metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[penta­aqua­bis­­(μ3-hydrogen squarato)barium] monohydrate]

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine, 25000 , Algeria, and bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 13 May 2013; accepted 28 May 2013; online 8 June 2013)

The crystal structure of the title compound, {[Ba(C4HO4)2(H2O)5]·H2O}n, consists of discrete double chains propagating along [010]. The chains are formed by BaII ions linked by bridging hydrogen squarate ligands in a trans-bis-monodentate mode. In addition, the bridging hydrogen squarate ligands connect the chains into a ladder structure via a third coordinating O atom. The remaining coordination sites are occupied by five aqua ligands and a second mondendate hydrogen squarate ligand, forming a slightly distorted tricapped trigonal–prismatic geometry. O—H⋯O hydrogen bonds link the chains and solvent water mol­ecules into a three-dimensional network.

Related literature

For the synthesis and applications of cyclic oxocarbons, see: Cohen et al. (1959[Cohen, S., Lacher, J. R. & Park, J. D. (1959). J. Am. Chem. Soc. 81, 3480.]); Bertolasi et al. (2001[Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (2001). Acta Cryst. B57, 591-598.]). For crystal structures of hydrogen squarate complexes, see: Brach et al. (1987[Brach, I., Rozière, J., Anselment, B. & Peters, K. (1987). Acta Cryst. C43, 458-460.]); Uçar et al. (2005[Uçar, İ., Bulut, A. & Büyükgüngör, O. (2005). Acta Cryst. C61, m266-m268.]); Lee et al. (1996[Lee, C.-R., Wang, C.-C. & Wang, Y. (1996). Acta Cryst. B52, 966-975.]). For related alkaline earth squarates, see: Robl & Weiss (1986a[Robl, C. & Weiss, A. (1986a). Z. Naturforsch. Teil B, 41, 1485-1489.],b[Robl, C. & Weiss, A. (1986b). Z. Naturforsch. Teil B, 41, 1490-1494.]); Koferstein & Robl (2002[Koferstein, R. & Robl, C. Z. (2002). Z. Anorg. Allg. Chem. 629, 371-373.]). For other related structures, see: Trifa et al. (2011[Trifa, C., Bouhali, A., Bouacida, S., Boudaren, C. & Bataille, T. (2011). Acta Cryst. E67, m275-m276.]); Bouhali et al. (2011[Bouhali, A., Trifa, C., Bouacida, S., Boudaren, C. & Bataille, T. (2011). Acta Cryst. E67, m1130-m1131.]). For the bond-valence method, see: Hormillosa et al. (1993[Hormillosa, C., Healy, S., Stephen, T. & Brown, I. D. (1993). Bond Valence Calculator; http://CCP14.ac.uk.]).

[Scheme 1]

Experimental

Crystal data
  • [Ba(C4HO4)2(H2O)5]·H2O

  • Mr = 471.53

  • Monoclinic, P 21 /c

  • a = 11.1522 (11) Å

  • b = 9.0268 (8) Å

  • c = 14.3025 (14) Å

  • β = 94.009 (5)°

  • V = 1436.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.84 mm−1

  • T = 150 K

  • 0.12 × 0.1 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.731, Tmax = 1.000

  • 12082 measured reflections

  • 2550 independent reflections

  • 2471 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.013

  • wR(F2) = 0.034

  • S = 1.06

  • 2550 reflections

  • 264 parameters

  • All H-atom parameters refined

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Selected bond lengths (Å)

Ba1—O1 2.6857 (10)
Ba1—O3W 2.7032 (12)
Ba1—O5W 2.7358 (11)
Ba1—O1W 2.7500 (12)
Ba1—O2W 2.7791 (12)
Ba1—O6 2.7851 (11)
Ba1—O4W 2.8356 (14)
Ba1—O3i 2.7983 (10)
Ba1—O4ii 2.9630 (11)
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O4Wiii 0.74 (3) 2.13 (2) 2.8448 (19) 162 (3)
O1W—H1B⋯O8iv 0.86 (3) 1.93 (3) 2.7854 (16) 175 (2)
O2W—H2A⋯O11Wv 0.78 (3) 2.22 (3) 2.9431 (17) 156 (2)
O2W—H2B⋯O7vi 0.86 (3) 1.98 (3) 2.8451 (17) 178 (3)
O3W—H3A⋯O4i 0.85 (3) 1.94 (3) 2.7724 (16) 165 (2)
O3W—H3B⋯O11Wvii 0.79 (3) 2.05 (2) 2.8160 (17) 165 (2)
O4W—H4A⋯O7viii 0.77 (3) 2.07 (3) 2.7916 (16) 156 (2)
O4W—H4B⋯O5ix 0.80 (2) 2.37 (3) 3.1245 (17) 156 (2)
O5W—H5A⋯O11W 0.84 (3) 1.96 (3) 2.7941 (16) 177 (3)
O5W—H5B⋯O1ii 0.85 (2) 1.87 (2) 2.7176 (15) 173 (3)
O11W—H11A⋯O8iv 0.75 (2) 1.93 (2) 2.6730 (17) 169 (2)
O11W—H11B⋯O5Wx 0.85 (2) 1.94 (3) 2.7711 (16) 165 (2)
O2—H21⋯O6 0.86 (3) 1.77 (3) 2.6207 (15) 178 (2)
O5—H51⋯O3i 0.87 (2) 1.71 (2) 2.5795 (15) 176 (3)
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) -x+2, -y+1, -z+1; (v) x, y+1, z; (vi) -x+2, -y+2, -z+1; (vii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (viii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ix) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (x) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Squaric acid, H2C4O4 (3,4-dihydroxycyclobut-3-ene-1,2-dione, Sq), was synthesized for the first time by Cohen et al. in 1959 and has attracted interest because of its cyclic structure and possible aromaticity. It belongs to the series of cyclic oxocarbons of formula H2CnOn (n = 3–6 for deltic, squaric, croconic and rhodizonic acids, respectively). It and its anions (Hsq- and sq2-) are also a useful tools for constructing crystalline architectures and they possess proton donating and accepting capabilities for hydrogen bonding (Cohen et al.1959; Bertolasi et al. 2001). The molecule presents high degree of electron delocalization, which is very important in crystal packing (Brach et al. 1987; Ucar et al. 2005; Lee et al. 1996). The crystal structure of alkaline earth squarates (Robl et al. 1986a,b; Koferstein & Robl. 2002) have already been published. Recently, we reported the crystal structures of a hemihydrate barium strontium hydrogen squarate (Trifa et al. 2011) and strontium hydrogen squarate (Bouhali et al. 2011). This paper describes the synthesis and crystal structure of the title compound, (I).

The asymmetric unit of (I) consists of one BaII ion, two hydrogen squarate anions, five coordinated water molecules and one solvent water molecule (Fig. 1). Each BaII ion displays a slightly-distorted tricapped trigonal prismatic geometry, defined by four O atoms of two hydrogen squarate anions and five water molecules. The mean value deduced from the Ba–O bonding interactions taken in the range 2.6857 (10)–2.9630 (11) Å agrees with that calculated from the program VALENCE (Hormillosa et al. 1993). The C—O bond lengths indicate that the degree of delocalization in the HSQ– ion in (I) is comparable with literature values (Bertolasi et al. 2001). The structure of (I) consists of infinite linear chains with composition [Ba(HC4O4)2(H2O)5]n running along [010] (Fig. 2). The bridging squarate groups adopt two coordination modes, µ-1monodentate and µ-2 trans bis monodentate. In the crystal, O—H···O hydrogen bonds link the one-dimenaional chains and solvent water molecules into a three-dimensional network (Fig. 3).

It is particularly interesting to compare the crystal structure of this compound with that of its corresponding hemi hydrate barium strontium hydrogen squarate, [Ba0.35Sr0.65(HC4O4)2(H2O)5], 0.5H2O (Trifa et al. 2011). Indeed both structures can be described by chains connected by hydrogen squarate group, However, we can note the following important differences: the presence of Ba/SrO9 polyhedra in the barium strontium hydrogen squarate and a different space group (C2/c) and lattice parameters. Moreover, due to the higher symmetry, the structure is built from dimers of edge-sharing monocapped square antiprisms [(Ba/Sr)O3(H2O)6].

Related literature top

For the synthesis and applications of cyclic oxocarbons, see: Cohen et al. (1959); Bertolasi et al. (2001). For crystal structures of hydrogen squarate complexes, see: Brach et al. (1987); Uçar et al. (2005); Lee et al. (1996). For related alkaline earth squarates, see: Robl & Weiss (1986a,b); Koferstein & Robl (2002). For other related structures, see: Trifa et al. (2011); Bouhali et al. (2011). For the bond-valence method, see: Hormillosa et al. (1993).

Experimental top

All chemicals were purchased from commercial sources and used as received without further purification. The title compound, was synthesized by using a hydrothermal method. Typically a mixture of BaCl2.2H2O (0.112 g) and H2C4O4 (0.114 g) were suspended in H2O (ca 9 ml). The mixture was then placed in a Teflon lined autoclave, sealed and heated to 393K for 4 days followed by cooling in a water bath. The yellow crystals suitable for X-ray diffraction were filtered, washed with water and dried in air.

Refinement top

All H atoms were located in difference Fourier maps and refined isotropically.

Structure description top

Squaric acid, H2C4O4 (3,4-dihydroxycyclobut-3-ene-1,2-dione, Sq), was synthesized for the first time by Cohen et al. in 1959 and has attracted interest because of its cyclic structure and possible aromaticity. It belongs to the series of cyclic oxocarbons of formula H2CnOn (n = 3–6 for deltic, squaric, croconic and rhodizonic acids, respectively). It and its anions (Hsq- and sq2-) are also a useful tools for constructing crystalline architectures and they possess proton donating and accepting capabilities for hydrogen bonding (Cohen et al.1959; Bertolasi et al. 2001). The molecule presents high degree of electron delocalization, which is very important in crystal packing (Brach et al. 1987; Ucar et al. 2005; Lee et al. 1996). The crystal structure of alkaline earth squarates (Robl et al. 1986a,b; Koferstein & Robl. 2002) have already been published. Recently, we reported the crystal structures of a hemihydrate barium strontium hydrogen squarate (Trifa et al. 2011) and strontium hydrogen squarate (Bouhali et al. 2011). This paper describes the synthesis and crystal structure of the title compound, (I).

The asymmetric unit of (I) consists of one BaII ion, two hydrogen squarate anions, five coordinated water molecules and one solvent water molecule (Fig. 1). Each BaII ion displays a slightly-distorted tricapped trigonal prismatic geometry, defined by four O atoms of two hydrogen squarate anions and five water molecules. The mean value deduced from the Ba–O bonding interactions taken in the range 2.6857 (10)–2.9630 (11) Å agrees with that calculated from the program VALENCE (Hormillosa et al. 1993). The C—O bond lengths indicate that the degree of delocalization in the HSQ– ion in (I) is comparable with literature values (Bertolasi et al. 2001). The structure of (I) consists of infinite linear chains with composition [Ba(HC4O4)2(H2O)5]n running along [010] (Fig. 2). The bridging squarate groups adopt two coordination modes, µ-1monodentate and µ-2 trans bis monodentate. In the crystal, O—H···O hydrogen bonds link the one-dimenaional chains and solvent water molecules into a three-dimensional network (Fig. 3).

It is particularly interesting to compare the crystal structure of this compound with that of its corresponding hemi hydrate barium strontium hydrogen squarate, [Ba0.35Sr0.65(HC4O4)2(H2O)5], 0.5H2O (Trifa et al. 2011). Indeed both structures can be described by chains connected by hydrogen squarate group, However, we can note the following important differences: the presence of Ba/SrO9 polyhedra in the barium strontium hydrogen squarate and a different space group (C2/c) and lattice parameters. Moreover, due to the higher symmetry, the structure is built from dimers of edge-sharing monocapped square antiprisms [(Ba/Sr)O3(H2O)6].

For the synthesis and applications of cyclic oxocarbons, see: Cohen et al. (1959); Bertolasi et al. (2001). For crystal structures of hydrogen squarate complexes, see: Brach et al. (1987); Uçar et al. (2005); Lee et al. (1996). For related alkaline earth squarates, see: Robl & Weiss (1986a,b); Koferstein & Robl (2002). For other related structures, see: Trifa et al. (2011); Bouhali et al. (2011). For the bond-valence method, see: Hormillosa et al. (1993).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 2012) drawing of the asymmetric unit (I), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A View of a single chain in (I) along [010].
[Figure 3] Fig. 3. Projection of the structure along the b axis. Dashed lines denote hydrogen bonds.
Poly[[pentaaquabis(µ3-hydrogen squarato)barium] monohydrate] top
Crystal data top
[Ba(C4HO4)2(H2O)5]·H2OF(000) = 920
Mr = 471.53Dx = 2.181 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9365 reflections
a = 11.1522 (11) Åθ = 2.3–25.1°
b = 9.0268 (8) ŵ = 2.84 mm1
c = 14.3025 (14) ÅT = 150 K
β = 94.009 (5)°Bloc, yellow
V = 1436.3 (2) Å30.12 × 0.1 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2550 independent reflections
Radiation source: sealed tube2471 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 25.1°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1313
Tmin = 0.731, Tmax = 1.000k = 1010
12082 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.013Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.034All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0174P)2 + 0.8037P]
where P = (Fo2 + 2Fc2)/3
2550 reflections(Δ/σ)max = 0.003
264 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Ba(C4HO4)2(H2O)5]·H2OV = 1436.3 (2) Å3
Mr = 471.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.1522 (11) ŵ = 2.84 mm1
b = 9.0268 (8) ÅT = 150 K
c = 14.3025 (14) Å0.12 × 0.1 × 0.09 mm
β = 94.009 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
2550 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2471 reflections with I > 2σ(I)
Tmin = 0.731, Tmax = 1.000Rint = 0.022
12082 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0130 restraints
wR(F2) = 0.034All H-atom parameters refined
S = 1.06Δρmax = 0.53 e Å3
2550 reflectionsΔρmin = 0.25 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.676848 (7)0.760410 (9)0.685367 (6)0.00657 (5)
O4W0.83608 (12)0.75740 (13)0.84885 (10)0.0117 (3)
O10.67679 (9)1.02235 (11)0.77441 (7)0.0100 (2)
C30.76489 (13)1.36306 (16)0.72323 (10)0.0076 (3)
O60.90411 (9)0.87276 (11)0.65721 (7)0.0098 (2)
C40.66220 (13)1.30175 (17)0.77342 (10)0.0075 (3)
C10.70789 (13)1.14962 (16)0.75478 (10)0.0077 (3)
O3W0.56965 (11)0.65706 (14)0.83609 (8)0.0139 (2)
O20.89727 (9)1.16255 (12)0.66655 (8)0.0103 (2)
O50.99133 (10)0.52766 (11)0.61707 (8)0.0114 (2)
C20.80471 (14)1.21456 (17)0.70706 (11)0.0080 (3)
O2W0.65618 (12)0.97776 (13)0.54757 (8)0.0154 (2)
O71.13514 (9)0.98991 (11)0.55422 (7)0.0107 (2)
O1W0.73539 (11)0.64714 (14)0.51598 (9)0.0155 (3)
O81.20517 (9)0.64982 (11)0.50651 (8)0.0112 (2)
C71.09085 (13)0.86799 (16)0.56650 (10)0.0075 (3)
C51.02281 (13)0.66277 (17)0.59606 (11)0.0083 (3)
C60.98586 (13)0.81173 (17)0.61497 (10)0.0074 (3)
O30.79995 (9)1.49094 (11)0.70579 (7)0.0093 (2)
C81.12363 (14)0.71099 (17)0.54615 (11)0.0083 (3)
O40.57822 (9)1.35215 (11)0.81426 (7)0.0103 (2)
O11W0.56817 (12)0.28422 (13)0.52709 (8)0.0116 (2)
O5W0.51886 (10)0.54413 (12)0.62332 (8)0.0111 (2)
H4A0.860 (2)0.681 (3)0.8658 (15)0.022 (6)*
H11A0.634 (2)0.293 (2)0.5207 (14)0.016 (5)*
H1B0.7564 (19)0.556 (3)0.5121 (15)0.030 (6)*
H1A0.750 (2)0.685 (3)0.4720 (18)0.033 (7)*
H4B0.892 (2)0.813 (3)0.8462 (16)0.034 (7)*
H3A0.5667 (19)0.563 (3)0.8392 (15)0.031 (6)*
H5A0.535 (2)0.465 (3)0.5962 (17)0.040 (7)*
H5B0.458 (2)0.529 (3)0.6545 (16)0.037 (6)*
H3B0.542 (2)0.690 (3)0.8807 (18)0.035 (7)*
H11B0.535 (2)0.323 (3)0.4773 (17)0.032 (6)*
H2A0.616 (2)1.046 (3)0.5350 (17)0.043 (7)*
H2B0.720 (3)0.985 (3)0.5169 (18)0.045 (7)*
H510.925 (2)0.518 (3)0.6447 (18)0.049 (7)*
H210.901 (2)1.068 (3)0.6630 (17)0.049 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.00723 (7)0.00479 (6)0.00797 (7)0.00014 (3)0.00246 (4)0.00034 (3)
O4W0.0108 (6)0.0094 (6)0.0149 (7)0.0005 (5)0.0006 (5)0.0027 (4)
O10.0121 (5)0.0052 (5)0.0133 (6)0.0007 (4)0.0048 (4)0.0005 (4)
C30.0077 (7)0.0086 (7)0.0062 (7)0.0005 (6)0.0015 (6)0.0002 (5)
O60.0091 (5)0.0085 (5)0.0124 (5)0.0008 (4)0.0046 (4)0.0009 (4)
C40.0082 (7)0.0072 (7)0.0068 (7)0.0008 (6)0.0015 (6)0.0003 (6)
C10.0076 (7)0.0096 (8)0.0059 (7)0.0010 (6)0.0008 (6)0.0007 (6)
O3W0.0198 (6)0.0093 (6)0.0136 (6)0.0004 (5)0.0085 (5)0.0006 (5)
O20.0086 (5)0.0075 (5)0.0155 (6)0.0014 (4)0.0060 (4)0.0002 (4)
O50.0095 (6)0.0067 (5)0.0187 (6)0.0007 (4)0.0062 (5)0.0012 (4)
C20.0077 (8)0.0085 (7)0.0074 (8)0.0004 (6)0.0014 (6)0.0004 (6)
O2W0.0157 (6)0.0129 (6)0.0186 (6)0.0038 (5)0.0078 (5)0.0049 (5)
O70.0114 (5)0.0084 (5)0.0126 (6)0.0025 (4)0.0031 (4)0.0007 (4)
O1W0.0251 (7)0.0096 (6)0.0128 (6)0.0018 (5)0.0088 (5)0.0011 (5)
O80.0091 (5)0.0096 (5)0.0154 (6)0.0011 (4)0.0053 (4)0.0019 (4)
C70.0070 (7)0.0097 (7)0.0057 (7)0.0003 (6)0.0011 (6)0.0002 (6)
C50.0071 (7)0.0093 (8)0.0082 (7)0.0004 (6)0.0010 (6)0.0010 (6)
C60.0059 (7)0.0094 (7)0.0067 (7)0.0007 (6)0.0013 (6)0.0006 (6)
O30.0101 (5)0.0058 (5)0.0124 (5)0.0004 (4)0.0033 (4)0.0003 (4)
C80.0083 (8)0.0081 (7)0.0082 (7)0.0004 (6)0.0020 (6)0.0001 (6)
O40.0098 (5)0.0082 (5)0.0136 (6)0.0006 (4)0.0050 (4)0.0010 (4)
O11W0.0085 (6)0.0140 (6)0.0125 (6)0.0003 (5)0.0031 (5)0.0018 (5)
O5W0.0113 (6)0.0105 (6)0.0121 (6)0.0010 (4)0.0049 (5)0.0018 (4)
Geometric parameters (Å, º) top
Ba1—O12.6857 (10)O3W—H3A0.85 (3)
Ba1—O3W2.7032 (12)O3W—H3B0.79 (3)
Ba1—O5W2.7358 (11)O2—C21.3058 (19)
Ba1—O1W2.7500 (12)O2—H210.85 (3)
Ba1—O2W2.7791 (12)O5—C51.3099 (19)
Ba1—O62.7851 (11)O5—H510.86 (3)
Ba1—O4W2.8356 (14)O2W—H2A0.77 (3)
Ba1—O3i2.7983 (10)O2W—H2B0.86 (3)
Ba1—O4ii2.9630 (11)O7—C71.2241 (18)
O3—Ba1iii2.7983 (10)O1W—H1B0.86 (3)
O4—Ba1iv2.9630 (11)O1W—H1A0.75 (3)
O4W—H4A0.77 (2)O8—C81.2351 (19)
O4W—H4B0.80 (3)C7—C61.491 (2)
O1—C11.2380 (18)C7—C81.497 (2)
C3—O31.2496 (18)C5—C61.438 (2)
C3—C21.436 (2)C5—C81.441 (2)
C3—C41.499 (2)O11W—H11A0.75 (2)
O6—C61.2557 (19)O11W—H11B0.85 (3)
C4—O41.2255 (19)O5W—H5A0.84 (3)
C4—C11.495 (2)O5W—H5B0.85 (3)
C1—C21.442 (2)
O1—Ba1—O3W84.89 (4)O3—C3—C4134.17 (14)
O1—Ba1—O5W139.52 (3)C2—C3—C489.30 (12)
O3W—Ba1—O5W72.64 (4)C6—O6—Ba1127.48 (9)
O1—Ba1—O1W138.85 (4)O4—C4—C1135.01 (14)
O3W—Ba1—O1W136.03 (4)O4—C4—C3136.55 (14)
O5W—Ba1—O1W68.66 (4)C1—C4—C388.42 (11)
O1—Ba1—O2W73.26 (3)O1—C1—C2135.70 (14)
O3W—Ba1—O2W142.17 (4)O1—C1—C4135.04 (14)
O5W—Ba1—O2W104.72 (4)C2—C1—C489.25 (12)
O1W—Ba1—O2W69.56 (4)Ba1—O3W—H3A114.0 (14)
O1—Ba1—O677.19 (3)Ba1—O3W—H3B137.3 (18)
O3W—Ba1—O6134.32 (3)H3A—O3W—H3B109 (2)
O5W—Ba1—O6141.71 (3)C2—O2—H21115.5 (17)
O1W—Ba1—O674.54 (3)C5—O5—H51116.6 (17)
O2W—Ba1—O670.83 (3)O2—C2—C3132.07 (14)
O1—Ba1—O3i137.07 (3)O2—C2—C1134.86 (14)
O3W—Ba1—O3i81.83 (3)C3—C2—C193.04 (12)
O5W—Ba1—O3i73.36 (3)Ba1—O2W—H2A137.9 (18)
O1W—Ba1—O3i67.90 (4)Ba1—O2W—H2B112.5 (17)
O2W—Ba1—O3i134.70 (3)H2A—O2W—H2B108 (2)
O6—Ba1—O3i83.50 (3)Ba1—O1W—H1B119.7 (15)
O1—Ba1—O4W68.80 (3)Ba1—O1W—H1A131 (2)
O3W—Ba1—O4W68.01 (4)H1B—O1W—H1A108 (2)
O5W—Ba1—O4W127.78 (3)O7—C7—C6135.31 (14)
O1W—Ba1—O4W123.32 (4)O7—C7—C8135.78 (14)
O2W—Ba1—O4W127.42 (4)C6—C7—C888.76 (11)
O6—Ba1—O4W66.36 (3)O5—C5—C6137.96 (14)
O3i—Ba1—O4W68.36 (3)O5—C5—C8128.76 (14)
O1—Ba1—O4ii73.80 (3)C6—C5—C893.13 (12)
O3W—Ba1—O4ii67.47 (3)O6—C6—C5136.74 (15)
O5W—Ba1—O4ii66.64 (3)O6—C6—C7133.99 (14)
O1W—Ba1—O4ii113.11 (3)C5—C6—C789.21 (12)
O2W—Ba1—O4ii76.82 (3)C3—O3—Ba1iii131.74 (9)
O6—Ba1—O4ii141.44 (3)O8—C8—C5135.85 (15)
O3i—Ba1—O4ii134.97 (3)O8—C8—C7135.24 (14)
O4W—Ba1—O4ii123.17 (3)C5—C8—C788.86 (11)
Ba1—O4W—H4A116.7 (16)C4—O4—Ba1iv131.52 (9)
Ba1—O4W—H4B113.6 (17)H11A—O11W—H11B103 (2)
H4A—O4W—H4B109 (3)Ba1—O5W—H5A127.3 (16)
C1—O1—Ba1134.44 (9)Ba1—O5W—H5B117.8 (16)
O3—C3—C2136.52 (14)H5A—O5W—H5B108 (2)
O3W—Ba1—O1—C1176.77 (14)O3—C3—C2—C1178.50 (18)
O5W—Ba1—O1—C1121.24 (13)C4—C3—C2—C10.12 (12)
O1W—Ba1—O1—C11.98 (16)O1—C1—C2—O20.4 (3)
O2W—Ba1—O1—C128.01 (13)C4—C1—C2—O2178.04 (18)
O6—Ba1—O1—C145.53 (13)O1—C1—C2—C3178.29 (18)
O3i—Ba1—O1—C1111.03 (13)C4—C1—C2—C30.12 (12)
O4W—Ba1—O1—C1114.86 (14)Ba1—O6—C6—C527.9 (2)
O4ii—Ba1—O1—C1108.77 (14)Ba1—O6—C6—C7155.81 (13)
O1—Ba1—O6—C6178.40 (12)O5—C5—C6—O63.4 (3)
O3W—Ba1—O6—C6108.87 (12)C8—C5—C6—O6178.92 (18)
O5W—Ba1—O6—C615.47 (14)O5—C5—C6—C7173.96 (19)
O1W—Ba1—O6—C631.82 (11)C8—C5—C6—C71.56 (11)
O2W—Ba1—O6—C6105.11 (12)O7—C7—C6—O63.1 (3)
O3i—Ba1—O6—C637.00 (12)C8—C7—C6—O6178.98 (17)
O4W—Ba1—O6—C6106.18 (12)O7—C7—C6—C5174.39 (18)
O4ii—Ba1—O6—C6139.67 (11)C8—C7—C6—C51.50 (11)
O3—C3—C4—O40.1 (3)C2—C3—O3—Ba1iii155.33 (14)
C2—C3—C4—O4178.63 (18)C4—C3—O3—Ba1iii26.6 (2)
O3—C3—C4—C1178.57 (17)O5—C5—C8—O83.0 (3)
C2—C3—C4—C10.12 (11)C6—C5—C8—O8179.15 (18)
Ba1—O1—C1—C238.1 (3)O5—C5—C8—C7174.60 (16)
Ba1—O1—C1—C4144.19 (13)C6—C5—C8—C71.55 (11)
O4—C4—C1—O10.2 (3)O7—C7—C8—O83.3 (3)
C3—C4—C1—O1178.31 (17)C6—C7—C8—O8179.12 (18)
O4—C4—C1—C2178.67 (18)O7—C7—C8—C5174.36 (18)
C3—C4—C1—C20.12 (11)C6—C7—C8—C51.50 (11)
O3—C3—C2—O20.5 (3)C1—C4—O4—Ba1iv43.2 (2)
C4—C3—C2—O2178.13 (17)C3—C4—O4—Ba1iv138.94 (15)
Symmetry codes: (i) x, y1, z; (ii) x+1, y1/2, z+3/2; (iii) x, y+1, z; (iv) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O4Wv0.74 (3)2.13 (2)2.8448 (19)162 (3)
O1W—H1B···O8vi0.86 (3)1.93 (3)2.7854 (16)175 (2)
O2W—H2A···O11Wiii0.78 (3)2.22 (3)2.9431 (17)156 (2)
O2W—H2B···O7vii0.86 (3)1.98 (3)2.8451 (17)178 (3)
O3W—H3A···O4i0.85 (3)1.94 (3)2.7724 (16)165 (2)
O3W—H3B···O11Wiv0.79 (3)2.05 (2)2.8160 (17)165 (2)
O4W—H4A···O7viii0.77 (3)2.07 (3)2.7916 (16)156 (2)
O4W—H4B···O5ix0.80 (2)2.37 (3)3.1245 (17)156 (2)
O5W—H5A···O11W0.84 (3)1.96 (3)2.7941 (16)177 (3)
O5W—H5B···O1ii0.85 (2)1.87 (2)2.7176 (15)173 (3)
O11W—H11A···O8vi0.75 (2)1.93 (2)2.6730 (17)169 (2)
O11W—H11B···O5Wx0.85 (2)1.94 (3)2.7711 (16)165 (2)
O2—H21···O60.86 (3)1.77 (3)2.6207 (15)178 (2)
O5—H51···O3i0.87 (2)1.71 (2)2.5795 (15)176 (3)
Symmetry codes: (i) x, y1, z; (ii) x+1, y1/2, z+3/2; (iii) x, y+1, z; (iv) x+1, y+1/2, z+3/2; (v) x, y+3/2, z1/2; (vi) x+2, y+1, z+1; (vii) x+2, y+2, z+1; (viii) x+2, y1/2, z+3/2; (ix) x+2, y+1/2, z+3/2; (x) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ba(C4HO4)2(H2O)5]·H2O
Mr471.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)11.1522 (11), 9.0268 (8), 14.3025 (14)
β (°) 94.009 (5)
V3)1436.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.84
Crystal size (mm)0.12 × 0.1 × 0.09
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.731, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12082, 2550, 2471
Rint0.022
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.013, 0.034, 1.06
No. of reflections2550
No. of parameters264
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.53, 0.25

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2011), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 2012).

Selected bond lengths (Å) top
Ba1—O12.6857 (10)Ba1—O62.7851 (11)
Ba1—O3W2.7032 (12)Ba1—O4W2.8356 (14)
Ba1—O5W2.7358 (11)Ba1—O3i2.7983 (10)
Ba1—O1W2.7500 (12)Ba1—O4ii2.9630 (11)
Ba1—O2W2.7791 (12)
Symmetry codes: (i) x, y1, z; (ii) x+1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O4Wiii0.74 (3)2.13 (2)2.8448 (19)162 (3)
O1W—H1B···O8iv0.86 (3)1.93 (3)2.7854 (16)175 (2)
O2W—H2A···O11Wv0.78 (3)2.22 (3)2.9431 (17)156 (2)
O2W—H2B···O7vi0.86 (3)1.98 (3)2.8451 (17)178 (3)
O3W—H3A···O4i0.85 (3)1.94 (3)2.7724 (16)165 (2)
O3W—H3B···O11Wvii0.79 (3)2.05 (2)2.8160 (17)165 (2)
O4W—H4A···O7viii0.77 (3)2.07 (3)2.7916 (16)156 (2)
O4W—H4B···O5ix0.80 (2)2.37 (3)3.1245 (17)156 (2)
O5W—H5A···O11W0.84 (3)1.96 (3)2.7941 (16)177 (3)
O5W—H5B···O1ii0.85 (2)1.87 (2)2.7176 (15)173 (3)
O11W—H11A···O8iv0.75 (2)1.93 (2)2.6730 (17)169 (2)
O11W—H11B···O5Wx0.85 (2)1.94 (3)2.7711 (16)165 (2)
O2—H21···O60.86 (3)1.77 (3)2.6207 (15)178 (2)
O5—H51···O3i0.87 (2)1.71 (2)2.5795 (15)176 (3)
Symmetry codes: (i) x, y1, z; (ii) x+1, y1/2, z+3/2; (iii) x, y+3/2, z1/2; (iv) x+2, y+1, z+1; (v) x, y+1, z; (vi) x+2, y+2, z+1; (vii) x+1, y+1/2, z+3/2; (viii) x+2, y1/2, z+3/2; (ix) x+2, y+1/2, z+3/2; (x) x+1, y+1, z+1.
 

Acknowledgements

We are grateful to all personal of the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine, for their assistance. Thanks are due to MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algérie) for financial support.

References

First citationBertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (2001). Acta Cryst. B57, 591–598.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBouhali, A., Trifa, C., Bouacida, S., Boudaren, C. & Bataille, T. (2011). Acta Cryst. E67, m1130–m1131.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrach, I., Rozière, J., Anselment, B. & Peters, K. (1987). Acta Cryst. C43, 458–460.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCohen, S., Lacher, J. R. & Park, J. D. (1959). J. Am. Chem. Soc. 81, 3480.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHormillosa, C., Healy, S., Stephen, T. & Brown, I. D. (1993). Bond Valence Calculator; http://CCP14.ac.uk.  Google Scholar
First citationKoferstein, R. & Robl, C. Z. (2002). Z. Anorg. Allg. Chem. 629, 371–373.  Google Scholar
First citationLee, C.-R., Wang, C.-C. & Wang, Y. (1996). Acta Cryst. B52, 966–975.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRobl, C. & Weiss, A. (1986a). Z. Naturforsch. Teil B, 41, 1485–1489.  Google Scholar
First citationRobl, C. & Weiss, A. (1986b). Z. Naturforsch. Teil B, 41, 1490–1494.  Google Scholar
First citationSheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrifa, C., Bouhali, A., Bouacida, S., Boudaren, C. & Bataille, T. (2011). Acta Cryst. E67, m275–m276.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationUçar, İ., Bulut, A. & Büyükgüngör, O. (2005). Acta Cryst. C61, m266–m268.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds