-di­hydro-1H-pyrrole-3-carbo­nitrile

aCallaghan Innovation Research Limited, PO Box 31-310, Lower Hutt, New Zealand
*Correspondence e-mail: g.gainsford@irl.cri.nz

(Received 7 June 2013; accepted 19 June 2013; online 26 June 2013)

Mol­ecules of the potential non-linear optical title compound, C13H9N3O3, form dimeric stacks of mol­ecules along the a axis cross-linked around inversion centers by N—H⋯O hydrogen bonds and weak (phen­yl)C—H⋯O inter­molecular inter­actions, forming a `collaboration' of R22(8) and R22(16) ring motifs. The mol­ecules are then further linked by weak C—H⋯O and C—H⋯N inter­actions into sheets parallel to (121).

Related literature

For hydrogen-bonding motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For chemical synthesis literature, see: Shrestha-Dawadi & Lugtenburg (2007[Shrestha-Dawadi, P. B. & Lugtenburg, J. (2007). Eur. J. Org. Chem. pp. 1294-1300.]). For background literature, see: Bert et al. (2006[Bert, M., Maarten, K., Gitte, V. B., Mario, S. & Wim, D. (2006). Tetrahedron, 62, 6018-6028.]); Colin et al. (2002[Colin, J. H. M., Ryan, G., David, M. S., Philip, L., Alexandra, M. Z. S. & Elizabeth, J. M. (2002). Tetrahedron, 58, 5547-5565.]); Hasan et al. (2012[Hasan, Z.-B., Mehdi, M., Khadijeh, H. & Maryam, G. (2012). J. Org. Chem. 77, 5808-5812.]); Stephen et al. (2011[Stephen, L., Carson, J. B., Hiroyuki, M., Rocio, P. O., Antonio, F., Samuel, I. S. & Tobin, J. M. (2011). J. Am. Chem. Soc. 133, 8142-8145.]); Tarek et al. (2013[Tarek, A., Stanislav, L. Jr, Antonín, L., Jan, V., Zdenek, E., Ales, R., Zdenka, P. & Radim, H. (2013). Dyes Pigments, 98, 530-539.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9N3O3

  • Mr = 255.23

  • Monoclinic, P 21 /c

  • a = 3.7456 (2) Å

  • b = 14.9193 (9) Å

  • c = 21.6077 (17) Å

  • β = 92.273 (7)°

  • V = 1206.52 (14) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.86 mm−1

  • T = 120 K

  • 0.44 × 0.05 × 0.03 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.633, Tmax = 1.000

  • 7096 measured reflections

  • 2283 independent reflections

  • 1941 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.139

  • S = 1.05

  • 2283 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 1.98 2.8256 (18) 159
C9—H9⋯O1ii 0.95 2.43 3.336 (2) 159
C12—H12⋯N2iii 0.95 2.59 3.374 (3) 141
C13—H13⋯O2iv 0.95 2.58 3.372 (2) 141
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Oxopyrroles and their analogues are the key intermediate for many biologically active compounds (Shrestha-Dawadi & Lugtenburg, 2007) and pigments (Colin et al., 2002). Many studies have been dedicated to the synthesis and spectroscopic characterization of oxopyrroles (Tarek et al., 2013; Hasan et al. 2012; Bert et al., 2006) to improve their features. Structural modification has been carried out on the oxypyrrole ring through the introduction of a thiophene ring (Stephen et al., 2011) as an efficient donor and as a precursor for use in organic solar cells. Structural modification via the incorporation of an electron-withdrawing group has not been reported.

As a part of our efforts to develop donor-π-acceptor molecules for non-linear optical devices, we have synthesized the title compound in which the oxopyrrole nitrile analogue acts as donor and the nitro group is the acceptor linked by a phenyl-methylene bridge. The molecule crystallizes with one independent molecule in the asymmetric unit (Fig. 1). The 1H-pyrole ring is planar with maximum deviation out of plane of 0.018 (2) Å for C2; it makes an angle of 33.99 (9)° with the planar phenyl ring (C8–C13). The nitro group is further twisted by 5.24 (10)° from the latter ring in response to a hydrogen bond interaction with O2. There are few related structures reported and none with linking 5- and 6-membered rings (Allen, 2002; CSD Version 5.34, with Nov 2012 updates).

The molecules form dimers utilizing N—H···O hydrogen bonds about inversion centers of symmetry, packing into approximate planes parallel to the (1,-2,0) plane (Fig. 2). This interaction is further stabilized by weak phenyl(C9)–H ···O1 intermolecular interactions between the adjacent dimers, producing an overall packing "collaboration" of R22(8) and R22(16) ring motifs (Bernstein et al., 1995). Other three-dimensional cross-links are provided by chain interactions (not shown in Fig. 2) with weak phenylC–H···O and phenylC–H···N intermolecular contacts (Table 1), linling the molecules into sheets parallel to the (121) plane. .

Related literature top

For hydrogen-bonding motifs, see: Bernstein et al. (1995). For chemical synthesis literature, see: Shrestha-Dawadi & Lugtenburg (2007). For background literature, see: Bert et al. (2006); Colin et al. (2002); Hasan et al. (2012); Stephen et al. (2011); Tarek et al. (2013). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

A mixture of 3-cyano-4-methyl-3-pyrrolin-2-one (Shrestha-Dawadi & Lugtenburg, 2007) (1.0 g), 4-nitro benzaldehyde (1.6 g), sodium acetate (1.8 g) and acetic acid (50 ml) was refluxed for 3 h. under an inert atmosphere. The mixture was stirred overnight, and cooled to 0° C. The resultant precipitate was collected by filtration and washed with cold hexanes to yield the pure chromophore 4-methyl-5-(4-nitro-benzylidene)-2-oxo-2,5-dihydro-1H-pyrrole- 3-carbonitrile (1.2 g, 57%) as a yellow solid. Crystals were grown by slow evaporation of an acetone solution. m.p. 277–80° C.

Refinement top

Eight high angle outlier reflection identified by large (Fc2-Fo2)/σ(Fo2) ratios (>4) were OMITted from the dataset.

The methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å) with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the adjacent C—C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.95 Å and N1—H 0 0.88 Å and with Uiso(H) = 1.2Ueq(C,N).

Structure description top

Oxopyrroles and their analogues are the key intermediate for many biologically active compounds (Shrestha-Dawadi & Lugtenburg, 2007) and pigments (Colin et al., 2002). Many studies have been dedicated to the synthesis and spectroscopic characterization of oxopyrroles (Tarek et al., 2013; Hasan et al. 2012; Bert et al., 2006) to improve their features. Structural modification has been carried out on the oxypyrrole ring through the introduction of a thiophene ring (Stephen et al., 2011) as an efficient donor and as a precursor for use in organic solar cells. Structural modification via the incorporation of an electron-withdrawing group has not been reported.

As a part of our efforts to develop donor-π-acceptor molecules for non-linear optical devices, we have synthesized the title compound in which the oxopyrrole nitrile analogue acts as donor and the nitro group is the acceptor linked by a phenyl-methylene bridge. The molecule crystallizes with one independent molecule in the asymmetric unit (Fig. 1). The 1H-pyrole ring is planar with maximum deviation out of plane of 0.018 (2) Å for C2; it makes an angle of 33.99 (9)° with the planar phenyl ring (C8–C13). The nitro group is further twisted by 5.24 (10)° from the latter ring in response to a hydrogen bond interaction with O2. There are few related structures reported and none with linking 5- and 6-membered rings (Allen, 2002; CSD Version 5.34, with Nov 2012 updates).

The molecules form dimers utilizing N—H···O hydrogen bonds about inversion centers of symmetry, packing into approximate planes parallel to the (1,-2,0) plane (Fig. 2). This interaction is further stabilized by weak phenyl(C9)–H ···O1 intermolecular interactions between the adjacent dimers, producing an overall packing "collaboration" of R22(8) and R22(16) ring motifs (Bernstein et al., 1995). Other three-dimensional cross-links are provided by chain interactions (not shown in Fig. 2) with weak phenylC–H···O and phenylC–H···N intermolecular contacts (Table 1), linling the molecules into sheets parallel to the (121) plane. .

For hydrogen-bonding motifs, see: Bernstein et al. (1995). For chemical synthesis literature, see: Shrestha-Dawadi & Lugtenburg (2007). For background literature, see: Bert et al. (2006); Colin et al. (2002); Hasan et al. (2012); Stephen et al. (2011); Tarek et al. (2013). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: ORTEP-3 in WinGX (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Asymmetric unit atoms for (I) with ellipsoid probability of 50% for non-hydrogen atoms.
[Figure 2] Fig. 2. Packing diagram of (I) viewed along the a axis. Intermolecular contacts are shown as blue dotted lines. Symmetry: (i) -1 + x, y, z (ii) 1 - x, 1 - y, 1 - z (iii) 1 - x, -1/2 + y, 1/2 - z.
4-Methyl-5-(4-nitrobenzylidene)-2-oxo-2,5-dihydro-1H-pyrrole-3-carbonitrile top
Crystal data top
C13H9N3O3Z = 4
Mr = 255.23F(000) = 528
Monoclinic, P21/cDx = 1.405 Mg m3
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54184 Å
a = 3.7456 (2) ŵ = 0.86 mm1
b = 14.9193 (9) ÅT = 120 K
c = 21.6077 (17) ÅNeedle, yellow
β = 92.273 (7)°0.44 × 0.05 × 0.03 mm
V = 1206.52 (14) Å3
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
2283 independent reflections
Radiation source: fine-focus sealed tube1941 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 10.6501 pixels mm-1θmax = 70.0°, θmin = 3.6°
ω scansh = 44
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1718
Tmin = 0.633, Tmax = 1.000l = 2618
7096 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0824P)2 + 0.3085P]
where P = (Fo2 + 2Fc2)/3
2283 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C13H9N3O3V = 1206.52 (14) Å3
Mr = 255.23Z = 4
Monoclinic, P21/cCu Kα radiation
a = 3.7456 (2) ŵ = 0.86 mm1
b = 14.9193 (9) ÅT = 120 K
c = 21.6077 (17) Å0.44 × 0.05 × 0.03 mm
β = 92.273 (7)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
2283 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1941 reflections with I > 2σ(I)
Tmin = 0.633, Tmax = 1.000Rint = 0.042
7096 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.05Δρmax = 0.25 e Å3
2283 reflectionsΔρmin = 0.25 e Å3
173 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

(MNa)+ m/z 278.0540; C13H9N3O3 requires (MNa)+ m/z 278.0542). 1H NMR (500 MHz, d6-DMSO) 2.46 (s, 3H, CH3), 6.84 (s, 1H, CH), 7.88 (d, 2H, J = 4.9 Hz, ArH), 8.25 (d, 2H, J = 4.9 Hz, ArH), 10.91 (s, 1H, NH). 13C NMR (75 MHz, d6 –DMSO) 12.3, 105.9, 112.7, 113.4, 123.9, 130.9, 138.2, 139.9, 146.7, 161.7, 166.9.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8538 (3)0.44087 (8)0.56486 (6)0.0277 (3)
O20.9729 (4)0.64031 (9)0.18759 (7)0.0452 (4)
O31.1572 (4)0.52825 (10)0.13455 (7)0.0453 (4)
N10.7576 (4)0.40243 (9)0.46186 (7)0.0243 (3)
H10.84910.45020.44460.029*
N20.3889 (4)0.24706 (12)0.63898 (9)0.0403 (4)
N31.0168 (4)0.55927 (10)0.17993 (8)0.0323 (4)
C10.7387 (4)0.39026 (11)0.52376 (8)0.0236 (4)
C20.5581 (4)0.30283 (11)0.53143 (9)0.0253 (4)
C30.4940 (4)0.26523 (11)0.47533 (8)0.0252 (4)
C40.6126 (4)0.32905 (11)0.42854 (8)0.0246 (4)
C50.4693 (5)0.27012 (11)0.59072 (9)0.0283 (4)
C60.3332 (5)0.17567 (11)0.46080 (9)0.0296 (4)
H6A0.14070.18250.42910.044*
H6B0.23620.15010.49840.044*
H6C0.51710.13560.44540.044*
C70.5892 (4)0.31806 (11)0.36711 (8)0.0264 (4)
H70.49450.26240.35270.032*
C80.6925 (4)0.38178 (11)0.31925 (8)0.0256 (4)
C90.6636 (4)0.47494 (11)0.32720 (9)0.0268 (4)
H90.57240.49810.36440.032*
C100.7663 (5)0.53323 (11)0.28161 (9)0.0283 (4)
H100.74630.59620.28690.034*
C110.8990 (4)0.49794 (12)0.22809 (8)0.0276 (4)
C120.9235 (5)0.40627 (12)0.21750 (9)0.0287 (4)
H121.01160.38380.17990.034*
C130.8157 (5)0.34892 (12)0.26339 (8)0.0285 (4)
H130.82550.28600.25690.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0363 (6)0.0202 (6)0.0267 (7)0.0029 (5)0.0031 (5)0.0007 (5)
O20.0724 (10)0.0219 (7)0.0415 (9)0.0063 (6)0.0049 (7)0.0049 (6)
O30.0579 (9)0.0402 (8)0.0392 (9)0.0065 (7)0.0202 (7)0.0088 (7)
N10.0314 (7)0.0158 (7)0.0258 (8)0.0023 (5)0.0032 (6)0.0007 (6)
N20.0449 (9)0.0378 (9)0.0387 (11)0.0049 (7)0.0067 (8)0.0095 (8)
N30.0379 (8)0.0273 (8)0.0315 (9)0.0017 (6)0.0015 (7)0.0049 (7)
C10.0264 (7)0.0178 (8)0.0268 (9)0.0020 (6)0.0036 (6)0.0007 (7)
C20.0278 (8)0.0184 (8)0.0300 (10)0.0014 (6)0.0054 (7)0.0025 (7)
C30.0268 (8)0.0179 (8)0.0313 (10)0.0005 (6)0.0048 (7)0.0010 (7)
C40.0283 (8)0.0168 (8)0.0289 (9)0.0012 (6)0.0045 (7)0.0001 (7)
C50.0311 (8)0.0196 (8)0.0342 (11)0.0010 (6)0.0023 (7)0.0024 (7)
C60.0348 (8)0.0188 (8)0.0356 (10)0.0040 (7)0.0060 (7)0.0009 (7)
C70.0296 (8)0.0179 (8)0.0320 (10)0.0005 (6)0.0041 (7)0.0014 (7)
C80.0256 (7)0.0230 (8)0.0280 (10)0.0008 (6)0.0003 (7)0.0004 (7)
C90.0285 (8)0.0231 (9)0.0290 (10)0.0015 (6)0.0038 (7)0.0033 (7)
C100.0332 (8)0.0197 (8)0.0318 (10)0.0006 (7)0.0000 (7)0.0001 (7)
C110.0289 (8)0.0253 (9)0.0285 (10)0.0012 (7)0.0014 (7)0.0035 (8)
C120.0336 (8)0.0256 (9)0.0272 (10)0.0031 (7)0.0043 (7)0.0007 (7)
C130.0365 (9)0.0206 (8)0.0287 (10)0.0018 (7)0.0027 (7)0.0019 (7)
Geometric parameters (Å, º) top
O1—C11.231 (2)C6—H6B0.9800
O2—N31.232 (2)C6—H6C0.9800
O3—N31.222 (2)C7—C81.468 (2)
N1—C11.354 (2)C7—H70.9500
N1—C41.407 (2)C8—C131.398 (2)
N1—H10.8800C8—C91.405 (2)
N2—C51.149 (3)C9—C101.380 (2)
N3—C111.467 (2)C9—H90.9500
C1—C21.482 (2)C10—C111.381 (3)
C2—C31.349 (3)C10—H100.9500
C2—C51.423 (3)C11—C121.390 (2)
C3—C41.470 (2)C12—C131.382 (3)
C3—C61.494 (2)C12—H120.9500
C4—C71.337 (3)C13—H130.9500
C6—H6A0.9800
C1—N1—C4111.50 (14)H6A—C6—H6C109.5
C1—N1—H1124.3H6B—C6—H6C109.5
C4—N1—H1124.3C4—C7—C8127.68 (16)
O3—N3—O2122.93 (16)C4—C7—H7116.2
O3—N3—C11118.96 (15)C8—C7—H7116.2
O2—N3—C11118.11 (16)C13—C8—C9118.82 (16)
O1—C1—N1126.85 (15)C13—C8—C7119.10 (15)
O1—C1—C2127.44 (16)C9—C8—C7122.06 (16)
N1—C1—C2105.70 (15)C10—C9—C8120.73 (16)
C3—C2—C5128.83 (16)C10—C9—H9119.6
C3—C2—C1109.36 (15)C8—C9—H9119.6
C5—C2—C1121.80 (16)C9—C10—C11118.51 (16)
C2—C3—C4107.50 (15)C9—C10—H10120.7
C2—C3—C6128.09 (16)C11—C10—H10120.7
C4—C3—C6124.41 (16)C10—C11—C12122.76 (16)
C7—C4—N1127.73 (15)C10—C11—N3118.99 (16)
C7—C4—C3126.41 (16)C12—C11—N3118.24 (16)
N1—C4—C3105.85 (15)C13—C12—C11117.89 (16)
N2—C5—C2176.98 (19)C13—C12—H12121.1
C3—C6—H6A109.5C11—C12—H12121.1
C3—C6—H6B109.5C12—C13—C8121.21 (16)
H6A—C6—H6B109.5C12—C13—H13119.4
C3—C6—H6C109.5C8—C13—H13119.4
C4—N1—C1—O1177.31 (15)C3—C4—C7—C8177.49 (16)
C4—N1—C1—C21.53 (17)C4—C7—C8—C13148.90 (18)
O1—C1—C2—C3175.91 (16)C4—C7—C8—C932.6 (3)
N1—C1—C2—C32.92 (18)C13—C8—C9—C102.2 (3)
O1—C1—C2—C55.4 (3)C7—C8—C9—C10179.34 (16)
N1—C1—C2—C5175.75 (15)C8—C9—C10—C110.2 (3)
C5—C2—C3—C4175.48 (16)C9—C10—C11—C121.9 (3)
C1—C2—C3—C43.06 (18)C9—C10—C11—N3178.58 (16)
C5—C2—C3—C64.5 (3)O3—N3—C11—C10174.92 (17)
C1—C2—C3—C6176.91 (15)O2—N3—C11—C104.3 (3)
C1—N1—C4—C7179.52 (16)O3—N3—C11—C125.6 (3)
C1—N1—C4—C30.25 (18)O2—N3—C11—C12175.26 (17)
C2—C3—C4—C7178.61 (16)C10—C11—C12—C131.2 (3)
C6—C3—C4—C71.4 (3)N3—C11—C12—C13179.27 (16)
C2—C3—C4—N12.11 (18)C11—C12—C13—C81.3 (3)
C6—C3—C4—N1177.87 (15)C9—C8—C13—C122.9 (3)
N1—C4—C7—C83.4 (3)C7—C8—C13—C12178.56 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881.982.8256 (18)159
C9—H9···O1ii0.952.433.336 (2)159
C12—H12···N2iii0.952.593.374 (3)141
C13—H13···O2iv0.952.583.372 (2)141
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+1/2, z1/2; (iv) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H9N3O3
Mr255.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)3.7456 (2), 14.9193 (9), 21.6077 (17)
β (°) 92.273 (7)
V3)1206.52 (14)
Z4
Radiation typeCu Kα
µ (mm1)0.86
Crystal size (mm)0.44 × 0.05 × 0.03
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero, Atlas)
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.633, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7096, 2283, 1941
Rint0.042
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.139, 1.05
No. of reflections2283
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.25

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL2012 (Sheldrick, 2008), ORTEP-3 in WinGX (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881.982.8256 (18)159
C9—H9···O1ii0.952.433.336 (2)159
C12—H12···N2iii0.952.593.374 (3)141
C13—H13···O2iv0.952.583.372 (2)141
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+1/2, z1/2; (iv) x+2, y1/2, z+1/2.
 

Acknowledgements

The authors thank Dr J. Wikaira of the University of Canterbury for the data collection.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBert, M., Maarten, K., Gitte, V. B., Mario, S. & Wim, D. (2006). Tetrahedron, 62, 6018–6028.  Google Scholar
First citationColin, J. H. M., Ryan, G., David, M. S., Philip, L., Alexandra, M. Z. S. & Elizabeth, J. M. (2002). Tetrahedron, 58, 5547–5565.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHasan, Z.-B., Mehdi, M., Khadijeh, H. & Maryam, G. (2012). J. Org. Chem. 77, 5808–5812.  Web of Science PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShrestha-Dawadi, P. B. & Lugtenburg, J. (2007). Eur. J. Org. Chem. pp. 1294–1300.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStephen, L., Carson, J. B., Hiroyuki, M., Rocio, P. O., Antonio, F., Samuel, I. S. & Tobin, J. M. (2011). J. Am. Chem. Soc. 133, 8142–8145.  Web of Science PubMed Google Scholar
First citationTarek, A., Stanislav, L. Jr, Antonín, L., Jan, V., Zdenek, E., Ales, R., Zdenka, P. & Radim, H. (2013). Dyes Pigments, 98, 530–539.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds