organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Nitro-1,3-bis­­(prop-2-yn­yl)-1H-1,3-benzimidazol-2(3H)-one

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202 Fès, Morocco, bUnité Chimie Inorganique, Matériaux et Interfaces (CIMI), Université d'Angers, CNRS UMR 6200, France, cInstitute of Solid State Physics RAS, 142432 Chernogolovka MD, Russia, dLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batouta, Rabat, Morocco, and eLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014 Rabat, Morocco
*Correspondence e-mail: k_misbahi@yahoo.fr

(Received 31 May 2013; accepted 17 June 2013; online 26 June 2013)

The title compound, C13H9N3O3, crystallizes with two identical but differently oriented mol­ecules in the asymmetric unit, the dihedral angle between the fused-ring systems of the two molecules being 64.39 (7)°. The two prop-2-ynyl chains are located on opposite sides of the mol­ecule and are nearly perpendicular to the fused ring plane, as indicated by the C—N—C—C torsion angles in the range 106.0 (3)–113.4 (3)°. In the crystal, the two mol­ecules are linked through C—H⋯O hydrogen bonds into dimers, which are subsequently linked by further C—H⋯O inter­actions, building a three-dimensional network.

Related literature

For the biological activity of benzimidazole derivatives, see: Horton et al. (2003[Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893-930.]); Kim et al. (1996[Kim, J. S., Gatto, B., Yu, C., Liu, A., Liu, L. F. & La Voie, E. J. (1996). J. Med. Chem. 39, 992-998.]); Roth et al. (1997[Roth, T., Morningstar, M. L., Boyer, P. L., Hughes, S. H., Buckheit, R. W. & Michejda, C. J. (1997). J. Med. Chem. 40, 4199-4207.]). For examples of benzimidazol-2-one derivatives, see: Ouzidan et al. (2011a[Ouzidan, Y., Kandri Rodi, Y., Butcher, R. J., Essassi, E. M. & El Ammari, L. (2011a). Acta Cryst. E67, o283.],b[Ouzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., El Ammari, L. & Essassi, E. M. (2011b). Acta Cryst. E67, o362-o363.],c[Ouzidan, Y., Kandri Rodi, Y., Jasinski, J. P., Butcher, R. J., Golen, J. A. & El Ammari, L. (2011c). Acta Cryst. E67, o1091.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9N3O3

  • Mr = 255.23

  • Orthorhombic, P c a 21

  • a = 20.0988 (16) Å

  • b = 4.2645 (3) Å

  • c = 28.669 (2) Å

  • V = 2457.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 150 K

  • 0.48 × 0.2 × 0.13 mm

Data collection
  • Agilent Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: multi-scan (ABSFAC; Agilent, 2012[Agilent (2012). ABSFAC and CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.520, Tmax = 1

  • 16703 measured reflections

  • 3233 independent reflections

  • 2971 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.126

  • S = 1.05

  • 3233 reflections

  • 343 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O6i 0.95 2.43 3.316 (3) 155
C8—H8A⋯O4ii 0.99 2.28 3.186 (3) 151
C11—H11A⋯O6i 0.99 2.45 3.257 (4) 139
C13—H13⋯O2iii 0.95 2.32 3.205 (4) 155
C21—H21B⋯O1iv 0.99 2.27 3.191 (3) 154
C24—H24B⋯O3 0.99 2.49 3.350 (4) 146
C26—H26⋯O5i 0.95 2.40 3.320 (4) 164
Symmetry codes: (i) [x-{\script{1\over 2}}, -y-1, z]; (ii) [-x+{\script{1\over 2}}, y-1, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+1, z]; (iv) [-x+{\script{1\over 2}}, y+1, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). ABSFAC and CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Benzimidazoles are very useful intermediates/subunits for the development of molecules of pharmaceutical or biological interest. Benzimidazole and its derivatives are an important class of bioactive molecules in the field of drugs and pharmaceuticals. Benzimidazole derivatives have found applications in diverse therapeutic areas including anti-ulcers, anti-hypertensive, anti-viral, anti-fungal, anti-cancers, (Horton et al., 2003; Kim et al., 1996; Roth et al., 1997).

As a continuation of our research work devoted to the development of substituted benzimidazol-2-one derivatives (Ouzidan et al., 2011a, 2011b), we report in this paper the synthesis of new benzimidazol-2-one derivative by action of propargyl bromide with 1H-benzo[d]imidazol-2(3H)-one in the presence of a catalytic quantity of tetra-n-butylammonium bromide under mild conditions to furnish two compounds: mono-substituted (Ouzidan et al., 2011c) and di-substituted (Scheme 1).

The asymmetric unit of title compound, 1,3-Bis(prop-2-ynyl)-5-nitro-1H-benzo [d]imidazol-2(3H)-one, contains two molecules. Each of them is build up from two fused five- and six-membered rings liked to nitro group and to two prop-2-ynyl chains in opposite sides as shown in Fig. 1. The fused ring systems are almost planar, with the largest deviations from the mean planes being -0.005 (2) A° and 0.007 (3) A° for the C1 and C14 atom, respectively. In each molecule, the two prop-2-ynyl chains are nearly perpendicular to the fused ring plan as indicated by the torsion angles: C1–N1–C8–C9 = 111.8 (3)°; C1–N2–C11–C12 = 106.0 (3)°; C14–N4–C21–C22 = 113.4 (3)° and C14–N5–C24–C25 = 109.8 (3)°. The fused ring system belonging to the first molecule makes dihedral angle of 64.39 (7) ° with that of the second molecule. The difference between the two independent molecules lies in the crystallographic environment of each in addition to their orientations in the crystal. Indeed, in molecule I (C1 to C13), carbon C5 is involved in a C5—H5···O6 intermolecular hydrogen bond while in molecule II (C14 to C26) the corresponding carbon (C18 ) is not engaged in such a bond. In the crystal, the two molecules are linked through C8–H8A···O4 and C21–H21B···O1 hydrogen bonds in order to form dimers, which are linked together by the other C–H···O hydrogen bonds to build a three-dimensional network as shown in Fig.2 and Table 2.

Related literature top

For the biological activity of benzimidazole derivatives, see: Horton et al. (2003); Kim et al. (1996); Roth et al. (1997). For examples of benzimidazol-2-one derivatives, see: Ouzidan et al. (2011a,b,c).

Experimental top

To 5-nitro-1H-benzo[d]imidazol-2(3H)-one (0.2 g, 1.1 mmol), potassium carbonate (0.30 g, 2.2 mmol) and tetra-n-butylammonium bromide (0.07 g, 0.2 mmol) in DMF (15 ml) was added propargyl bromide (2.2 mmol). Stirring was continued at room temperature for 6 h. The salt was removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with hexane/ethyl acetate (2/1) as eluent. Colourless crystals were isolated when the solvent was allowed to evaporate. Yield: 82%,mp: 415–417 K.

Refinement top

All H atoms could be located in a difference Fourier map. However, they were placed in calculated positions with C—H = 0.93 Å (aromatic), N—H = 0.86 and C—H = 0.97 Å (methylene) and refined as riding on their parent atoms with Uiso(H) = 1.2 Ueq (C, N).

In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and thus 2580 Friedel pairs were merged.

Structure description top

Benzimidazoles are very useful intermediates/subunits for the development of molecules of pharmaceutical or biological interest. Benzimidazole and its derivatives are an important class of bioactive molecules in the field of drugs and pharmaceuticals. Benzimidazole derivatives have found applications in diverse therapeutic areas including anti-ulcers, anti-hypertensive, anti-viral, anti-fungal, anti-cancers, (Horton et al., 2003; Kim et al., 1996; Roth et al., 1997).

As a continuation of our research work devoted to the development of substituted benzimidazol-2-one derivatives (Ouzidan et al., 2011a, 2011b), we report in this paper the synthesis of new benzimidazol-2-one derivative by action of propargyl bromide with 1H-benzo[d]imidazol-2(3H)-one in the presence of a catalytic quantity of tetra-n-butylammonium bromide under mild conditions to furnish two compounds: mono-substituted (Ouzidan et al., 2011c) and di-substituted (Scheme 1).

The asymmetric unit of title compound, 1,3-Bis(prop-2-ynyl)-5-nitro-1H-benzo [d]imidazol-2(3H)-one, contains two molecules. Each of them is build up from two fused five- and six-membered rings liked to nitro group and to two prop-2-ynyl chains in opposite sides as shown in Fig. 1. The fused ring systems are almost planar, with the largest deviations from the mean planes being -0.005 (2) A° and 0.007 (3) A° for the C1 and C14 atom, respectively. In each molecule, the two prop-2-ynyl chains are nearly perpendicular to the fused ring plan as indicated by the torsion angles: C1–N1–C8–C9 = 111.8 (3)°; C1–N2–C11–C12 = 106.0 (3)°; C14–N4–C21–C22 = 113.4 (3)° and C14–N5–C24–C25 = 109.8 (3)°. The fused ring system belonging to the first molecule makes dihedral angle of 64.39 (7) ° with that of the second molecule. The difference between the two independent molecules lies in the crystallographic environment of each in addition to their orientations in the crystal. Indeed, in molecule I (C1 to C13), carbon C5 is involved in a C5—H5···O6 intermolecular hydrogen bond while in molecule II (C14 to C26) the corresponding carbon (C18 ) is not engaged in such a bond. In the crystal, the two molecules are linked through C8–H8A···O4 and C21–H21B···O1 hydrogen bonds in order to form dimers, which are linked together by the other C–H···O hydrogen bonds to build a three-dimensional network as shown in Fig.2 and Table 2.

For the biological activity of benzimidazole derivatives, see: Horton et al. (2003); Kim et al. (1996); Roth et al. (1997). For examples of benzimidazol-2-one derivatives, see: Ouzidan et al. (2011a,b,c).

