organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-O-Benzyl-2,3-O-iso­propyl­­idene-6-O-tosyl-α-L-sorbo­furan­ose

aSchool of Chemistry (F11), University of Sydney, NSW 2006, Australia, bCrystal Structure Analysis Facility, School of Chemistry (F11), University of Sydney, NSW 2006, Australia, cDepartment of Hospital Pharmacy, University of Toyama, 2630, Sugitani, Toyama 930-0194, Japan, and dInstitute for Glycomics, Gold Coast Campus, Griffith University, Queensland 4222, Australia
*Correspondence e-mail: simone_m@chem.usyd.edu.au

(Received 9 May 2013; accepted 5 June 2013; online 12 June 2013)

In the title compound (systematic name: {(3aS,5S,6R,6aS)-3a-[(benz­yloxy)meth­yl]-6-hy­droxy-2,2-di­methyl­tetra­hydro­furo[2,3-d][1,3]dioxol-5-yl}methyl 4-methyl­benzene­sulfonate), C23H28O8S, the absolute structure and relative stereochemistry of the four chiral centres have been established by X-ray crystallography, with the absolute configuration inferred from the use of L-sorbose as the starting material. The central furan­ose ring adopts a slightly twisted envelope conformation (with the C atom bearing the methyl­benzene­sulfonate substituent as the flap) from which three substituents depart pseudo-axially (–CH2O—benzyl, –OH and one acetonide O atom) and two substituents pseudo-equatorially (–CH2O—tosyl and second acetonide O atom). The dioxalane ring is in a flattened envelope conformation with the fused CH C atom as the flap. In the crystal, mol­ecules pack in columns along [010] linked by O—H⋯O hydrogen bonds involving the furan­ose hy­droxy group and furan­ose ether O atom.

Related literature

The title compound is a novel inter­mediate in the synthesis of 1-de­oxy­nojirimycin (DNJ) analogues. For examples of the use of monosaccharide starting materials in imino­sugar syntheses, see: Compain & Martin (2001[Compain, P. & Martin, O. R. (2001). Bioorg. Med. Chem. 9, 3077-3092.]); Cipolla et al. (2003[Cipolla, L., La Ferla, B. & Nicotra, F. (2003). Curr. Top. Med. Chem. 3, 485-511.]); Best, Wang et al. (2010[Best, D., Wang, C., Weymouth-Wilson, A. C., Clarkson, R. A., Wilson, F. X., Nash, R. J., Miyauchi, S., Kato, A. & Fleet, G. W. J. (2010). Tetrahedron Asymmetry, 21, 311-319.]); Wilkinson et al. (2010[Wilkinson, B. L., Bornaghi, L. F., Lopez, M., Poulsen, S.-A., Healy, P. C. & Houston, T. A. (2010). Aust. J. Chem. 63, 821-829.]); Nash et al. (2011[Nash, R. J., Kato, A., Yu, C.-Y. & Fleet, G. W. J. (2011). Fut. Med. Chem. 3, 1513-1521.]); Zhang et al. (2011[Zhang, Z.-X., Wu, B., Wang, B., Li, T.-H., Zhang, P.-F., Guo, L.-N., Wang, W.-J., Zhao, W. & Wang, P. G. (2011). Tetrahedron Lett. 52, 3802-3805.]); Lenagh-Snow et al. (2011[Lenagh-Snow, G. M. J., Araujo, N., Jenkinson, S. F., Rutherforf, C., Nakagawa, S., Kato, A., Yu, C.-Y., Weymouth-Wilson, A. C. & Fleet, G. W. J. (2011). Org. Lett. 13, 5834-5837.]); Simone et al. (2012[Simone, M. I., Soengas, R. G., Jenkinson, S. F., Evinson, E. L., Nash, R. J. & Fleet, G. W. J. (2012). Tetrahedron Asymmetry, 23, 401-408.]); Soengas et al. (2012[Soengas, R. G., Simone, M., Hunter, S., Nash, R. J. & Fleet, G. W. J. (2012). Eur. J. Org. Chem. 12, 2394-2402.]); Kato et al. (2012[Kato, A., Hayashi, E., Miyauchi, S., Adachi, I., Imahori, T., Natori, Y., Yoshimura, Y., Nash, R. J., Shimaoka, H., Nakagome, I., Koseki, J., Hirono, S. & Takahata, H. (2012). J. Med. Chem. 55, 10347-10362.]). For examples of the synthesis of other biologically active compounds from monosaccharides, see: Compain et al. (2009[Compain, P., Chagnault, V. & Martin, O. R. (2009). Tetrahedron Asymmetry, 20, 672-711.]); Sridhar et al. (2012[Sridhar, P. R., Reddy, G. M. & Seshadri, K. (2012). Eur. J. Org. Chem. 31, 6228-6235.]); Das et al. (2012[Das, S., Mishra, A. K., Kumar, A., Al Ghamdi, A. A. & Yadav, J. S. (2012). Carbohydr. Res. 358, 7-11.]); Dhavale & Matin (2005[Dhavale, D. D. & Matin, M. M. (2005). Arkivoc, pp. 110-132.]); Compain & Martin (2001[Compain, P. & Martin, O. R. (2001). Bioorg. Med. Chem. 9, 3077-3092.]); Derosa & Maffioli (2012[Derosa, G. & Maffioli, P. (2012). Arch. Med. Sci. 8, 899-906.]); Lew et al. (2000[Lew, W., Chen, X. & Kim, C. U. (2000). Curr. Med. Chem. 7, 663-672.]); Itzstein et al. (1993[Itzstein, M. von, Wu, W.-Y., Kok, G. B., Pegg, M. S., Dyason, J. C., Jin, B., Phan, T. V., Smythe, M. L., White, H. F., Oliver, S. W., Colman, P. M., Varghese, J. N., Ryan, D. M., Woods, J. M., Bethel, R. C., Hotham, V. J., Cameron, J. M. & Penn, C. R. (1993). Nature, 363, 418-423.]). For glycosidase inhibitors, see: Houston & Blanchfield (2003[Houston, T. A. & Blanchfield, J. T. (2003). Mini-Rev. Med. Chem. 3, 669-678.]). For imino­sugars as glycosidase inhibitors, see: Zechel et al. (2003[Zechel, D. L., Boraston, A. B., Gloster, T., Boraston, C. M., Macdonald, J. M., Tilbrook, D. M. G., Stick, R. V. & Davies, G. J. (2003). J. Am. Chem. Soc. 125, 14313-14323.]); de Melo et al. (2006[Melo, E. B. de, Gomes, A. D. & Carvalho, I. (2006). Tetrahedron, 62, 10277-10302.]); Compain & Martin (2007[Compain, P. & Martin, O. R. (2007). Iminosugars: From Synthesis to Therapeutic Applications, ch. 9. Chichester: John Wiley and Sons Ltd.]). For examples of the clinical uses of imino­sugars, see: Cox et al. (2003[Cox, T. M., et al. (2003). J. Inh. Met. Dis. 26, 513-526.]); Venier et al. (2012[Venier, R. E. & Igdoura, S. A. (2012). J. Med. Gen. 49, 591-597.]); Derosa & Maffioli (2012[Derosa, G. & Maffioli, P. (2012). Arch. Med. Sci. 8, 899-906.]). For imino­sugars in the treatment of cancer, cystic fibrosis and viral diseases, see: Nishimura (2003[Nishimura, Y. (2003). Curr. Top. Med. Chem. 3, 575-591.]); Lawton & Witty (2011[Lawton, G. & Witty, D. R. (2011). Progress in Medicinal Chemistry, ch. 4. Amsterdam: Elsevier.]); Best, Jenkinson et al. (2010[Best, D., Jenkinson, S. F., Saville, A. W., Alonzi, D. S., Wormald, M. R., Butters, T. D., Norez, C., Becq, F., Blériot, Y., Adachi, I., Kato, A. & Fleet, G. W. J. (2010). Tetrahedron Lett. 51, 4170-4174.]); Compain & Martin (2007[Compain, P. & Martin, O. R. (2007). Iminosugars: From Synthesis to Therapeutic Applications, ch. 9. Chichester: John Wiley and Sons Ltd.]); Pollock et al. (2008[Pollock, S., Dwek, R. A., Burton, D. R. & Zitzmann, N. (2008). Aids, 22, 1961-1969.]). For the syntheses of DNJ and its analogues from L-sorbose, see: Beaupere et al. (1989[Beaupere, D., Stasik, B., Uzan, R. & Demailly, G. (1989). Carbohydr. Res. 191, 163-166.]); Masson et al. (2000[Masson, G., Compain, P. & Martin, O. R. (2000). Org. Lett. 2, 2971-2974.]); Tamayo et al. (2010[Tamayo, J. A., Franco, F. & Lo Re, D. (2010). Synlett, 9, 1323-1326.]); O'Brien & Murphy (2011[O'Brien, C. & Murphy, P. V. (2011). J. Carbohydr. Res. 30, 626-640.]). For the synthesis of 1-O-benzoyl-2,3-O-iso­propyl­idene-6-O-tosyl-α-L-sorbo­furan­ose, which bears structural similarity to the title compound, see: Fehér & Vargha (1966[Fehér, O. & Vargha, L. (1966). Acta. Chim. Acad. Sci. Hung. 50, 371-375.]).

[Scheme 1]

Experimental

Crystal data
  • C23H28O8S

  • Mr = 464.51

  • Monoclinic, C 2

  • a = 22.6192 (3) Å

  • b = 5.5649 (1) Å

  • c = 19.0631 (3) Å

  • β = 104.696 (2)°

  • V = 2321.04 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.64 mm−1

  • T = 150 K

  • 0.29 × 0.06 × 0.02 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.628, Tmax = 1.000

  • 24544 measured reflections

  • 4672 independent reflections

  • 4541 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.127

  • S = 1.16

  • 4672 reflections

  • 293 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2165 Friedel pairs

  • Flack parameter: 0.000 (15)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O4i 0.84 1.98 2.812 (2) 174
Symmetry code: (i) x, y-1, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Xtal3.6 (Hall et al., 1999[Hall, S. R., du Boulay, D. J. & Olthof-Hazekamp, R. (1999). Editors. Xtal3.6. University of Western Australia, Australia.]), ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.]), SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: publCIF (Westrip, (2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Monosaccharides provide a vast and formidable chiral pool of starting materials, whose utilization continues to expand in the enantiospecific syntheses of natural products (Sridhar et al., 2012; Das et al., 2012), in particular of carbohydrate mimetics of the carbasugar (Derosa & Maffioli, 2012; Lew et al. 2000), C-glycoside (Compain & Martin, 2001; Dhavale & Matin, 2005; Compain et al., 2009), THP (Itzstein et al. 1993) and iminosugar (Cipolla et al., 2003; Wilkinson et al. (2010); Nash et al., 2011; Zhang et al., 2011; Lenagh-Snow et al., 2011; Simone et al., 2012; Soengas et al. 2012; Best, Wang et al. 2010; Kato et al., 2012) types, to mention a few.

Iminosugars have been recognized as a class of potent inhibitors of glycosidase enzymes (Houston & Blanchfield 2003; Zechel et al., 2003; de Melo et al., 2006; Compain and Martin, 2007). These potent biological activities have culminated in the marketing of N-butyl-DNJ for the treatment of Gauchers disease (Miglustat) (Cox et al., 2003; Venier et al., 2012), N-hydroxyethyl-DNJ for type II diabetes (Miglitol) (Derosa & Maffioli, 2012) while other iminosugars have opened up new in-roads in the treatment of cancer (Nishimura, 2003; Lawton & Witty 2011), cystic fibrosis (Best, Jenkinson et al., 2010) and as antivirals (Compain & Martin, 2007; Pollock et al. 2008).

The first synthesis of DNJ (3 in Fig. 1) from starting material L-sorbose (1) utilized triphenylphosphine, carbon tetrabromide and lithium azide to effect the key transformation which installs an azido group in place of the C5 hydroxy (Beaupere et al., 1989). Syntheses of further DNJ derivatives from L-sorbose have been reported (Masson et al., 2000; Tamayo et al., 2010; O'Brien & Murphy, 2011). The title compound (2 in Fig. 1) bears orthogonal protecting groups on four of the five hydroxy groups, thus opening up points of synthetic divergence to novel classes of iminosugar glycomimetics based on a DNJ scaffold.

In the title compound (Fig. 2), the central furanose ring adopts a slightly twisted envelope conformation with C4 forming the flap. The O1 and C5 substituents are positioned pseudo-equatorially, while the C1', O2 and O3 substituents are positioned pseudo-axially. The dioxalane ring is in a flattened envelope conformation with C2 forming the flap. The title compound bears structural similarity to 1-O-benzoyl-2,3-O-isopropylidene-6-O-tosyl-α-L-sorbofuranose ([α]D20 0° (c = 1 in CHCl3); m.p. 428–429 K (decomposition)) (Fehér & Vargha, 1966). In the crystal, molecules pack in columns in the [010] direction linked by O—H···O hydrogen bonds invovling the furanose hydroxy group and furanose ether oxygen atom (Fig. 3).

Related literature top

The title compound is a novel intermediate in the synthesis of 1-deoxynojirimycin (DNJ) analogues. For examples of the use of monosaccharide starting materials in iminosugar syntheses, see: Compain & Martin (2001); Cipolla et al. (2003); Best, Wang et al. (2010); Wilkinson et al. (2010); Nash et al. (2011); Zhang et al. (2011); Lenagh-Snow et al. (2011); Simone et al. (2012); Soengas et al. (2012); Kato et al. (2012). For examples of the synthesis of other biologically active compounds from monosaccharides, see: Compain et al. (2009); Sridhar et al. (2012); Das et al. (2012); Dhavale & Matin (2005); Compain & Martin (2001); Derosa & Maffioli (2012); Lew et al. (2000); Itzstein et al. (1993). For glycosidase inhibitors, see: Houston & Blanchfield (2003). For iminosugars as glycosidase inhibitors, see: Zechel et al. (2003); de Melo et al. (2006); Compain & Martin (2007). For examples of the clinical uses of iminosugars, see: Cox et al. (2003); Venier et al. (2012); Derosa & Maffioli (2012). For iminosugars in the treatment of cancer, cystic fibrosis and viral diseases, see: Nishimura (2003); Lawton & Witty (2011); Best, Jenkinson et al. (2010); Compain & Martin (2007); Pollock et al. (2008). For the syntheses of DNJ and its analogues from L-sorbose, see: Beaupere et al. (1989); Masson et al. (2000); Tamayo et al. (2010); O'Brien & Murphy (2011). For the synthesis of 1-O-benzoyl-2,3-O-isopropylidene-6-O-tosyl-α-L-sorbofuranose, which bears structural similarity to the title compound, see: Fehér & Vargha (1966).

Experimental top

Triethylamine (3.43 ml, 24.6 mmol), 4-dimethylaminopyridine (120 mg, 982 µmol), and 4-toluenesulfonyl chloride (2.35 g, 12.3 mmol) were carefully added in succession to a stirring solution of 1-O-benzyl-2,3-O-isopropylidene-α-L-sorbofuranose (3.06 g, 9.84 mmol) in dichloromethane (200 ml) under an inert atmosphere. The reaction mixture was stirred for 28 h at room temperature, after which, analysis by TLC (acetone/hexane 1:2) showed total consumption of the starting material (Rf = 0.18) and formation of a UV-active product (Rf = 0.44). The crude mixture was washed with an aqueous hydrochloric acid solution (1 M, 100 ml) and the organic layers collected, dried over magnesium sulfate, filtered and concentrated in vacuo. The compound crystallized on standing as a pale yellow solid in quantitative yield (4.57 g).

Refinement top

All H atoms attached to C atoms were positioned geometrically, and allowed to ride on their parent atoms, with C—H bond lengths of 0.95 Å (Ar—H), 1.0 (CH), 0.99 Å (CH2) or 0.98 Å (CH3), and isotropic displacement parameters set to 1.2 (CH and CH2) or 1.5 times (CH3) the Ueq of the parent atom. The H atom attached to O3 was positioned geometrically and allowed to ride on the parent atom, with an O—H bond length of 0.84 Å and isotropic displacement parameters set to 1.5Ueq(O).

Structure description top

Monosaccharides provide a vast and formidable chiral pool of starting materials, whose utilization continues to expand in the enantiospecific syntheses of natural products (Sridhar et al., 2012; Das et al., 2012), in particular of carbohydrate mimetics of the carbasugar (Derosa & Maffioli, 2012; Lew et al. 2000), C-glycoside (Compain & Martin, 2001; Dhavale & Matin, 2005; Compain et al., 2009), THP (Itzstein et al. 1993) and iminosugar (Cipolla et al., 2003; Wilkinson et al. (2010); Nash et al., 2011; Zhang et al., 2011; Lenagh-Snow et al., 2011; Simone et al., 2012; Soengas et al. 2012; Best, Wang et al. 2010; Kato et al., 2012) types, to mention a few.

Iminosugars have been recognized as a class of potent inhibitors of glycosidase enzymes (Houston & Blanchfield 2003; Zechel et al., 2003; de Melo et al., 2006; Compain and Martin, 2007). These potent biological activities have culminated in the marketing of N-butyl-DNJ for the treatment of Gauchers disease (Miglustat) (Cox et al., 2003; Venier et al., 2012), N-hydroxyethyl-DNJ for type II diabetes (Miglitol) (Derosa & Maffioli, 2012) while other iminosugars have opened up new in-roads in the treatment of cancer (Nishimura, 2003; Lawton & Witty 2011), cystic fibrosis (Best, Jenkinson et al., 2010) and as antivirals (Compain & Martin, 2007; Pollock et al. 2008).

The first synthesis of DNJ (3 in Fig. 1) from starting material L-sorbose (1) utilized triphenylphosphine, carbon tetrabromide and lithium azide to effect the key transformation which installs an azido group in place of the C5 hydroxy (Beaupere et al., 1989). Syntheses of further DNJ derivatives from L-sorbose have been reported (Masson et al., 2000; Tamayo et al., 2010; O'Brien & Murphy, 2011). The title compound (2 in Fig. 1) bears orthogonal protecting groups on four of the five hydroxy groups, thus opening up points of synthetic divergence to novel classes of iminosugar glycomimetics based on a DNJ scaffold.

In the title compound (Fig. 2), the central furanose ring adopts a slightly twisted envelope conformation with C4 forming the flap. The O1 and C5 substituents are positioned pseudo-equatorially, while the C1', O2 and O3 substituents are positioned pseudo-axially. The dioxalane ring is in a flattened envelope conformation with C2 forming the flap. The title compound bears structural similarity to 1-O-benzoyl-2,3-O-isopropylidene-6-O-tosyl-α-L-sorbofuranose ([α]D20 0° (c = 1 in CHCl3); m.p. 428–429 K (decomposition)) (Fehér & Vargha, 1966). In the crystal, molecules pack in columns in the [010] direction linked by O—H···O hydrogen bonds invovling the furanose hydroxy group and furanose ether oxygen atom (Fig. 3).

The title compound is a novel intermediate in the synthesis of 1-deoxynojirimycin (DNJ) analogues. For examples of the use of monosaccharide starting materials in iminosugar syntheses, see: Compain & Martin (2001); Cipolla et al. (2003); Best, Wang et al. (2010); Wilkinson et al. (2010); Nash et al. (2011); Zhang et al. (2011); Lenagh-Snow et al. (2011); Simone et al. (2012); Soengas et al. (2012); Kato et al. (2012). For examples of the synthesis of other biologically active compounds from monosaccharides, see: Compain et al. (2009); Sridhar et al. (2012); Das et al. (2012); Dhavale & Matin (2005); Compain & Martin (2001); Derosa & Maffioli (2012); Lew et al. (2000); Itzstein et al. (1993). For glycosidase inhibitors, see: Houston & Blanchfield (2003). For iminosugars as glycosidase inhibitors, see: Zechel et al. (2003); de Melo et al. (2006); Compain & Martin (2007). For examples of the clinical uses of iminosugars, see: Cox et al. (2003); Venier et al. (2012); Derosa & Maffioli (2012). For iminosugars in the treatment of cancer, cystic fibrosis and viral diseases, see: Nishimura (2003); Lawton & Witty (2011); Best, Jenkinson et al. (2010); Compain & Martin (2007); Pollock et al. (2008). For the syntheses of DNJ and its analogues from L-sorbose, see: Beaupere et al. (1989); Masson et al. (2000); Tamayo et al. (2010); O'Brien & Murphy (2011). For the synthesis of 1-O-benzoyl-2,3-O-isopropylidene-6-O-tosyl-α-L-sorbofuranose, which bears structural similarity to the title compound, see: Fehér & Vargha (1966).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Xtal3.6 (Hall et al., 1999), ORTEPII (Johnson, 1976), SHELXLE (Hübschle et al., 2011), Mercury (Macrae et al., 2006) and WinGX (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, (2010).

Figures top
[Figure 1] Fig. 1. Relationship of L-sorbose (1) starting material to title compound (2) and deoxynojirimycin (DNJ) (3)
[Figure 2] Fig. 2. The molecular structure of the title compound, with anisotropic displacement ellipsoids shown at the 50% probability level.
[Figure 3] Fig. 3. Molecular packing diagram (Macrae et al., 2006) with respect to the unit cell. The molecules stack in columns parallel to the b axis, with molecules within a column linked by intermolecular hydrogen bonds (dashed lines) between the hydroxy O3 moiety and the furanose oxygen O4.
{(3aS,5S,6R,6aS)-3a-[(Benzyloxy)methyl]-6-hydroxy-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl}methyl 4-methylbenzenesulfonate top
Crystal data top
C23H28O8SF(000) = 984
Mr = 464.51Dx = 1.329 Mg m3
Monoclinic, C2Cu Kα radiation, λ = 1.5418 Å
Hall symbol: C 2yCell parameters from 13737 reflections
a = 22.6192 (3) Åθ = 4.0–76.2°
b = 5.5649 (1) ŵ = 1.64 mm1
c = 19.0631 (3) ÅT = 150 K
β = 104.696 (2)°Blade, colourless
V = 2321.04 (6) Å30.29 × 0.06 × 0.02 mm
Z = 4
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
4672 independent reflections
Radiation source: SuperNova (Cu) X-ray Source4541 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.031
Detector resolution: 10.5861 pixels mm-1θmax = 76.4°, θmin = 4.0°
ω scansh = 2828
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 76
Tmin = 0.628, Tmax = 1.000l = 2424
24544 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.001
4672 reflectionsΔρmax = 0.48 e Å3
293 parametersΔρmin = 0.27 e Å3
1 restraintAbsolute structure: Flack (1983), 2165 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.000 (15)
Crystal data top
C23H28O8SV = 2321.04 (6) Å3
Mr = 464.51Z = 4
Monoclinic, C2Cu Kα radiation
a = 22.6192 (3) ŵ = 1.64 mm1
b = 5.5649 (1) ÅT = 150 K
c = 19.0631 (3) Å0.29 × 0.06 × 0.02 mm
β = 104.696 (2)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
4672 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
4541 reflections with I > 2σ(I)
Tmin = 0.628, Tmax = 1.000Rint = 0.031
24544 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.127Δρmax = 0.48 e Å3
S = 1.16Δρmin = 0.27 e Å3
4672 reflectionsAbsolute structure: Flack (1983), 2165 Friedel pairs
293 parametersAbsolute structure parameter: 0.000 (15)
1 restraint
Special details top

Experimental. Analysis: [α]D26 0.20° (c 0.2 in CHCl3); IR (KBr, cm-1): 3594-3205 (br, OH), 3095, 3046 (w, ArC-H), 2984, 2950, 2925, 2864 (st, alkyl C-H), 1369, 1178 (s, S=O); 1H NMR (CDCl3, 400 MHz, p.p.m.): 1.27, 1.46 [2 x 3H, 2 x s, C(CH3)2], 2.43 [3H, s, TsCH3], 3.49 [1H, d, JH3,H4 = 11.8 Hz, H3], 3.57 [1H, d, JH1,H1' = 10.1 Hz, H1], 3.76 [1H, d, JH1',H1 = 10.0 Hz, H1'], 4.05 [1H, dd, JH4,H3 = 11.5 Hz, JH4,H5 = 2.5 Hz, H4], 4.16 [1H, dd, JH6,H5 = 6.9 Hz, JH6,H6' = 10.6 Hz, H6], 4.30 [1H, dd, JH6',H5 = 4.9, JH6',H6 = 10.6 Hz, H6'], 4.36 [1H, s, OH], 4.40 [1H, ddd, JH5,H4 = 2.5 Hz, JH5,H6' = 4.7 Hz, JH5,H6 = 7.2 Hz, H5], 4.52 [1H, d, JCHAHB,CHAHB = 11.7 Hz, CHAHB (Bn)], 4.59 [1H, d, JCHAHB,CHAHB = 11.7 Hz, CHAHB (Bn)], 7.22-7.26 [2H, m, 2 x ArHs (Bn-o)], 7.30-7.37 [5H, m, 2 x ArHs (Ts) and 3 x ArHs (Bn-m,p)], 7.81 [2H, d, ArHs (Ts)]; 13C NMR (CDCl3, 100 MHz, p.p.m.): 21.7 [CH3 (Ts)], 26.1, 27.2 [2 x CH3], 68.1 [C6], 71.3 [C1], 74.2 [CH2(Bn)], 74.4 [C4], 79.8 [C5], 86.4 [C3], 112.8 [C2], 112.9 [Cq acetonide], 128.0 [2 x ArCs (Bn-o)], 128.2 [2 x ArCs (Ts)], 128.5 [1 x ArC (Bn-p)], 128.8, 129.9 [2 x ArCs (Bn-m) and 2 x ArCs (Ts)], 133.0 [Cq-CH3], 136.5 [Cq (Bn)], 144.9 [Cq-S]; HRMS (ESI+): found 487.13977 [M+Na]+ C23H28NaO8S, requires 487.13971. M.p.: 377-378K

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.404262 (19)0.50470 (8)0.48560 (2)0.02722 (14)
O10.44717 (7)0.4027 (3)0.17231 (8)0.0355 (3)
O1'0.34123 (8)0.1296 (4)0.09744 (8)0.0438 (4)
O20.50981 (6)0.0816 (3)0.21233 (8)0.0313 (3)
O30.39754 (6)0.1689 (3)0.29897 (8)0.0316 (3)
H3O0.40000.31700.29160.047*
O40.41584 (6)0.3389 (2)0.27843 (7)0.0279 (3)
O50.43901 (6)0.4404 (3)0.42627 (7)0.0289 (3)
O60.41714 (7)0.7530 (3)0.50128 (8)0.0354 (3)
O70.41841 (7)0.3306 (3)0.54278 (7)0.0345 (3)
C10.41496 (8)0.2518 (4)0.20750 (9)0.0269 (4)
C1'0.34827 (9)0.2402 (5)0.16634 (11)0.0383 (5)
H1'A0.32520.14770.19490.046*
H1'B0.33120.40480.15960.046*
C20.45054 (8)0.0140 (4)0.21843 (9)0.0259 (3)
H20.43110.11230.18260.031*
C30.45313 (8)0.0559 (4)0.29689 (10)0.0270 (4)
H30.48950.15750.31910.032*
C40.45641 (8)0.1905 (3)0.33235 (9)0.0254 (4)
H40.49910.25420.34260.030*
C50.43459 (9)0.1918 (4)0.40058 (10)0.0302 (4)
H5A0.39180.13480.39040.036*
H5B0.46050.08550.43760.036*
C60.32399 (13)0.2890 (5)0.03842 (12)0.0436 (5)
H6A0.35400.42160.04430.052*
H6B0.28350.35940.03700.052*
C70.32113 (10)0.1574 (5)0.03123 (11)0.0365 (5)
C80.28553 (11)0.2509 (6)0.09630 (12)0.0459 (6)
H80.26300.39500.09610.055*
C90.28292 (15)0.1343 (7)0.16111 (13)0.0602 (9)
H90.25890.19970.20520.072*
C100.31489 (15)0.0766 (7)0.16223 (15)0.0611 (9)
H100.31290.15580.20690.073*
C110.34979 (14)0.1721 (6)0.09822 (17)0.0563 (7)
H110.37160.31770.09870.068*
C120.35291 (11)0.0536 (5)0.03250 (13)0.0428 (5)
H120.37710.11900.01150.051*
C130.50589 (9)0.3003 (4)0.17266 (11)0.0313 (4)
C140.50694 (13)0.2538 (6)0.09465 (13)0.0496 (6)
H14A0.47350.14460.07210.074*
H14B0.54610.18070.09340.074*
H14C0.50190.40600.06790.074*
C150.55631 (12)0.4642 (5)0.21200 (15)0.0481 (6)
H15A0.59590.39460.21120.072*
H15B0.55410.48340.26240.072*
H15C0.55180.62150.18810.072*
C160.32657 (8)0.4727 (4)0.44051 (9)0.0281 (4)
C170.29721 (10)0.6518 (4)0.39353 (11)0.0324 (4)
H170.31950.78580.38280.039*
C180.23503 (10)0.6319 (5)0.36260 (11)0.0355 (4)
H180.21470.75450.33080.043*
C190.20172 (9)0.4365 (4)0.37695 (10)0.0329 (4)
C200.23236 (10)0.2542 (4)0.42171 (11)0.0332 (4)
H200.21050.11610.43020.040*
C210.29487 (9)0.2718 (4)0.45432 (10)0.0307 (4)
H210.31540.14820.48550.037*
C220.13348 (10)0.4233 (6)0.34609 (13)0.0456 (6)
H22A0.12340.46710.29460.068*
H22B0.11330.53490.37230.068*
H22C0.11940.25930.35130.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0334 (2)0.0263 (3)0.0226 (2)0.00197 (16)0.00836 (15)0.00147 (16)
O10.0404 (7)0.0297 (8)0.0412 (7)0.0075 (6)0.0190 (6)0.0082 (6)
O1'0.0522 (9)0.0409 (10)0.0313 (7)0.0102 (7)0.0020 (6)0.0056 (7)
O20.0278 (6)0.0284 (8)0.0400 (7)0.0039 (5)0.0129 (5)0.0037 (6)
O30.0356 (7)0.0208 (7)0.0417 (7)0.0025 (5)0.0161 (6)0.0016 (5)
O40.0374 (7)0.0213 (7)0.0243 (6)0.0056 (5)0.0067 (5)0.0019 (5)
O50.0347 (6)0.0267 (8)0.0275 (6)0.0050 (5)0.0121 (5)0.0029 (5)
O60.0441 (7)0.0297 (8)0.0337 (6)0.0060 (6)0.0123 (6)0.0082 (6)
O70.0395 (7)0.0384 (9)0.0246 (6)0.0005 (6)0.0061 (5)0.0043 (6)
C10.0299 (8)0.0266 (10)0.0246 (8)0.0038 (7)0.0075 (7)0.0011 (7)
C1'0.0326 (9)0.0459 (13)0.0328 (9)0.0097 (9)0.0017 (8)0.0080 (9)
C20.0265 (7)0.0232 (9)0.0287 (8)0.0022 (7)0.0083 (6)0.0027 (7)
C30.0288 (8)0.0225 (10)0.0305 (8)0.0028 (7)0.0090 (6)0.0013 (7)
C40.0292 (8)0.0217 (9)0.0249 (8)0.0005 (7)0.0059 (6)0.0003 (7)
C50.0380 (9)0.0256 (10)0.0291 (8)0.0023 (7)0.0125 (7)0.0020 (7)
C60.0591 (13)0.0344 (13)0.0342 (10)0.0076 (11)0.0061 (9)0.0002 (9)
C70.0381 (10)0.0383 (12)0.0337 (10)0.0063 (9)0.0102 (8)0.0017 (9)
C80.0475 (12)0.0535 (16)0.0346 (10)0.0093 (11)0.0065 (9)0.0032 (10)
C90.0682 (17)0.081 (2)0.0319 (11)0.0281 (17)0.0130 (11)0.0017 (13)
C100.0691 (17)0.079 (2)0.0430 (12)0.0328 (17)0.0275 (12)0.0210 (14)
C110.0620 (15)0.0521 (16)0.0651 (16)0.0171 (13)0.0350 (13)0.0228 (14)
C120.0424 (11)0.0429 (15)0.0447 (11)0.0075 (10)0.0143 (9)0.0080 (10)
C130.0350 (9)0.0299 (11)0.0327 (9)0.0028 (8)0.0153 (7)0.0020 (8)
C140.0604 (14)0.0579 (17)0.0359 (11)0.0145 (13)0.0223 (10)0.0010 (11)
C150.0476 (12)0.0399 (15)0.0595 (14)0.0129 (10)0.0182 (10)0.0004 (11)
C160.0327 (8)0.0286 (11)0.0247 (7)0.0014 (7)0.0105 (6)0.0002 (7)
C170.0405 (10)0.0279 (11)0.0305 (8)0.0002 (8)0.0122 (7)0.0037 (8)
C180.0419 (10)0.0355 (12)0.0287 (9)0.0067 (9)0.0081 (7)0.0033 (8)
C190.0347 (9)0.0385 (12)0.0273 (8)0.0014 (8)0.0113 (7)0.0059 (8)
C200.0391 (10)0.0307 (11)0.0319 (9)0.0055 (8)0.0127 (7)0.0024 (8)
C210.0385 (9)0.0284 (11)0.0264 (8)0.0018 (8)0.0104 (7)0.0022 (7)
C220.0367 (10)0.0585 (16)0.0400 (11)0.0008 (10)0.0069 (8)0.0096 (11)
Geometric parameters (Å, º) top
S1—O61.4278 (17)C8—C91.384 (4)
S1—O71.4326 (16)C8—H80.9500
S1—O51.5736 (13)C9—C101.382 (6)
S1—C161.7585 (19)C9—H90.9500
O1—C11.391 (2)C10—C111.380 (5)
O1—C131.444 (2)C10—H100.9500
O1'—C61.408 (3)C11—C121.402 (4)
O1'—C1'1.422 (3)C11—H110.9500
O2—C131.424 (3)C12—H120.9500
O2—C21.425 (2)C13—C151.504 (3)
O3—C31.415 (2)C13—C141.516 (3)
O3—H3O0.8400C14—H14A0.9800
O4—C11.432 (2)C14—H14B0.9800
O4—C41.450 (2)C14—H14C0.9800
O5—C51.463 (2)C15—H15A0.9800
C1—C1'1.515 (3)C15—H15B0.9800
C1—C21.535 (3)C15—H15C0.9800
C1'—H1'A0.9900C16—C211.389 (3)
C1'—H1'B0.9900C16—C171.391 (3)
C2—C31.532 (2)C17—C181.385 (3)
C2—H21.0000C17—H170.9500
C3—C41.522 (3)C18—C191.389 (3)
C3—H31.0000C18—H180.9500
C4—C51.504 (2)C19—C201.392 (3)
C4—H41.0000C19—C221.508 (3)
C5—H5A0.9900C20—C211.396 (3)
C5—H5B0.9900C20—H200.9500
C6—C71.503 (3)C21—H210.9500
C6—H6A0.9900C22—H22A0.9800
C6—H6B0.9900C22—H22B0.9800
C7—C121.380 (4)C22—H22C0.9800
C7—C81.397 (3)
O6—S1—O7120.05 (10)C9—C8—C7120.2 (3)
O6—S1—O5104.95 (8)C9—C8—H8119.9
O7—S1—O5109.71 (9)C7—C8—H8119.9
O6—S1—C16109.01 (10)C10—C9—C8120.6 (3)
O7—S1—C16107.82 (9)C10—C9—H9119.7
O5—S1—C16104.19 (8)C8—C9—H9119.7
C1—O1—C13110.70 (15)C11—C10—C9119.8 (3)
C6—O1'—C1'114.1 (2)C11—C10—H10120.1
C13—O2—C2109.61 (14)C9—C10—H10120.1
C3—O3—H3O109.5C10—C11—C12119.8 (3)
C1—O4—C4109.34 (14)C10—C11—H11120.1
C5—O5—S1116.84 (11)C12—C11—H11120.1
O1—C1—O4111.57 (16)C7—C12—C11120.5 (3)
O1—C1—C1'110.53 (16)C7—C12—H12119.7
O4—C1—C1'106.07 (14)C11—C12—H12119.7
O1—C1—C2105.38 (14)O2—C13—O1105.86 (14)
O4—C1—C2106.41 (14)O2—C13—C15108.44 (18)
C1'—C1—C2116.89 (18)O1—C13—C15110.09 (19)
O1'—C1'—C1111.11 (16)O2—C13—C14111.1 (2)
O1'—C1'—H1'A109.4O1—C13—C14107.84 (18)
C1—C1'—H1'A109.4C15—C13—C14113.2 (2)
O1'—C1'—H1'B109.4C13—C14—H14A109.5
C1—C1'—H1'B109.4C13—C14—H14B109.5
H1'A—C1'—H1'B108.0H14A—C14—H14B109.5
O2—C2—C3110.05 (14)C13—C14—H14C109.5
O2—C2—C1103.47 (16)H14A—C14—H14C109.5
C3—C2—C1103.91 (14)H14B—C14—H14C109.5
O2—C2—H2112.9C13—C15—H15A109.5
C3—C2—H2112.9C13—C15—H15B109.5
C1—C2—H2112.9H15A—C15—H15B109.5
O3—C3—C4109.35 (14)C13—C15—H15C109.5
O3—C3—C2109.03 (15)H15A—C15—H15C109.5
C4—C3—C2100.96 (15)H15B—C15—H15C109.5
O3—C3—H3112.3C21—C16—C17120.91 (18)
C4—C3—H3112.3C21—C16—S1119.27 (15)
C2—C3—H3112.3C17—C16—S1119.78 (16)
O4—C4—C5108.83 (15)C18—C17—C16119.0 (2)
O4—C4—C3104.34 (13)C18—C17—H17120.5
C5—C4—C3113.49 (16)C16—C17—H17120.5
O4—C4—H4110.0C17—C18—C19121.5 (2)
C5—C4—H4110.0C17—C18—H18119.3
C3—C4—H4110.0C19—C18—H18119.3
O5—C5—C4106.54 (15)C18—C19—C20118.72 (19)
O5—C5—H5A110.4C18—C19—C22120.9 (2)
C4—C5—H5A110.4C20—C19—C22120.3 (2)
O5—C5—H5B110.4C19—C20—C21120.8 (2)
C4—C5—H5B110.4C19—C20—H20119.6
H5A—C5—H5B108.6C21—C20—H20119.6
O1'—C6—C7109.9 (2)C16—C21—C20119.0 (2)
O1'—C6—H6A109.7C16—C21—H21120.5
C7—C6—H6A109.7C20—C21—H21120.5
O1'—C6—H6B109.7C19—C22—H22A109.5
C7—C6—H6B109.7C19—C22—H22B109.5
H6A—C6—H6B108.2H22A—C22—H22B109.5
C12—C7—C8119.1 (2)C19—C22—H22C109.5
C12—C7—C6121.6 (2)H22A—C22—H22C109.5
C8—C7—C6119.3 (2)H22B—C22—H22C109.5
O6—S1—O5—C5178.98 (14)C1'—O1'—C6—C7176.95 (18)
O7—S1—O5—C548.72 (15)O1'—C6—C7—C1222.5 (3)
C16—S1—O5—C566.49 (15)O1'—C6—C7—C8157.6 (2)
C13—O1—C1—O4103.77 (18)C12—C7—C8—C90.8 (4)
C13—O1—C1—C1'138.45 (17)C6—C7—C8—C9179.1 (2)
C13—O1—C1—C211.3 (2)C7—C8—C9—C100.6 (4)
C4—O4—C1—O1106.51 (17)C8—C9—C10—C110.0 (4)
C4—O4—C1—C1'133.06 (17)C9—C10—C11—C120.4 (4)
C4—O4—C1—C27.94 (19)C8—C7—C12—C110.3 (4)
C6—O1'—C1'—C1109.0 (2)C6—C7—C12—C11179.6 (2)
O1—C1—C1'—O1'65.6 (2)C10—C11—C12—C70.3 (4)
O4—C1—C1'—O1'173.29 (19)C2—O2—C13—O116.1 (2)
C2—C1—C1'—O1'54.9 (3)C2—O2—C13—C15134.23 (18)
C13—O2—C2—C3132.90 (17)C2—O2—C13—C14100.7 (2)
C13—O2—C2—C122.38 (18)C1—O1—C13—O22.2 (2)
O1—C1—C2—O220.33 (18)C1—O1—C13—C15119.2 (2)
O4—C1—C2—O298.26 (16)C1—O1—C13—C14116.9 (2)
C1'—C1—C2—O2143.52 (16)O6—S1—C16—C21144.04 (16)
O1—C1—C2—C3135.33 (15)O7—S1—C16—C2112.19 (18)
O4—C1—C2—C316.74 (18)O5—S1—C16—C21104.34 (15)
C1'—C1—C2—C3101.48 (18)O6—S1—C16—C1733.81 (17)
O2—C2—C3—O3167.94 (15)O7—S1—C16—C17165.66 (15)
C1—C2—C3—O381.83 (18)O5—S1—C16—C1777.81 (17)
O2—C2—C3—C476.98 (18)C21—C16—C17—C182.5 (3)
C1—C2—C3—C433.25 (16)S1—C16—C17—C18175.36 (15)
C1—O4—C4—C5151.21 (16)C16—C17—C18—C190.6 (3)
C1—O4—C4—C329.75 (18)C17—C18—C19—C202.0 (3)
O3—C3—C4—O476.32 (17)C17—C18—C19—C22176.73 (19)
C2—C3—C4—O438.51 (16)C18—C19—C20—C212.9 (3)
O3—C3—C4—C542.0 (2)C22—C19—C20—C21175.87 (18)
C2—C3—C4—C5156.83 (15)C17—C16—C21—C201.6 (3)
S1—O5—C5—C4165.40 (12)S1—C16—C21—C20176.22 (14)
O4—C4—C5—O562.69 (18)C19—C20—C21—C161.1 (3)
C3—C4—C5—O5178.38 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O4i0.841.982.812 (2)174
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC23H28O8S
Mr464.51
Crystal system, space groupMonoclinic, C2
Temperature (K)150
a, b, c (Å)22.6192 (3), 5.5649 (1), 19.0631 (3)
β (°) 104.696 (2)
V3)2321.04 (6)
Z4
Radiation typeCu Kα
µ (mm1)1.64
Crystal size (mm)0.29 × 0.06 × 0.02
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero, Atlas)
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.628, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
24544, 4672, 4541
Rint0.031
(sin θ/λ)max1)0.630
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.127, 1.16
No. of reflections4672
No. of parameters293
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.27
Absolute structureFlack (1983), 2165 Friedel pairs
Absolute structure parameter0.000 (15)

Computer programs: CrysAlis PRO (Agilent, 2011), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), Xtal3.6 (Hall et al., 1999), ORTEPII (Johnson, 1976), SHELXLE (Hübschle et al., 2011), Mercury (Macrae et al., 2006) and WinGX (Farrugia, 2012), publCIF (Westrip, (2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O4i0.841.982.812 (2)173.6
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The University of Sydney is gratefully acknowledged for funding.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBeaupere, D., Stasik, B., Uzan, R. & Demailly, G. (1989). Carbohydr. Res. 191, 163–166.  CrossRef CAS Web of Science Google Scholar
First citationBest, D., Jenkinson, S. F., Saville, A. W., Alonzi, D. S., Wormald, M. R., Butters, T. D., Norez, C., Becq, F., Blériot, Y., Adachi, I., Kato, A. & Fleet, G. W. J. (2010). Tetrahedron Lett. 51, 4170–4174.  Web of Science CrossRef CAS Google Scholar
First citationBest, D., Wang, C., Weymouth-Wilson, A. C., Clarkson, R. A., Wilson, F. X., Nash, R. J., Miyauchi, S., Kato, A. & Fleet, G. W. J. (2010). Tetrahedron Asymmetry, 21, 311–319.  Web of Science CrossRef CAS Google Scholar
First citationCipolla, L., La Ferla, B. & Nicotra, F. (2003). Curr. Top. Med. Chem. 3, 485–511.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCompain, P., Chagnault, V. & Martin, O. R. (2009). Tetrahedron Asymmetry, 20, 672–711.  Web of Science CrossRef CAS Google Scholar
First citationCompain, P. & Martin, O. R. (2001). Bioorg. Med. Chem. 9, 3077–3092.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCompain, P. & Martin, O. R. (2007). Iminosugars: From Synthesis to Therapeutic Applications, ch. 9. Chichester: John Wiley and Sons Ltd.  Google Scholar
First citationCox, T. M., et al. (2003). J. Inh. Met. Dis. 26, 513–526.  Web of Science CrossRef CAS Google Scholar
First citationDas, S., Mishra, A. K., Kumar, A., Al Ghamdi, A. A. & Yadav, J. S. (2012). Carbohydr. Res. 358, 7–11.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDerosa, G. & Maffioli, P. (2012). Arch. Med. Sci. 8, 899–906.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDhavale, D. D. & Matin, M. M. (2005). Arkivoc, pp. 110–132.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFehér, O. & Vargha, L. (1966). Acta. Chim. Acad. Sci. Hung. 50, 371–375.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHall, S. R., du Boulay, D. J. & Olthof-Hazekamp, R. (1999). Editors. Xtal3.6. University of Western Australia, Australia.  Google Scholar
First citationHouston, T. A. & Blanchfield, J. T. (2003). Mini-Rev. Med. Chem. 3, 669–678.  CrossRef CAS Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationItzstein, M. von, Wu, W.-Y., Kok, G. B., Pegg, M. S., Dyason, J. C., Jin, B., Phan, T. V., Smythe, M. L., White, H. F., Oliver, S. W., Colman, P. M., Varghese, J. N., Ryan, D. M., Woods, J. M., Bethel, R. C., Hotham, V. J., Cameron, J. M. & Penn, C. R. (1993). Nature, 363, 418–423.  PubMed Web of Science Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.  Google Scholar
First citationKato, A., Hayashi, E., Miyauchi, S., Adachi, I., Imahori, T., Natori, Y., Yoshimura, Y., Nash, R. J., Shimaoka, H., Nakagome, I., Koseki, J., Hirono, S. & Takahata, H. (2012). J. Med. Chem. 55, 10347–10362.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLawton, G. & Witty, D. R. (2011). Progress in Medicinal Chemistry, ch. 4. Amsterdam: Elsevier.  Google Scholar
First citationLenagh-Snow, G. M. J., Araujo, N., Jenkinson, S. F., Rutherforf, C., Nakagawa, S., Kato, A., Yu, C.-Y., Weymouth-Wilson, A. C. & Fleet, G. W. J. (2011). Org. Lett. 13, 5834–5837.  Web of Science CAS PubMed Google Scholar
First citationLew, W., Chen, X. & Kim, C. U. (2000). Curr. Med. Chem. 7, 663–672.  CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMasson, G., Compain, P. & Martin, O. R. (2000). Org. Lett. 2, 2971–2974.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMelo, E. B. de, Gomes, A. D. & Carvalho, I. (2006). Tetrahedron, 62, 10277–10302.  Google Scholar
First citationNash, R. J., Kato, A., Yu, C.-Y. & Fleet, G. W. J. (2011). Fut. Med. Chem. 3, 1513–1521.  Web of Science CrossRef CAS Google Scholar
First citationNishimura, Y. (2003). Curr. Top. Med. Chem. 3, 575–591.  Web of Science CrossRef PubMed CAS Google Scholar
First citationO'Brien, C. & Murphy, P. V. (2011). J. Carbohydr. Res. 30, 626–640.  CAS Google Scholar
First citationPollock, S., Dwek, R. A., Burton, D. R. & Zitzmann, N. (2008). Aids, 22, 1961–1969.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimone, M. I., Soengas, R. G., Jenkinson, S. F., Evinson, E. L., Nash, R. J. & Fleet, G. W. J. (2012). Tetrahedron Asymmetry, 23, 401–408.  Web of Science CrossRef CAS Google Scholar
First citationSoengas, R. G., Simone, M., Hunter, S., Nash, R. J. & Fleet, G. W. J. (2012). Eur. J. Org. Chem. 12, 2394–2402.  Web of Science CrossRef Google Scholar
First citationSridhar, P. R., Reddy, G. M. & Seshadri, K. (2012). Eur. J. Org. Chem. 31, 6228–6235.  Web of Science CrossRef Google Scholar
First citationTamayo, J. A., Franco, F. & Lo Re, D. (2010). Synlett, 9, 1323–1326.  Web of Science CrossRef Google Scholar
First citationVenier, R. E. & Igdoura, S. A. (2012). J. Med. Gen. 49, 591–597.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilkinson, B. L., Bornaghi, L. F., Lopez, M., Poulsen, S.-A., Healy, P. C. & Houston, T. A. (2010). Aust. J. Chem. 63, 821–829.  Web of Science CSD CrossRef CAS Google Scholar
First citationZechel, D. L., Boraston, A. B., Gloster, T., Boraston, C. M., Macdonald, J. M., Tilbrook, D. M. G., Stick, R. V. & Davies, G. J. (2003). J. Am. Chem. Soc. 125, 14313–14323.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, Z.-X., Wu, B., Wang, B., Li, T.-H., Zhang, P.-F., Guo, L.-N., Wang, W.-J., Zhao, W. & Wang, P. G. (2011). Tetrahedron Lett. 52, 3802–3805.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds