organic compounds
1-O-Benzyl-2,3-O-isopropylidene-6-O-tosyl-α-L-sorbofuranose
aSchool of Chemistry (F11), University of Sydney, NSW 2006, Australia, bCrystal Structure Analysis Facility, School of Chemistry (F11), University of Sydney, NSW 2006, Australia, cDepartment of Hospital Pharmacy, University of Toyama, 2630, Sugitani, Toyama 930-0194, Japan, and dInstitute for Glycomics, Gold Coast Campus, Griffith University, Queensland 4222, Australia
*Correspondence e-mail: simone_m@chem.usyd.edu.au
In the title compound (systematic name: {(3aS,5S,6R,6aS)-3a-[(benzyloxy)methyl]-6-hydroxy-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl}methyl 4-methylbenzenesulfonate), C23H28O8S, the and relative stereochemistry of the four chiral centres have been established by X-ray crystallography, with the inferred from the use of L-sorbose as the starting material. The central furanose ring adopts a slightly twisted (with the C atom bearing the methylbenzenesulfonate substituent as the flap) from which three substituents depart pseudo-axially (–CH2—O—benzyl, –OH and one acetonide O atom) and two substituents pseudo-equatorially (–CH2—O—tosyl and second acetonide O atom). The dioxalane ring is in a flattened with the fused CH C atom as the flap. In the crystal, molecules pack in columns along [010] linked by O—H⋯O hydrogen bonds involving the furanose hydroxy group and furanose ether O atom.
Related literature
The title compound is a novel intermediate in the synthesis of 1-deoxynojirimycin (DNJ) analogues. For examples of the use of monosaccharide starting materials in iminosugar syntheses, see: Compain & Martin (2001); Cipolla et al. (2003); Best, Wang et al. (2010); Wilkinson et al. (2010); Nash et al. (2011); Zhang et al. (2011); Lenagh-Snow et al. (2011); Simone et al. (2012); Soengas et al. (2012); Kato et al. (2012). For examples of the synthesis of other biologically active compounds from see: Compain et al. (2009); Sridhar et al. (2012); Das et al. (2012); Dhavale & Matin (2005); Compain & Martin (2001); Derosa & Maffioli (2012); Lew et al. (2000); Itzstein et al. (1993). For glycosidase inhibitors, see: Houston & Blanchfield (2003). For iminosugars as glycosidase inhibitors, see: Zechel et al. (2003); de Melo et al. (2006); Compain & Martin (2007). For examples of the clinical uses of iminosugars, see: Cox et al. (2003); Venier et al. (2012); Derosa & Maffioli (2012). For iminosugars in the treatment of cancer, cystic fibrosis and viral diseases, see: Nishimura (2003); Lawton & Witty (2011); Best, Jenkinson et al. (2010); Compain & Martin (2007); Pollock et al. (2008). For the syntheses of DNJ and its analogues from L-sorbose, see: Beaupere et al. (1989); Masson et al. (2000); Tamayo et al. (2010); O'Brien & Murphy (2011). For the synthesis of 1-O-benzoyl-2,3-O-isopropylidene-6-O-tosyl-α-L-sorbofuranose, which bears structural similarity to the title compound, see: Fehér & Vargha (1966).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Xtal3.6 (Hall et al., 1999), ORTEPII (Johnson, 1976), SHELXLE (Hübschle et al., 2011), Mercury (Macrae et al., 2006) and WinGX (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, (2010).
Supporting information
https://doi.org/10.1107/S1600536813015638/lh5615sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813015638/lh5615Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536813015638/lh5615Isup3.cml
Triethylamine (3.43 ml, 24.6 mmol), 4-dimethylaminopyridine (120 mg, 982 µmol), and 4-toluenesulfonyl chloride (2.35 g, 12.3 mmol) were carefully added in succession to a stirring solution of 1-O-benzyl-2,3-O-isopropylidene-α-L-sorbofuranose (3.06 g, 9.84 mmol) in dichloromethane (200 ml) under an inert atmosphere. The reaction mixture was stirred for 28 h at room temperature, after which, analysis by TLC (acetone/hexane 1:2) showed total consumption of the starting material (Rf = 0.18) and formation of a UV-active product (Rf = 0.44). The crude mixture was washed with an aqueous hydrochloric acid solution (1 M, 100 ml) and the organic layers collected, dried over magnesium sulfate, filtered and concentrated in vacuo. The compound crystallized on standing as a pale yellow solid in quantitative yield (4.57 g).
All H atoms attached to C atoms were positioned geometrically, and allowed to ride on their parent atoms, with C—H bond lengths of 0.95 Å (Ar—H), 1.0 (CH), 0.99 Å (CH2) or 0.98 Å (CH3), and isotropic displacement parameters set to 1.2 (CH and CH2) or 1.5 times (CH3) the Ueq of the parent atom. The H atom attached to O3 was positioned geometrically and allowed to ride on the parent atom, with an O—H bond length of 0.84 Å and isotropic displacement parameters set to 1.5Ueq(O).
Monosaccharides provide a vast and formidable chiral pool of starting materials, whose utilization continues to expand in the enantiospecific syntheses of natural products (Sridhar et al., 2012; Das et al., 2012), in particular of carbohydrate mimetics of the carbasugar (Derosa & Maffioli, 2012; Lew et al. 2000), C-glycoside (Compain & Martin, 2001; Dhavale & Matin, 2005; Compain et al., 2009), THP (Itzstein et al. 1993) and iminosugar (Cipolla et al., 2003; Wilkinson et al. (2010); Nash et al., 2011; Zhang et al., 2011; Lenagh-Snow et al., 2011; Simone et al., 2012; Soengas et al. 2012; Best, Wang et al. 2010; Kato et al., 2012) types, to mention a few.
Iminosugars have been recognized as a class of potent inhibitors of glycosidase enzymes (Houston & Blanchfield 2003; Zechel et al., 2003; de Melo et al., 2006; Compain and Martin, 2007). These potent biological activities have culminated in the marketing of N-butyl-DNJ for the treatment of Gauchers disease (Miglustat) (Cox et al., 2003; Venier et al., 2012), N-hydroxyethyl-DNJ for type II diabetes (Miglitol) (Derosa & Maffioli, 2012) while other iminosugars have opened up new in-roads in the treatment of cancer (Nishimura, 2003; Lawton & Witty 2011), cystic fibrosis (Best, Jenkinson et al., 2010) and as antivirals (Compain & Martin, 2007; Pollock et al. 2008).
The first synthesis of DNJ (3 in Fig. 1) from starting material L-sorbose (1) utilized triphenylphosphine, carbon tetrabromide and lithium azide to effect the key transformation which installs an azido group in place of the C5 hydroxy (Beaupere et al., 1989). Syntheses of further DNJ derivatives from L-sorbose have been reported (Masson et al., 2000; Tamayo et al., 2010; O'Brien & Murphy, 2011). The title compound (2 in Fig. 1) bears orthogonal protecting groups on four of the five hydroxy groups, thus opening up points of synthetic divergence to novel classes of iminosugar glycomimetics based on a DNJ scaffold.
In the title compound (Fig. 2), the central furanose ring adopts a slightly twisted α-L-sorbofuranose ([α]D20 0° (c = 1 in CHCl3); m.p. 428–429 K (decomposition)) (Fehér & Vargha, 1966). In the crystal, molecules pack in columns in the [010] direction linked by O—H···O hydrogen bonds invovling the furanose hydroxy group and furanose ether oxygen atom (Fig. 3).
with C4 forming the flap. The O1 and C5 substituents are positioned pseudo-equatorially, while the C1', O2 and O3 substituents are positioned pseudo-axially. The dioxalane ring is in a flattened with C2 forming the flap. The title compound bears structural similarity to 1-O-benzoyl-2,3-O-isopropylidene-6-O-tosyl-The title compound is a novel intermediate in the synthesis of 1-deoxynojirimycin (DNJ) analogues. For examples of the use of monosaccharide starting materials in iminosugar syntheses, see: Compain & Martin (2001); Cipolla et al. (2003); Best, Wang et al. (2010); Wilkinson et al. (2010); Nash et al. (2011); Zhang et al. (2011); Lenagh-Snow et al. (2011); Simone et al. (2012); Soengas et al. (2012); Kato et al. (2012). For examples of the synthesis of other biologically active compounds from α-L-sorbofuranose, which bears structural similarity to the title compound, see: Fehér & Vargha (1966).
see: Compain et al. (2009); Sridhar et al. (2012); Das et al. (2012); Dhavale & Matin (2005); Compain & Martin (2001); Derosa & Maffioli (2012); Lew et al. (2000); Itzstein et al. (1993). For glycosidase inhibitors, see: Houston & Blanchfield (2003). For iminosugars as glycosidase inhibitors, see: Zechel et al. (2003); de Melo et al. (2006); Compain & Martin (2007). For examples of the clinical uses of iminosugars, see: Cox et al. (2003); Venier et al. (2012); Derosa & Maffioli (2012). For iminosugars in the treatment of cancer, cystic fibrosis and viral diseases, see: Nishimura (2003); Lawton & Witty (2011); Best, Jenkinson et al. (2010); Compain & Martin (2007); Pollock et al. (2008). For the syntheses of DNJ and its analogues from L-sorbose, see: Beaupere et al. (1989); Masson et al. (2000); Tamayo et al. (2010); O'Brien & Murphy (2011). For the synthesis of 1-O-benzoyl-2,3-O-isopropylidene-6-O-tosyl-Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Xtal3.6 (Hall et al., 1999), ORTEPII (Johnson, 1976), SHELXLE (Hübschle et al., 2011), Mercury (Macrae et al., 2006) and WinGX (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, (2010).C23H28O8S | F(000) = 984 |
Mr = 464.51 | Dx = 1.329 Mg m−3 |
Monoclinic, C2 | Cu Kα radiation, λ = 1.5418 Å |
Hall symbol: C 2y | Cell parameters from 13737 reflections |
a = 22.6192 (3) Å | θ = 4.0–76.2° |
b = 5.5649 (1) Å | µ = 1.64 mm−1 |
c = 19.0631 (3) Å | T = 150 K |
β = 104.696 (2)° | Blade, colourless |
V = 2321.04 (6) Å3 | 0.29 × 0.06 × 0.02 mm |
Z = 4 |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 4672 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 4541 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.031 |
Detector resolution: 10.5861 pixels mm-1 | θmax = 76.4°, θmin = 4.0° |
ω scans | h = −28→28 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −7→6 |
Tmin = 0.628, Tmax = 1.000 | l = −24→24 |
24544 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.127 | w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.16 | (Δ/σ)max = 0.001 |
4672 reflections | Δρmax = 0.48 e Å−3 |
293 parameters | Δρmin = −0.27 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 2165 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.000 (15) |
C23H28O8S | V = 2321.04 (6) Å3 |
Mr = 464.51 | Z = 4 |
Monoclinic, C2 | Cu Kα radiation |
a = 22.6192 (3) Å | µ = 1.64 mm−1 |
b = 5.5649 (1) Å | T = 150 K |
c = 19.0631 (3) Å | 0.29 × 0.06 × 0.02 mm |
β = 104.696 (2)° |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 4672 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 4541 reflections with I > 2σ(I) |
Tmin = 0.628, Tmax = 1.000 | Rint = 0.031 |
24544 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.127 | Δρmax = 0.48 e Å−3 |
S = 1.16 | Δρmin = −0.27 e Å−3 |
4672 reflections | Absolute structure: Flack (1983), 2165 Friedel pairs |
293 parameters | Absolute structure parameter: 0.000 (15) |
1 restraint |
Experimental. Analysis: [α]D26 0.20° (c 0.2 in CHCl3); IR (KBr, cm-1): 3594-3205 (br, OH), 3095, 3046 (w, ArC-H), 2984, 2950, 2925, 2864 (st, alkyl C-H), 1369, 1178 (s, S=O); 1H NMR (CDCl3, 400 MHz, p.p.m.): 1.27, 1.46 [2 x 3H, 2 x s, C(CH3)2], 2.43 [3H, s, TsCH3], 3.49 [1H, d, JH3,H4 = 11.8 Hz, H3], 3.57 [1H, d, JH1,H1' = 10.1 Hz, H1], 3.76 [1H, d, JH1',H1 = 10.0 Hz, H1'], 4.05 [1H, dd, JH4,H3 = 11.5 Hz, JH4,H5 = 2.5 Hz, H4], 4.16 [1H, dd, JH6,H5 = 6.9 Hz, JH6,H6' = 10.6 Hz, H6], 4.30 [1H, dd, JH6',H5 = 4.9, JH6',H6 = 10.6 Hz, H6'], 4.36 [1H, s, OH], 4.40 [1H, ddd, JH5,H4 = 2.5 Hz, JH5,H6' = 4.7 Hz, JH5,H6 = 7.2 Hz, H5], 4.52 [1H, d, JCHAHB,CHAHB = 11.7 Hz, CHAHB (Bn)], 4.59 [1H, d, JCHAHB,CHAHB = 11.7 Hz, CHAHB (Bn)], 7.22-7.26 [2H, m, 2 x ArHs (Bn-o)], 7.30-7.37 [5H, m, 2 x ArHs (Ts) and 3 x ArHs (Bn-m,p)], 7.81 [2H, d, ArHs (Ts)]; 13C NMR (CDCl3, 100 MHz, p.p.m.): 21.7 [CH3 (Ts)], 26.1, 27.2 [2 x CH3], 68.1 [C6], 71.3 [C1], 74.2 [CH2(Bn)], 74.4 [C4], 79.8 [C5], 86.4 [C3], 112.8 [C2], 112.9 [Cq acetonide], 128.0 [2 x ArCs (Bn-o)], 128.2 [2 x ArCs (Ts)], 128.5 [1 x ArC (Bn-p)], 128.8, 129.9 [2 x ArCs (Bn-m) and 2 x ArCs (Ts)], 133.0 [Cq-CH3], 136.5 [Cq (Bn)], 144.9 [Cq-S]; HRMS (ESI+): found 487.13977 [M+Na]+ C23H28NaO8S, requires 487.13971. M.p.: 377-378K |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.404262 (19) | 0.50470 (8) | 0.48560 (2) | 0.02722 (14) | |
O1 | 0.44717 (7) | 0.4027 (3) | 0.17231 (8) | 0.0355 (3) | |
O1' | 0.34123 (8) | 0.1296 (4) | 0.09744 (8) | 0.0438 (4) | |
O2 | 0.50981 (6) | 0.0816 (3) | 0.21233 (8) | 0.0313 (3) | |
O3 | 0.39754 (6) | −0.1689 (3) | 0.29897 (8) | 0.0316 (3) | |
H3O | 0.4000 | −0.3170 | 0.2916 | 0.047* | |
O4 | 0.41584 (6) | 0.3389 (2) | 0.27843 (7) | 0.0279 (3) | |
O5 | 0.43901 (6) | 0.4404 (3) | 0.42627 (7) | 0.0289 (3) | |
O6 | 0.41714 (7) | 0.7530 (3) | 0.50128 (8) | 0.0354 (3) | |
O7 | 0.41841 (7) | 0.3306 (3) | 0.54278 (7) | 0.0345 (3) | |
C1 | 0.41496 (8) | 0.2518 (4) | 0.20750 (9) | 0.0269 (4) | |
C1' | 0.34827 (9) | 0.2402 (5) | 0.16634 (11) | 0.0383 (5) | |
H1'A | 0.3252 | 0.1477 | 0.1949 | 0.046* | |
H1'B | 0.3312 | 0.4048 | 0.1596 | 0.046* | |
C2 | 0.45054 (8) | 0.0140 (4) | 0.21843 (9) | 0.0259 (3) | |
H2 | 0.4311 | −0.1123 | 0.1826 | 0.031* | |
C3 | 0.45313 (8) | −0.0559 (4) | 0.29689 (10) | 0.0270 (4) | |
H3 | 0.4895 | −0.1575 | 0.3191 | 0.032* | |
C4 | 0.45641 (8) | 0.1905 (3) | 0.33235 (9) | 0.0254 (4) | |
H4 | 0.4991 | 0.2542 | 0.3426 | 0.030* | |
C5 | 0.43459 (9) | 0.1918 (4) | 0.40058 (10) | 0.0302 (4) | |
H5A | 0.3918 | 0.1348 | 0.3904 | 0.036* | |
H5B | 0.4605 | 0.0855 | 0.4376 | 0.036* | |
C6 | 0.32399 (13) | 0.2890 (5) | 0.03842 (12) | 0.0436 (5) | |
H6A | 0.3540 | 0.4216 | 0.0443 | 0.052* | |
H6B | 0.2835 | 0.3594 | 0.0370 | 0.052* | |
C7 | 0.32113 (10) | 0.1574 (5) | −0.03123 (11) | 0.0365 (5) | |
C8 | 0.28553 (11) | 0.2509 (6) | −0.09630 (12) | 0.0459 (6) | |
H8 | 0.2630 | 0.3950 | −0.0961 | 0.055* | |
C9 | 0.28292 (15) | 0.1343 (7) | −0.16111 (13) | 0.0602 (9) | |
H9 | 0.2589 | 0.1997 | −0.2052 | 0.072* | |
C10 | 0.31489 (15) | −0.0766 (7) | −0.16223 (15) | 0.0611 (9) | |
H10 | 0.3129 | −0.1558 | −0.2069 | 0.073* | |
C11 | 0.34979 (14) | −0.1721 (6) | −0.09822 (17) | 0.0563 (7) | |
H11 | 0.3716 | −0.3177 | −0.0987 | 0.068* | |
C12 | 0.35291 (11) | −0.0536 (5) | −0.03250 (13) | 0.0428 (5) | |
H12 | 0.3771 | −0.1190 | 0.0115 | 0.051* | |
C13 | 0.50589 (9) | 0.3003 (4) | 0.17266 (11) | 0.0313 (4) | |
C14 | 0.50694 (13) | 0.2538 (6) | 0.09465 (13) | 0.0496 (6) | |
H14A | 0.4735 | 0.1446 | 0.0721 | 0.074* | |
H14B | 0.5461 | 0.1807 | 0.0934 | 0.074* | |
H14C | 0.5019 | 0.4060 | 0.0679 | 0.074* | |
C15 | 0.55631 (12) | 0.4642 (5) | 0.21200 (15) | 0.0481 (6) | |
H15A | 0.5959 | 0.3946 | 0.2112 | 0.072* | |
H15B | 0.5541 | 0.4834 | 0.2624 | 0.072* | |
H15C | 0.5518 | 0.6215 | 0.1881 | 0.072* | |
C16 | 0.32657 (8) | 0.4727 (4) | 0.44051 (9) | 0.0281 (4) | |
C17 | 0.29721 (10) | 0.6518 (4) | 0.39353 (11) | 0.0324 (4) | |
H17 | 0.3195 | 0.7858 | 0.3828 | 0.039* | |
C18 | 0.23503 (10) | 0.6319 (5) | 0.36260 (11) | 0.0355 (4) | |
H18 | 0.2147 | 0.7545 | 0.3308 | 0.043* | |
C19 | 0.20172 (9) | 0.4365 (4) | 0.37695 (10) | 0.0329 (4) | |
C20 | 0.23236 (10) | 0.2542 (4) | 0.42171 (11) | 0.0332 (4) | |
H20 | 0.2105 | 0.1161 | 0.4302 | 0.040* | |
C21 | 0.29487 (9) | 0.2718 (4) | 0.45432 (10) | 0.0307 (4) | |
H21 | 0.3154 | 0.1482 | 0.4855 | 0.037* | |
C22 | 0.13348 (10) | 0.4233 (6) | 0.34609 (13) | 0.0456 (6) | |
H22A | 0.1234 | 0.4671 | 0.2946 | 0.068* | |
H22B | 0.1133 | 0.5349 | 0.3723 | 0.068* | |
H22C | 0.1194 | 0.2593 | 0.3513 | 0.068* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0334 (2) | 0.0263 (3) | 0.0226 (2) | −0.00197 (16) | 0.00836 (15) | −0.00147 (16) |
O1 | 0.0404 (7) | 0.0297 (8) | 0.0412 (7) | 0.0075 (6) | 0.0190 (6) | 0.0082 (6) |
O1' | 0.0522 (9) | 0.0409 (10) | 0.0313 (7) | 0.0102 (7) | −0.0020 (6) | −0.0056 (7) |
O2 | 0.0278 (6) | 0.0284 (8) | 0.0400 (7) | 0.0039 (5) | 0.0129 (5) | 0.0037 (6) |
O3 | 0.0356 (7) | 0.0208 (7) | 0.0417 (7) | −0.0025 (5) | 0.0161 (6) | −0.0016 (5) |
O4 | 0.0374 (7) | 0.0213 (7) | 0.0243 (6) | 0.0056 (5) | 0.0067 (5) | −0.0019 (5) |
O5 | 0.0347 (6) | 0.0267 (8) | 0.0275 (6) | −0.0050 (5) | 0.0121 (5) | −0.0029 (5) |
O6 | 0.0441 (7) | 0.0297 (8) | 0.0337 (6) | −0.0060 (6) | 0.0123 (6) | −0.0082 (6) |
O7 | 0.0395 (7) | 0.0384 (9) | 0.0246 (6) | −0.0005 (6) | 0.0061 (5) | 0.0043 (6) |
C1 | 0.0299 (8) | 0.0266 (10) | 0.0246 (8) | 0.0038 (7) | 0.0075 (7) | −0.0011 (7) |
C1' | 0.0326 (9) | 0.0459 (13) | 0.0328 (9) | 0.0097 (9) | 0.0017 (8) | −0.0080 (9) |
C2 | 0.0265 (7) | 0.0232 (9) | 0.0287 (8) | 0.0022 (7) | 0.0083 (6) | −0.0027 (7) |
C3 | 0.0288 (8) | 0.0225 (10) | 0.0305 (8) | 0.0028 (7) | 0.0090 (6) | 0.0013 (7) |
C4 | 0.0292 (8) | 0.0217 (9) | 0.0249 (8) | 0.0005 (7) | 0.0059 (6) | −0.0003 (7) |
C5 | 0.0380 (9) | 0.0256 (10) | 0.0291 (8) | −0.0023 (7) | 0.0125 (7) | −0.0020 (7) |
C6 | 0.0591 (13) | 0.0344 (13) | 0.0342 (10) | 0.0076 (11) | 0.0061 (9) | 0.0002 (9) |
C7 | 0.0381 (10) | 0.0383 (12) | 0.0337 (10) | −0.0063 (9) | 0.0102 (8) | −0.0017 (9) |
C8 | 0.0475 (12) | 0.0535 (16) | 0.0346 (10) | −0.0093 (11) | 0.0065 (9) | 0.0032 (10) |
C9 | 0.0682 (17) | 0.081 (2) | 0.0319 (11) | −0.0281 (17) | 0.0130 (11) | −0.0017 (13) |
C10 | 0.0691 (17) | 0.079 (2) | 0.0430 (12) | −0.0328 (17) | 0.0275 (12) | −0.0210 (14) |
C11 | 0.0620 (15) | 0.0521 (16) | 0.0651 (16) | −0.0171 (13) | 0.0350 (13) | −0.0228 (14) |
C12 | 0.0424 (11) | 0.0429 (15) | 0.0447 (11) | −0.0075 (10) | 0.0143 (9) | −0.0080 (10) |
C13 | 0.0350 (9) | 0.0299 (11) | 0.0327 (9) | 0.0028 (8) | 0.0153 (7) | 0.0020 (8) |
C14 | 0.0604 (14) | 0.0579 (17) | 0.0359 (11) | 0.0145 (13) | 0.0223 (10) | 0.0010 (11) |
C15 | 0.0476 (12) | 0.0399 (15) | 0.0595 (14) | −0.0129 (10) | 0.0182 (10) | −0.0004 (11) |
C16 | 0.0327 (8) | 0.0286 (11) | 0.0247 (7) | 0.0014 (7) | 0.0105 (6) | −0.0002 (7) |
C17 | 0.0405 (10) | 0.0279 (11) | 0.0305 (8) | −0.0002 (8) | 0.0122 (7) | 0.0037 (8) |
C18 | 0.0419 (10) | 0.0355 (12) | 0.0287 (9) | 0.0067 (9) | 0.0081 (7) | 0.0033 (8) |
C19 | 0.0347 (9) | 0.0385 (12) | 0.0273 (8) | 0.0014 (8) | 0.0113 (7) | −0.0059 (8) |
C20 | 0.0391 (10) | 0.0307 (11) | 0.0319 (9) | −0.0055 (8) | 0.0127 (7) | −0.0024 (8) |
C21 | 0.0385 (9) | 0.0284 (11) | 0.0264 (8) | −0.0018 (8) | 0.0104 (7) | 0.0022 (7) |
C22 | 0.0367 (10) | 0.0585 (16) | 0.0400 (11) | −0.0008 (10) | 0.0069 (8) | −0.0096 (11) |
S1—O6 | 1.4278 (17) | C8—C9 | 1.384 (4) |
S1—O7 | 1.4326 (16) | C8—H8 | 0.9500 |
S1—O5 | 1.5736 (13) | C9—C10 | 1.382 (6) |
S1—C16 | 1.7585 (19) | C9—H9 | 0.9500 |
O1—C1 | 1.391 (2) | C10—C11 | 1.380 (5) |
O1—C13 | 1.444 (2) | C10—H10 | 0.9500 |
O1'—C6 | 1.408 (3) | C11—C12 | 1.402 (4) |
O1'—C1' | 1.422 (3) | C11—H11 | 0.9500 |
O2—C13 | 1.424 (3) | C12—H12 | 0.9500 |
O2—C2 | 1.425 (2) | C13—C15 | 1.504 (3) |
O3—C3 | 1.415 (2) | C13—C14 | 1.516 (3) |
O3—H3O | 0.8400 | C14—H14A | 0.9800 |
O4—C1 | 1.432 (2) | C14—H14B | 0.9800 |
O4—C4 | 1.450 (2) | C14—H14C | 0.9800 |
O5—C5 | 1.463 (2) | C15—H15A | 0.9800 |
C1—C1' | 1.515 (3) | C15—H15B | 0.9800 |
C1—C2 | 1.535 (3) | C15—H15C | 0.9800 |
C1'—H1'A | 0.9900 | C16—C21 | 1.389 (3) |
C1'—H1'B | 0.9900 | C16—C17 | 1.391 (3) |
C2—C3 | 1.532 (2) | C17—C18 | 1.385 (3) |
C2—H2 | 1.0000 | C17—H17 | 0.9500 |
C3—C4 | 1.522 (3) | C18—C19 | 1.389 (3) |
C3—H3 | 1.0000 | C18—H18 | 0.9500 |
C4—C5 | 1.504 (2) | C19—C20 | 1.392 (3) |
C4—H4 | 1.0000 | C19—C22 | 1.508 (3) |
C5—H5A | 0.9900 | C20—C21 | 1.396 (3) |
C5—H5B | 0.9900 | C20—H20 | 0.9500 |
C6—C7 | 1.503 (3) | C21—H21 | 0.9500 |
C6—H6A | 0.9900 | C22—H22A | 0.9800 |
C6—H6B | 0.9900 | C22—H22B | 0.9800 |
C7—C12 | 1.380 (4) | C22—H22C | 0.9800 |
C7—C8 | 1.397 (3) | ||
O6—S1—O7 | 120.05 (10) | C9—C8—C7 | 120.2 (3) |
O6—S1—O5 | 104.95 (8) | C9—C8—H8 | 119.9 |
O7—S1—O5 | 109.71 (9) | C7—C8—H8 | 119.9 |
O6—S1—C16 | 109.01 (10) | C10—C9—C8 | 120.6 (3) |
O7—S1—C16 | 107.82 (9) | C10—C9—H9 | 119.7 |
O5—S1—C16 | 104.19 (8) | C8—C9—H9 | 119.7 |
C1—O1—C13 | 110.70 (15) | C11—C10—C9 | 119.8 (3) |
C6—O1'—C1' | 114.1 (2) | C11—C10—H10 | 120.1 |
C13—O2—C2 | 109.61 (14) | C9—C10—H10 | 120.1 |
C3—O3—H3O | 109.5 | C10—C11—C12 | 119.8 (3) |
C1—O4—C4 | 109.34 (14) | C10—C11—H11 | 120.1 |
C5—O5—S1 | 116.84 (11) | C12—C11—H11 | 120.1 |
O1—C1—O4 | 111.57 (16) | C7—C12—C11 | 120.5 (3) |
O1—C1—C1' | 110.53 (16) | C7—C12—H12 | 119.7 |
O4—C1—C1' | 106.07 (14) | C11—C12—H12 | 119.7 |
O1—C1—C2 | 105.38 (14) | O2—C13—O1 | 105.86 (14) |
O4—C1—C2 | 106.41 (14) | O2—C13—C15 | 108.44 (18) |
C1'—C1—C2 | 116.89 (18) | O1—C13—C15 | 110.09 (19) |
O1'—C1'—C1 | 111.11 (16) | O2—C13—C14 | 111.1 (2) |
O1'—C1'—H1'A | 109.4 | O1—C13—C14 | 107.84 (18) |
C1—C1'—H1'A | 109.4 | C15—C13—C14 | 113.2 (2) |
O1'—C1'—H1'B | 109.4 | C13—C14—H14A | 109.5 |
C1—C1'—H1'B | 109.4 | C13—C14—H14B | 109.5 |
H1'A—C1'—H1'B | 108.0 | H14A—C14—H14B | 109.5 |
O2—C2—C3 | 110.05 (14) | C13—C14—H14C | 109.5 |
O2—C2—C1 | 103.47 (16) | H14A—C14—H14C | 109.5 |
C3—C2—C1 | 103.91 (14) | H14B—C14—H14C | 109.5 |
O2—C2—H2 | 112.9 | C13—C15—H15A | 109.5 |
C3—C2—H2 | 112.9 | C13—C15—H15B | 109.5 |
C1—C2—H2 | 112.9 | H15A—C15—H15B | 109.5 |
O3—C3—C4 | 109.35 (14) | C13—C15—H15C | 109.5 |
O3—C3—C2 | 109.03 (15) | H15A—C15—H15C | 109.5 |
C4—C3—C2 | 100.96 (15) | H15B—C15—H15C | 109.5 |
O3—C3—H3 | 112.3 | C21—C16—C17 | 120.91 (18) |
C4—C3—H3 | 112.3 | C21—C16—S1 | 119.27 (15) |
C2—C3—H3 | 112.3 | C17—C16—S1 | 119.78 (16) |
O4—C4—C5 | 108.83 (15) | C18—C17—C16 | 119.0 (2) |
O4—C4—C3 | 104.34 (13) | C18—C17—H17 | 120.5 |
C5—C4—C3 | 113.49 (16) | C16—C17—H17 | 120.5 |
O4—C4—H4 | 110.0 | C17—C18—C19 | 121.5 (2) |
C5—C4—H4 | 110.0 | C17—C18—H18 | 119.3 |
C3—C4—H4 | 110.0 | C19—C18—H18 | 119.3 |
O5—C5—C4 | 106.54 (15) | C18—C19—C20 | 118.72 (19) |
O5—C5—H5A | 110.4 | C18—C19—C22 | 120.9 (2) |
C4—C5—H5A | 110.4 | C20—C19—C22 | 120.3 (2) |
O5—C5—H5B | 110.4 | C19—C20—C21 | 120.8 (2) |
C4—C5—H5B | 110.4 | C19—C20—H20 | 119.6 |
H5A—C5—H5B | 108.6 | C21—C20—H20 | 119.6 |
O1'—C6—C7 | 109.9 (2) | C16—C21—C20 | 119.0 (2) |
O1'—C6—H6A | 109.7 | C16—C21—H21 | 120.5 |
C7—C6—H6A | 109.7 | C20—C21—H21 | 120.5 |
O1'—C6—H6B | 109.7 | C19—C22—H22A | 109.5 |
C7—C6—H6B | 109.7 | C19—C22—H22B | 109.5 |
H6A—C6—H6B | 108.2 | H22A—C22—H22B | 109.5 |
C12—C7—C8 | 119.1 (2) | C19—C22—H22C | 109.5 |
C12—C7—C6 | 121.6 (2) | H22A—C22—H22C | 109.5 |
C8—C7—C6 | 119.3 (2) | H22B—C22—H22C | 109.5 |
O6—S1—O5—C5 | 178.98 (14) | C1'—O1'—C6—C7 | 176.95 (18) |
O7—S1—O5—C5 | 48.72 (15) | O1'—C6—C7—C12 | −22.5 (3) |
C16—S1—O5—C5 | −66.49 (15) | O1'—C6—C7—C8 | 157.6 (2) |
C13—O1—C1—O4 | 103.77 (18) | C12—C7—C8—C9 | −0.8 (4) |
C13—O1—C1—C1' | −138.45 (17) | C6—C7—C8—C9 | 179.1 (2) |
C13—O1—C1—C2 | −11.3 (2) | C7—C8—C9—C10 | 0.6 (4) |
C4—O4—C1—O1 | −106.51 (17) | C8—C9—C10—C11 | 0.0 (4) |
C4—O4—C1—C1' | 133.06 (17) | C9—C10—C11—C12 | −0.4 (4) |
C4—O4—C1—C2 | 7.94 (19) | C8—C7—C12—C11 | 0.3 (4) |
C6—O1'—C1'—C1 | −109.0 (2) | C6—C7—C12—C11 | −179.6 (2) |
O1—C1—C1'—O1' | 65.6 (2) | C10—C11—C12—C7 | 0.3 (4) |
O4—C1—C1'—O1' | −173.29 (19) | C2—O2—C13—O1 | 16.1 (2) |
C2—C1—C1'—O1' | −54.9 (3) | C2—O2—C13—C15 | 134.23 (18) |
C13—O2—C2—C3 | −132.90 (17) | C2—O2—C13—C14 | −100.7 (2) |
C13—O2—C2—C1 | −22.38 (18) | C1—O1—C13—O2 | −2.2 (2) |
O1—C1—C2—O2 | 20.33 (18) | C1—O1—C13—C15 | −119.2 (2) |
O4—C1—C2—O2 | −98.26 (16) | C1—O1—C13—C14 | 116.9 (2) |
C1'—C1—C2—O2 | 143.52 (16) | O6—S1—C16—C21 | −144.04 (16) |
O1—C1—C2—C3 | 135.33 (15) | O7—S1—C16—C21 | −12.19 (18) |
O4—C1—C2—C3 | 16.74 (18) | O5—S1—C16—C21 | 104.34 (15) |
C1'—C1—C2—C3 | −101.48 (18) | O6—S1—C16—C17 | 33.81 (17) |
O2—C2—C3—O3 | −167.94 (15) | O7—S1—C16—C17 | 165.66 (15) |
C1—C2—C3—O3 | 81.83 (18) | O5—S1—C16—C17 | −77.81 (17) |
O2—C2—C3—C4 | 76.98 (18) | C21—C16—C17—C18 | 2.5 (3) |
C1—C2—C3—C4 | −33.25 (16) | S1—C16—C17—C18 | −175.36 (15) |
C1—O4—C4—C5 | −151.21 (16) | C16—C17—C18—C19 | −0.6 (3) |
C1—O4—C4—C3 | −29.75 (18) | C17—C18—C19—C20 | −2.0 (3) |
O3—C3—C4—O4 | −76.32 (17) | C17—C18—C19—C22 | 176.73 (19) |
C2—C3—C4—O4 | 38.51 (16) | C18—C19—C20—C21 | 2.9 (3) |
O3—C3—C4—C5 | 42.0 (2) | C22—C19—C20—C21 | −175.87 (18) |
C2—C3—C4—C5 | 156.83 (15) | C17—C16—C21—C20 | −1.6 (3) |
S1—O5—C5—C4 | 165.40 (12) | S1—C16—C21—C20 | 176.22 (14) |
O4—C4—C5—O5 | −62.69 (18) | C19—C20—C21—C16 | −1.1 (3) |
C3—C4—C5—O5 | −178.38 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3O···O4i | 0.84 | 1.98 | 2.812 (2) | 174 |
Symmetry code: (i) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C23H28O8S |
Mr | 464.51 |
Crystal system, space group | Monoclinic, C2 |
Temperature (K) | 150 |
a, b, c (Å) | 22.6192 (3), 5.5649 (1), 19.0631 (3) |
β (°) | 104.696 (2) |
V (Å3) | 2321.04 (6) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 1.64 |
Crystal size (mm) | 0.29 × 0.06 × 0.02 |
Data collection | |
Diffractometer | Agilent SuperNova (Dual, Cu at zero, Atlas) |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.628, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 24544, 4672, 4541 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.630 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.127, 1.16 |
No. of reflections | 4672 |
No. of parameters | 293 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.48, −0.27 |
Absolute structure | Flack (1983), 2165 Friedel pairs |
Absolute structure parameter | 0.000 (15) |
Computer programs: CrysAlis PRO (Agilent, 2011), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), Xtal3.6 (Hall et al., 1999), ORTEPII (Johnson, 1976), SHELXLE (Hübschle et al., 2011), Mercury (Macrae et al., 2006) and WinGX (Farrugia, 2012), publCIF (Westrip, (2010).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3O···O4i | 0.84 | 1.98 | 2.812 (2) | 173.6 |
Symmetry code: (i) x, y−1, z. |
Acknowledgements
The University of Sydney is gratefully acknowledged for funding.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Beaupere, D., Stasik, B., Uzan, R. & Demailly, G. (1989). Carbohydr. Res. 191, 163–166. CrossRef CAS Web of Science Google Scholar
Best, D., Jenkinson, S. F., Saville, A. W., Alonzi, D. S., Wormald, M. R., Butters, T. D., Norez, C., Becq, F., Blériot, Y., Adachi, I., Kato, A. & Fleet, G. W. J. (2010). Tetrahedron Lett. 51, 4170–4174. Web of Science CrossRef CAS Google Scholar
Best, D., Wang, C., Weymouth-Wilson, A. C., Clarkson, R. A., Wilson, F. X., Nash, R. J., Miyauchi, S., Kato, A. & Fleet, G. W. J. (2010). Tetrahedron Asymmetry, 21, 311–319. Web of Science CrossRef CAS Google Scholar
Cipolla, L., La Ferla, B. & Nicotra, F. (2003). Curr. Top. Med. Chem. 3, 485–511. Web of Science CrossRef PubMed CAS Google Scholar
Compain, P., Chagnault, V. & Martin, O. R. (2009). Tetrahedron Asymmetry, 20, 672–711. Web of Science CrossRef CAS Google Scholar
Compain, P. & Martin, O. R. (2001). Bioorg. Med. Chem. 9, 3077–3092. Web of Science CrossRef PubMed CAS Google Scholar
Compain, P. & Martin, O. R. (2007). Iminosugars: From Synthesis to Therapeutic Applications, ch. 9. Chichester: John Wiley and Sons Ltd. Google Scholar
Cox, T. M., et al. (2003). J. Inh. Met. Dis. 26, 513–526. Web of Science CrossRef CAS Google Scholar
Das, S., Mishra, A. K., Kumar, A., Al Ghamdi, A. A. & Yadav, J. S. (2012). Carbohydr. Res. 358, 7–11. Web of Science CrossRef CAS PubMed Google Scholar
Derosa, G. & Maffioli, P. (2012). Arch. Med. Sci. 8, 899–906. Web of Science CrossRef CAS PubMed Google Scholar
Dhavale, D. D. & Matin, M. M. (2005). Arkivoc, pp. 110–132. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fehér, O. & Vargha, L. (1966). Acta. Chim. Acad. Sci. Hung. 50, 371–375. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hall, S. R., du Boulay, D. J. & Olthof-Hazekamp, R. (1999). Editors. Xtal3.6. University of Western Australia, Australia. Google Scholar
Houston, T. A. & Blanchfield, J. T. (2003). Mini-Rev. Med. Chem. 3, 669–678. CrossRef CAS Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Itzstein, M. von, Wu, W.-Y., Kok, G. B., Pegg, M. S., Dyason, J. C., Jin, B., Phan, T. V., Smythe, M. L., White, H. F., Oliver, S. W., Colman, P. M., Varghese, J. N., Ryan, D. M., Woods, J. M., Bethel, R. C., Hotham, V. J., Cameron, J. M. & Penn, C. R. (1993). Nature, 363, 418–423. PubMed Web of Science Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA. Google Scholar
Kato, A., Hayashi, E., Miyauchi, S., Adachi, I., Imahori, T., Natori, Y., Yoshimura, Y., Nash, R. J., Shimaoka, H., Nakagome, I., Koseki, J., Hirono, S. & Takahata, H. (2012). J. Med. Chem. 55, 10347–10362. Web of Science CrossRef CAS PubMed Google Scholar
Lawton, G. & Witty, D. R. (2011). Progress in Medicinal Chemistry, ch. 4. Amsterdam: Elsevier. Google Scholar
Lenagh-Snow, G. M. J., Araujo, N., Jenkinson, S. F., Rutherforf, C., Nakagawa, S., Kato, A., Yu, C.-Y., Weymouth-Wilson, A. C. & Fleet, G. W. J. (2011). Org. Lett. 13, 5834–5837. Web of Science CAS PubMed Google Scholar
Lew, W., Chen, X. & Kim, C. U. (2000). Curr. Med. Chem. 7, 663–672. CrossRef PubMed CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Masson, G., Compain, P. & Martin, O. R. (2000). Org. Lett. 2, 2971–2974. Web of Science CrossRef PubMed CAS Google Scholar
Melo, E. B. de, Gomes, A. D. & Carvalho, I. (2006). Tetrahedron, 62, 10277–10302. Google Scholar
Nash, R. J., Kato, A., Yu, C.-Y. & Fleet, G. W. J. (2011). Fut. Med. Chem. 3, 1513–1521. Web of Science CrossRef CAS Google Scholar
Nishimura, Y. (2003). Curr. Top. Med. Chem. 3, 575–591. Web of Science CrossRef PubMed CAS Google Scholar
O'Brien, C. & Murphy, P. V. (2011). J. Carbohydr. Res. 30, 626–640. CAS Google Scholar
Pollock, S., Dwek, R. A., Burton, D. R. & Zitzmann, N. (2008). Aids, 22, 1961–1969. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Simone, M. I., Soengas, R. G., Jenkinson, S. F., Evinson, E. L., Nash, R. J. & Fleet, G. W. J. (2012). Tetrahedron Asymmetry, 23, 401–408. Web of Science CrossRef CAS Google Scholar
Soengas, R. G., Simone, M., Hunter, S., Nash, R. J. & Fleet, G. W. J. (2012). Eur. J. Org. Chem. 12, 2394–2402. Web of Science CrossRef Google Scholar
Sridhar, P. R., Reddy, G. M. & Seshadri, K. (2012). Eur. J. Org. Chem. 31, 6228–6235. Web of Science CrossRef Google Scholar
Tamayo, J. A., Franco, F. & Lo Re, D. (2010). Synlett, 9, 1323–1326. Web of Science CrossRef Google Scholar
Venier, R. E. & Igdoura, S. A. (2012). J. Med. Gen. 49, 591–597. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wilkinson, B. L., Bornaghi, L. F., Lopez, M., Poulsen, S.-A., Healy, P. C. & Houston, T. A. (2010). Aust. J. Chem. 63, 821–829. Web of Science CSD CrossRef CAS Google Scholar
Zechel, D. L., Boraston, A. B., Gloster, T., Boraston, C. M., Macdonald, J. M., Tilbrook, D. M. G., Stick, R. V. & Davies, G. J. (2003). J. Am. Chem. Soc. 125, 14313–14323. Web of Science CrossRef PubMed CAS Google Scholar
Zhang, Z.-X., Wu, B., Wang, B., Li, T.-H., Zhang, P.-F., Guo, L.-N., Wang, W.-J., Zhao, W. & Wang, P. G. (2011). Tetrahedron Lett. 52, 3802–3805. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Monosaccharides provide a vast and formidable chiral pool of starting materials, whose utilization continues to expand in the enantiospecific syntheses of natural products (Sridhar et al., 2012; Das et al., 2012), in particular of carbohydrate mimetics of the carbasugar (Derosa & Maffioli, 2012; Lew et al. 2000), C-glycoside (Compain & Martin, 2001; Dhavale & Matin, 2005; Compain et al., 2009), THP (Itzstein et al. 1993) and iminosugar (Cipolla et al., 2003; Wilkinson et al. (2010); Nash et al., 2011; Zhang et al., 2011; Lenagh-Snow et al., 2011; Simone et al., 2012; Soengas et al. 2012; Best, Wang et al. 2010; Kato et al., 2012) types, to mention a few.
Iminosugars have been recognized as a class of potent inhibitors of glycosidase enzymes (Houston & Blanchfield 2003; Zechel et al., 2003; de Melo et al., 2006; Compain and Martin, 2007). These potent biological activities have culminated in the marketing of N-butyl-DNJ for the treatment of Gauchers disease (Miglustat) (Cox et al., 2003; Venier et al., 2012), N-hydroxyethyl-DNJ for type II diabetes (Miglitol) (Derosa & Maffioli, 2012) while other iminosugars have opened up new in-roads in the treatment of cancer (Nishimura, 2003; Lawton & Witty 2011), cystic fibrosis (Best, Jenkinson et al., 2010) and as antivirals (Compain & Martin, 2007; Pollock et al. 2008).
The first synthesis of DNJ (3 in Fig. 1) from starting material L-sorbose (1) utilized triphenylphosphine, carbon tetrabromide and lithium azide to effect the key transformation which installs an azido group in place of the C5 hydroxy (Beaupere et al., 1989). Syntheses of further DNJ derivatives from L-sorbose have been reported (Masson et al., 2000; Tamayo et al., 2010; O'Brien & Murphy, 2011). The title compound (2 in Fig. 1) bears orthogonal protecting groups on four of the five hydroxy groups, thus opening up points of synthetic divergence to novel classes of iminosugar glycomimetics based on a DNJ scaffold.
In the title compound (Fig. 2), the central furanose ring adopts a slightly twisted envelope conformation with C4 forming the flap. The O1 and C5 substituents are positioned pseudo-equatorially, while the C1', O2 and O3 substituents are positioned pseudo-axially. The dioxalane ring is in a flattened envelope conformation with C2 forming the flap. The title compound bears structural similarity to 1-O-benzoyl-2,3-O-isopropylidene-6-O-tosyl-α-L-sorbofuranose ([α]D20 0° (c = 1 in CHCl3); m.p. 428–429 K (decomposition)) (Fehér & Vargha, 1966). In the crystal, molecules pack in columns in the [010] direction linked by O—H···O hydrogen bonds invovling the furanose hydroxy group and furanose ether oxygen atom (Fig. 3).