Computing details top

Data collection: CrysAlis PRO CCD (Agilent, 2012); cell refinement: CrysAlis PRO CCD (Agilent, 2012); data reduction: CrysAlis PRO RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids (molecule I, left; molecule II, right).
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the b–axis, showing the linkage between the molecule I (C1 to C13) and molecule II (C14 to C26). Hydrogen C—H···O bonds are shown as dashed lines.
5-Nitro-1,3-bis(prop-2-ynyl)-1H-1,3-benzimidazol-2(3H)-one top
Crystal data top
C13H9N3O3F(000) = 1056
Mr = 255.23Dx = 1.38 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 8380 reflections
a = 20.0988 (16) Åθ = 1.8–29.7°
b = 4.2645 (3) ŵ = 0.10 mm1
c = 28.669 (2) ÅT = 150 K
V = 2457.3 (3) Å3Prism, colourless
Z = 80.48 × 0.2 × 0.13 mm
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
3233 independent reflections
Graphite monochromator2971 reflections with I > 2σ(I)
Detector resolution: 10.4752 pixels mm-1Rint = 0.032
ω–scanθmax = 29.7°, θmin = 2.0°
Absorption correction: multi-scan
(ABSFAC; Agilent, 2012)
h = 2725
Tmin = 0.520, Tmax = 1k = 55
16703 measured reflectionsl = 3836
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0875P)2 + 0.4146P]
where P = (Fo2 + 2Fc2)/3
3233 reflections(Δ/σ)max = 0.002
343 parametersΔρmax = 0.48 e Å3
1 restraintΔρmin = 0.29 e Å3
Crystal data top
C13H9N3O3V = 2457.3 (3) Å3
Mr = 255.23Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 20.0988 (16) ŵ = 0.10 mm1
b = 4.2645 (3) ÅT = 150 K
c = 28.669 (2) Å0.48 × 0.2 × 0.13 mm
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
3233 independent reflections
Absorption correction: multi-scan
(ABSFAC; Agilent, 2012)
2971 reflections with I > 2σ(I)
Tmin = 0.520, Tmax = 1Rint = 0.032
16703 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.126H-atom parameters constrained
S = 1.05Δρmax = 0.48 e Å3
3233 reflectionsΔρmin = 0.29 e Å3
343 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.07911 (10)0.4511 (5)0.39515 (8)0.0308 (5)
O20.29627 (10)0.6066 (6)0.25710 (8)0.0407 (5)
O30.24251 (12)0.5944 (5)0.19215 (8)0.0398 (5)
N10.15605 (10)0.1129 (5)0.36150 (7)0.0211 (4)
N20.07187 (10)0.2738 (5)0.31877 (7)0.0205 (4)
N30.24996 (12)0.5152 (5)0.23272 (10)0.0248 (5)
C10.09991 (12)0.2962 (6)0.36290 (9)0.0225 (5)
C20.16290 (13)0.0211 (5)0.31805 (10)0.0185 (5)
C30.10972 (10)0.0835 (5)0.29072 (8)0.0185 (4)
C40.21066 (11)0.2190 (5)0.30002 (8)0.0198 (4)
H40.24710.29220.31810.024*
C50.10186 (14)0.0045 (5)0.24439 (10)0.0208 (5)
H50.06550.06830.22620.025*
C60.20185 (11)0.3042 (5)0.25370 (8)0.0206 (4)
C70.14964 (12)0.2035 (6)0.22587 (9)0.0226 (5)
H70.14660.27040.19430.027*
C80.19954 (13)0.0708 (6)0.40183 (9)0.0257 (5)
H8A0.17810.16250.42970.031*
H8B0.20600.15610.40760.031*
C90.26444 (13)0.2195 (7)0.39468 (10)0.0317 (6)
C100.31652 (16)0.3400 (10)0.38963 (14)0.0501 (9)
H100.35860.43740.38550.060*
C110.01090 (12)0.4388 (6)0.30644 (10)0.0233 (5)
H11A0.01740.54560.27610.028*
H11B0.00200.60180.33020.028*
C120.04656 (12)0.2329 (6)0.30314 (10)0.0279 (5)
C130.09362 (15)0.0705 (8)0.29930 (15)0.0446 (8)
H130.13160.06050.29620.054*
O40.32562 (11)0.4775 (5)0.01141 (8)0.0318 (5)
O50.54368 (10)0.5661 (5)0.12857 (8)0.0394 (5)
O60.49109 (12)0.5397 (6)0.19373 (8)0.0431 (6)
N40.40313 (10)0.1452 (5)0.02253 (7)0.0219 (4)
N50.31780 (10)0.3013 (5)0.06502 (7)0.0216 (4)
N60.49818 (12)0.4715 (5)0.15248 (10)0.0248 (5)
C140.34636 (12)0.3236 (6)0.02130 (9)0.0225 (5)
C150.41073 (12)0.0130 (5)0.06653 (10)0.0176 (5)
C160.35634 (11)0.1154 (5)0.09333 (8)0.0189 (4)
C170.45827 (11)0.1800 (5)0.08478 (8)0.0200 (4)
H170.49500.25270.06690.024*
C180.34914 (13)0.0292 (6)0.13955 (10)0.0215 (5)
H180.31240.10110.15740.026*
C190.44923 (11)0.2632 (5)0.13144 (9)0.0210 (4)
C200.39648 (11)0.1631 (6)0.15897 (9)0.0229 (5)
H200.39320.22640.19070.028*
C210.44756 (13)0.1050 (6)0.01722 (9)0.0264 (5)
H21A0.45360.12170.02340.032*
H21B0.42700.20030.04520.032*
C220.51236 (13)0.2486 (7)0.00918 (10)0.0317 (6)
C230.56438 (16)0.3678 (10)0.00310 (14)0.0495 (8)
H230.60640.46420.00180.059*
C240.25700 (13)0.4618 (6)0.07741 (10)0.0236 (5)
H24A0.24590.61550.05270.028*
H24B0.26400.57910.10680.028*
C250.20067 (12)0.2450 (6)0.08344 (10)0.0280 (5)
C260.15561 (15)0.0767 (8)0.09000 (14)0.0414 (8)
H260.11900.05980.09530.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0307 (10)0.0354 (9)0.0264 (12)0.0062 (8)0.0009 (8)0.0102 (8)
O20.0310 (10)0.0498 (12)0.0413 (13)0.0166 (10)0.0000 (9)0.0027 (10)
O30.0417 (12)0.0488 (12)0.0289 (11)0.0105 (10)0.0098 (9)0.0089 (10)
N10.0216 (9)0.0238 (9)0.0178 (9)0.0001 (8)0.0016 (7)0.0026 (8)
N20.0171 (9)0.0223 (9)0.0221 (10)0.0024 (7)0.0015 (7)0.0013 (7)
N30.0225 (10)0.0241 (9)0.0279 (14)0.0008 (8)0.0069 (9)0.0002 (8)
C10.0220 (11)0.0234 (11)0.0222 (12)0.0015 (9)0.0005 (8)0.0014 (9)
C20.0174 (11)0.0189 (9)0.0193 (13)0.0033 (8)0.0014 (9)0.0001 (8)
C30.0159 (9)0.0190 (10)0.0206 (11)0.0024 (8)0.0020 (8)0.0008 (8)
C40.0177 (10)0.0207 (10)0.0209 (11)0.0016 (8)0.0003 (8)0.0024 (8)
C50.0224 (13)0.0222 (10)0.0179 (13)0.0014 (8)0.0021 (9)0.0024 (8)
C60.0195 (10)0.0219 (10)0.0204 (11)0.0016 (8)0.0029 (8)0.0024 (8)
C70.0251 (11)0.0255 (10)0.0171 (10)0.0006 (9)0.0002 (9)0.0010 (9)
C80.0281 (12)0.0331 (12)0.0158 (11)0.0028 (10)0.0055 (9)0.0021 (9)
C90.0282 (13)0.0429 (14)0.0239 (12)0.0060 (11)0.0087 (10)0.0057 (11)
C100.0288 (15)0.070 (2)0.051 (2)0.0051 (16)0.0101 (14)0.0029 (17)
C110.0184 (12)0.0208 (10)0.0309 (14)0.0019 (8)0.0017 (10)0.0008 (9)
C120.0195 (11)0.0273 (11)0.0368 (14)0.0047 (9)0.0009 (10)0.0001 (10)
C130.0211 (13)0.0402 (15)0.072 (2)0.0006 (12)0.0075 (14)0.0002 (16)
O40.0327 (10)0.0383 (10)0.0245 (11)0.0086 (8)0.0002 (8)0.0102 (8)
O50.0267 (10)0.0508 (12)0.0408 (12)0.0158 (9)0.0005 (9)0.0101 (10)
O60.0449 (13)0.0591 (14)0.0253 (11)0.0161 (10)0.0056 (9)0.0117 (10)
N40.0198 (9)0.0282 (10)0.0177 (9)0.0022 (8)0.0013 (7)0.0044 (8)
N50.0195 (9)0.0221 (9)0.0232 (10)0.0009 (7)0.0007 (7)0.0043 (8)
N60.0234 (10)0.0270 (10)0.0240 (13)0.0006 (8)0.0081 (9)0.0032 (8)
C140.0201 (11)0.0233 (11)0.0239 (12)0.0003 (9)0.0012 (8)0.0027 (9)
C150.0173 (10)0.0200 (10)0.0154 (12)0.0033 (8)0.0017 (9)0.0001 (8)
C160.0171 (10)0.0173 (9)0.0223 (11)0.0005 (8)0.0001 (8)0.0005 (8)
C170.0160 (9)0.0220 (10)0.0220 (11)0.0010 (8)0.0006 (8)0.0004 (8)
C180.0194 (12)0.0233 (10)0.0219 (14)0.0015 (8)0.0036 (10)0.0006 (9)
C190.0180 (10)0.0195 (9)0.0255 (11)0.0032 (8)0.0051 (8)0.0034 (8)
C200.0255 (11)0.0248 (11)0.0185 (11)0.0035 (9)0.0010 (9)0.0019 (9)
C210.0285 (12)0.0306 (12)0.0200 (12)0.0027 (10)0.0058 (9)0.0019 (10)
C220.0272 (13)0.0399 (14)0.0279 (13)0.0063 (11)0.0087 (10)0.0067 (11)
C230.0265 (15)0.068 (2)0.054 (2)0.0045 (15)0.0038 (13)0.0026 (17)
C240.0189 (11)0.0226 (10)0.0292 (14)0.0044 (9)0.0016 (10)0.0016 (9)
C250.0204 (11)0.0264 (11)0.0372 (14)0.0067 (10)0.0006 (10)0.0042 (10)
C260.0232 (13)0.0369 (15)0.064 (2)0.0037 (12)0.0085 (14)0.0073 (15)
Geometric parameters (Å, º) top
O1—C11.211 (3)O4—C141.218 (3)
O2—N31.228 (4)O5—N61.212 (4)
O3—N31.220 (4)O6—N61.226 (4)
N1—C11.373 (3)N4—C141.372 (3)
N1—C21.377 (3)N4—C151.390 (3)
N1—C81.461 (3)N4—C211.458 (3)
N2—C31.373 (3)N5—C161.374 (3)
N2—C11.388 (3)N5—C141.382 (3)
N2—C111.457 (3)N5—C241.445 (3)
N3—C61.451 (3)N6—C191.456 (3)
C2—C41.379 (3)C15—C171.365 (3)
C2—C31.398 (3)C15—C161.406 (4)
C3—C51.389 (4)C16—C181.383 (4)
C4—C61.388 (3)C17—C191.396 (3)
C4—H40.9500C17—H170.9500
C5—C71.387 (4)C18—C201.374 (4)
C5—H50.9500C18—H180.9500
C6—C71.386 (3)C19—C201.389 (3)
C7—H70.9500C20—H200.9500
C8—C91.465 (4)C21—C221.458 (4)
C8—H8A0.9900C21—H21A0.9900
C8—H8B0.9900C21—H21B0.9900
C9—C101.175 (4)C22—C231.176 (5)
C10—H100.9500C23—H230.9500
C11—C121.454 (4)C24—C251.472 (4)
C11—H11A0.9900C24—H24A0.9900
C11—H11B0.9900C24—H24B0.9900
C12—C131.177 (4)C25—C261.170 (4)
C13—H130.9500C26—H260.9500
C1—N1—C2110.2 (2)C14—N4—C15109.9 (2)
C1—N1—C8122.6 (2)C14—N4—C21123.7 (2)
C2—N1—C8127.2 (2)C15—N4—C21126.5 (2)
C3—N2—C1110.46 (19)C16—N5—C14109.97 (19)
C3—N2—C11127.6 (2)C16—N5—C24127.2 (2)
C1—N2—C11122.0 (2)C14—N5—C24122.8 (2)
O3—N3—O2123.2 (2)O5—N6—O6123.7 (2)
O3—N3—C6119.0 (2)O5—N6—C19118.6 (3)
O2—N3—C6117.8 (3)O6—N6—C19117.7 (3)
O1—C1—N1128.1 (2)O4—C14—N4127.1 (2)
O1—C1—N2126.4 (2)O4—C14—N5126.4 (2)
N1—C1—N2105.5 (2)N4—C14—N5106.5 (2)
N1—C2—C4131.5 (2)C17—C15—N4132.0 (2)
N1—C2—C3107.3 (2)C17—C15—C16121.5 (3)
C4—C2—C3121.2 (2)N4—C15—C16106.5 (2)
N2—C3—C5131.1 (2)N5—C16—C18131.4 (2)
N2—C3—C2106.5 (2)N5—C16—C15107.1 (2)
C5—C3—C2122.5 (2)C18—C16—C15121.5 (2)
C2—C4—C6115.5 (2)C15—C17—C19115.4 (2)
C2—C4—H4122.3C15—C17—H17122.3
C6—C4—H4122.3C19—C17—H17122.3
C7—C5—C3116.9 (2)C20—C18—C16118.3 (2)
C7—C5—H5121.6C20—C18—H18120.8
C3—C5—H5121.6C16—C18—H18120.8
C7—C6—C4124.5 (2)C20—C19—C17124.5 (2)
C7—C6—N3117.2 (2)C20—C19—N6117.9 (2)
C4—C6—N3118.3 (2)C17—C19—N6117.6 (2)
C6—C7—C5119.6 (2)C18—C20—C19118.8 (2)
C6—C7—H7120.2C18—C20—H20120.6
C5—C7—H7120.2C19—C20—H20120.6
N1—C8—C9111.6 (2)C22—C21—N4112.0 (2)
N1—C8—H8A109.3C22—C21—H21A109.2
C9—C8—H8A109.3N4—C21—H21A109.2
N1—C8—H8B109.3C22—C21—H21B109.2
C9—C8—H8B109.3N4—C21—H21B109.2
H8A—C8—H8B108.0H21A—C21—H21B107.9
C10—C9—C8179.0 (3)C23—C22—C21179.1 (4)
C9—C10—H10180.0C22—C23—H23180.0
C12—C11—N2113.1 (2)N5—C24—C25112.4 (2)
C12—C11—H11A109.0N5—C24—H24A109.1
N2—C11—H11A109.0C25—C24—H24A109.1
C12—C11—H11B109.0N5—C24—H24B109.1
N2—C11—H11B109.0C25—C24—H24B109.1
H11A—C11—H11B107.8H24A—C24—H24B107.8
C13—C12—C11178.1 (3)C26—C25—C24177.4 (3)
C12—C13—H13180.0C25—C26—H26180.0
C2—N1—C1—O1179.0 (3)C15—N4—C14—O4178.2 (3)
C8—N1—C1—O12.1 (4)C21—N4—C14—O42.0 (4)
C2—N1—C1—N20.2 (3)C15—N4—C14—N50.4 (3)
C8—N1—C1—N2179.2 (2)C21—N4—C14—N5179.4 (2)
C3—N2—C1—O1178.4 (2)C16—N5—C14—O4177.9 (3)
C11—N2—C1—O11.1 (4)C24—N5—C14—O40.7 (4)
C3—N2—C1—N10.3 (3)C16—N5—C14—N40.7 (3)
C11—N2—C1—N1179.8 (2)C24—N5—C14—N4179.3 (2)
C1—N1—C2—C4179.7 (2)C14—N4—C15—C17179.8 (2)
C8—N1—C2—C41.4 (4)C21—N4—C15—C170.0 (4)
C1—N1—C2—C30.7 (3)C14—N4—C15—C160.1 (3)
C8—N1—C2—C3179.6 (2)C21—N4—C15—C16179.9 (2)
C1—N2—C3—C5179.3 (2)C14—N5—C16—C18178.8 (2)
C11—N2—C3—C50.2 (4)C24—N5—C16—C180.2 (4)
C1—N2—C3—C20.8 (3)C14—N5—C16—C150.8 (3)
C11—N2—C3—C2179.8 (2)C24—N5—C16—C15179.3 (2)
N1—C2—C3—N20.9 (3)C17—C15—C16—N5179.4 (2)
C4—C2—C3—N2180.0 (2)N4—C15—C16—N50.5 (3)
N1—C2—C3—C5179.2 (2)C17—C15—C16—C181.0 (3)
C4—C2—C3—C50.0 (3)N4—C15—C16—C18179.1 (2)
N1—C2—C4—C6179.0 (2)N4—C15—C17—C19179.4 (2)
C3—C2—C4—C60.1 (3)C16—C15—C17—C190.7 (3)
N2—C3—C5—C7180.0 (2)N5—C16—C18—C20180.0 (2)
C2—C3—C5—C70.0 (3)C15—C16—C18—C200.5 (3)
C2—C4—C6—C70.1 (3)C15—C17—C19—C200.0 (3)
C2—C4—C6—N3179.3 (2)C15—C17—C19—N6179.4 (2)
O3—N3—C6—C70.1 (3)O5—N6—C19—C20178.4 (2)
O2—N3—C6—C7179.8 (2)O6—N6—C19—C202.0 (3)
O3—N3—C6—C4179.3 (2)O5—N6—C19—C171.0 (3)
O2—N3—C6—C40.3 (3)O6—N6—C19—C17178.5 (2)
C4—C6—C7—C50.2 (4)C16—C18—C20—C190.2 (3)
N3—C6—C7—C5179.3 (2)C17—C19—C20—C180.5 (4)
C3—C5—C7—C60.1 (4)N6—C19—C20—C18178.9 (2)
C1—N1—C8—C9111.8 (3)C14—N4—C21—C22113.4 (3)
C2—N1—C8—C969.5 (3)C15—N4—C21—C2266.8 (3)
N1—C8—C9—C10144 (20)N4—C21—C22—C23104 (25)
C3—N2—C11—C1274.5 (3)C16—N5—C24—C2571.9 (3)
C1—N2—C11—C12106.0 (3)C14—N5—C24—C25109.8 (3)
N2—C11—C12—C13136 (10)N5—C24—C25—C26121 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O6i0.952.433.316 (3)155
C8—H8A···O4ii0.992.283.186 (3)151
C11—H11A···O6i0.992.453.257 (4)139
C13—H13···O2iii0.952.323.205 (4)155
C21—H21B···O1iv0.992.273.191 (3)154
C24—H24B···O30.992.493.350 (4)146
C26—H26···O5i0.952.403.320 (4)164
Symmetry codes: (i) x1/2, y1, z; (ii) x+1/2, y1, z+1/2; (iii) x1/2, y+1, z; (iv) x+1/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC13H9N3O3
Mr255.23
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)150
a, b, c (Å)20.0988 (16), 4.2645 (3), 28.669 (2)
V3)2457.3 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.48 × 0.2 × 0.13
Data collection
DiffractometerAgilent Xcalibur (Ruby, Gemini)
Absorption correctionMulti-scan
(ABSFAC; Agilent, 2012)
Tmin, Tmax0.520, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
16703, 3233, 2971
Rint0.032
(sin θ/λ)max1)0.696
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.126, 1.05
No. of reflections3233
No. of parameters343
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.29

Computer programs: CrysAlis PRO CCD (Agilent, 2012), CrysAlis PRO RED (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O6i0.952.433.316 (3)155.4
C8—H8A···O4ii0.992.283.186 (3)151.4
C11—H11A···O6i0.992.453.257 (4)138.7
C13—H13···O2iii0.952.323.205 (4)155.2
C21—H21B···O1iv0.992.273.191 (3)154.4
C24—H24B···O30.992.493.350 (4)145.7
C26—H26···O5i0.952.403.320 (4)163.8
Symmetry codes: (i) x1/2, y1, z; (ii) x+1/2, y1, z+1/2; (iii) x1/2, y+1, z; (iv) x+1/2, y+1, z1/2.
 

References

First citationAgilent (2012). ABSFAC and CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHorton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893–930.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, J. S., Gatto, B., Yu, C., Liu, A., Liu, L. F. & La Voie, E. J. (1996). J. Med. Chem. 39, 992–998.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Butcher, R. J., Essassi, E. M. & El Ammari, L. (2011a). Acta Cryst. E67, o283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., El Ammari, L. & Essassi, E. M. (2011b). Acta Cryst. E67, o362–o363.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Jasinski, J. P., Butcher, R. J., Golen, J. A. & El Ammari, L. (2011c). Acta Cryst. E67, o1091.  CSD CrossRef IUCr Journals Google Scholar
First citationRoth, T., Morningstar, M. L., Boyer, P. L., Hughes, S. H., Buckheit, R. W. & Michejda, C. J. (1997). J. Med. Chem. 40, 4199–4207.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds