metal-organic compounds
Poly[[pentaaquabis(μ3-hydrogen squarato)barium] monohydrate]
aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine, 25000 , Algeria, and bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
The 4HO4)2(H2O)5]·H2O}n, consists of discrete double chains propagating along [010]. The chains are formed by BaII ions linked by bridging hydrogen squarate ligands in a trans-bis-monodentate mode. In addition, the bridging hydrogen squarate ligands connect the chains into a ladder structure via a third coordinating O atom. The remaining coordination sites are occupied by five aqua ligands and a second mondendate hydrogen squarate ligand, forming a slightly distorted tricapped trigonal–prismatic geometry. O—H⋯O hydrogen bonds link the chains and solvent water molecules into a three-dimensional network.
of the title compound, {[Ba(CRelated literature
For the synthesis and applications of cyclic oxocarbons, see: Cohen et al. (1959); Bertolasi et al. (2001). For crystal structures of hydrogen squarate complexes, see: Brach et al. (1987); Uçar et al. (2005); Lee et al. (1996). For related alkaline earth squarates, see: Robl & Weiss (1986a,b); Koferstein & Robl (2002). For other related structures, see: Trifa et al. (2011); Bouhali et al. (2011). For the bond-valence method, see: Hormillosa et al. (1993).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2011); cell SAINT (Bruker, 2011); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
https://doi.org/10.1107/S1600536813014736/lh5617sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813014736/lh5617Isup2.hkl
All chemicals were purchased from commercial sources and used as received without further purification. The title compound, was synthesized by using a hydrothermal method. Typically a mixture of BaCl2.2H2O (0.112 g) and H2C4O4 (0.114 g) were suspended in H2O (ca 9 ml). The mixture was then placed in a Teflon lined autoclave, sealed and heated to 393K for 4 days followed by cooling in a water bath. The yellow crystals suitable for X-ray diffraction were filtered, washed with water and dried in air.
Squaric acid, H2C4O4 (3,4-dihydroxycyclobut-3-ene-1,2-dione, Sq), was synthesized for the first time by Cohen et al. in 1959 and has attracted interest because of its cyclic structure and possible aromaticity. It belongs to the series of cyclic oxocarbons of formula H2CnOn (n = 3–6 for deltic, squaric, croconic and rhodizonic acids, respectively). It and its anions (Hsq- and sq2-) are also a useful tools for constructing crystalline architectures and they possess proton donating and accepting capabilities for hydrogen bonding (Cohen et al.1959; Bertolasi et al. 2001). The molecule presents high degree of electron delocalization, which is very important in crystal packing (Brach et al. 1987; Ucar et al. 2005; Lee et al. 1996). The
of alkaline earth squarates (Robl et al. 1986a,b; Koferstein & Robl. 2002) have already been published. Recently, we reported the crystal structures of a hemihydrate barium strontium hydrogen squarate (Trifa et al. 2011) and strontium hydrogen squarate (Bouhali et al. 2011). This paper describes the synthesis and of the title compound, (I).The
of (I) consists of one BaII ion, two hydrogen squarate anions, five coordinated water molecules and one solvent water molecule (Fig. 1). Each BaII ion displays a slightly-distorted tricapped trigonal prismatic geometry, defined by four O atoms of two hydrogen squarate anions and five water molecules. The mean value deduced from the Ba–O bonding interactions taken in the range 2.6857 (10)–2.9630 (11) Å agrees with that calculated from the program VALENCE (Hormillosa et al. 1993). The C—O bond lengths indicate that the degree of delocalization in the HSQ– ion in (I) is comparable with literature values (Bertolasi et al. 2001). The structure of (I) consists of infinite linear chains with composition [Ba(HC4O4)2(H2O)5]n running along [010] (Fig. 2). The bridging squarate groups adopt two coordination modes, µ-1monodentate and µ-2 trans bis monodentate. In the crystal, O—H···O hydrogen bonds link the one-dimenaional chains and solvent water molecules into a three-dimensional network (Fig. 3).It is particularly interesting to compare the
of this compound with that of its corresponding hemi hydrate barium strontium hydrogen squarate, [Ba0.35Sr0.65(HC4O4)2(H2O)5], 0.5H2O (Trifa et al. 2011). Indeed both structures can be described by chains connected by hydrogen squarate group, However, we can note the following important differences: the presence of Ba/SrO9 polyhedra in the barium strontium hydrogen squarate and a different (C2/c) and lattice parameters. Moreover, due to the higher symmetry, the structure is built from dimers of edge-sharing monocapped square antiprisms [(Ba/Sr)O3(H2O)6].For the synthesis and applications of cyclic oxocarbons, see: Cohen et al. (1959); Bertolasi et al. (2001). For crystal structures of hydrogen squarate complexes, see: Brach et al. (1987); Uçar et al. (2005); Lee et al. (1996). For related alkaline earth squarates, see: Robl & Weiss (1986a,b); Koferstein & Robl (2002). For other related structures, see: Trifa et al. (2011); Bouhali et al. (2011). For the bond-valence method, see: Hormillosa et al. (1993).
Data collection: APEX2 (Bruker, 2011); cell
SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. An ORTEP-3 (Farrugia, 2012) drawing of the asymmetric unit (I), with displacement ellipsoids drawn at the 50% probability level. | |
Fig. 2. A View of a single chain in (I) along [010]. | |
Fig. 3. Projection of the structure along the b axis. Dashed lines denote hydrogen bonds. |
[Ba(C4HO4)2(H2O)5]·H2O | F(000) = 920 |
Mr = 471.53 | Dx = 2.181 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9365 reflections |
a = 11.1522 (11) Å | θ = 2.3–25.1° |
b = 9.0268 (8) Å | µ = 2.84 mm−1 |
c = 14.3025 (14) Å | T = 150 K |
β = 94.009 (5)° | Bloc, yellow |
V = 1436.3 (2) Å3 | 0.12 × 0.1 × 0.09 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 2550 independent reflections |
Radiation source: sealed tube | 2471 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
φ and ω scans | θmax = 25.1°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −13→13 |
Tmin = 0.731, Tmax = 1.000 | k = −10→10 |
12082 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.013 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.034 | All H-atom parameters refined |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0174P)2 + 0.8037P] where P = (Fo2 + 2Fc2)/3 |
2550 reflections | (Δ/σ)max = 0.003 |
264 parameters | Δρmax = 0.53 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
[Ba(C4HO4)2(H2O)5]·H2O | V = 1436.3 (2) Å3 |
Mr = 471.53 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.1522 (11) Å | µ = 2.84 mm−1 |
b = 9.0268 (8) Å | T = 150 K |
c = 14.3025 (14) Å | 0.12 × 0.1 × 0.09 mm |
β = 94.009 (5)° |
Bruker APEXII CCD diffractometer | 2550 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 2471 reflections with I > 2σ(I) |
Tmin = 0.731, Tmax = 1.000 | Rint = 0.022 |
12082 measured reflections |
R[F2 > 2σ(F2)] = 0.013 | 0 restraints |
wR(F2) = 0.034 | All H-atom parameters refined |
S = 1.06 | Δρmax = 0.53 e Å−3 |
2550 reflections | Δρmin = −0.25 e Å−3 |
264 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ba1 | 0.676848 (7) | 0.760410 (9) | 0.685367 (6) | 0.00657 (5) | |
O4W | 0.83608 (12) | 0.75740 (13) | 0.84885 (10) | 0.0117 (3) | |
O1 | 0.67679 (9) | 1.02235 (11) | 0.77441 (7) | 0.0100 (2) | |
C3 | 0.76489 (13) | 1.36306 (16) | 0.72323 (10) | 0.0076 (3) | |
O6 | 0.90411 (9) | 0.87276 (11) | 0.65721 (7) | 0.0098 (2) | |
C4 | 0.66220 (13) | 1.30175 (17) | 0.77342 (10) | 0.0075 (3) | |
C1 | 0.70789 (13) | 1.14962 (16) | 0.75478 (10) | 0.0077 (3) | |
O3W | 0.56965 (11) | 0.65706 (14) | 0.83609 (8) | 0.0139 (2) | |
O2 | 0.89727 (9) | 1.16255 (12) | 0.66655 (8) | 0.0103 (2) | |
O5 | 0.99133 (10) | 0.52766 (11) | 0.61707 (8) | 0.0114 (2) | |
C2 | 0.80471 (14) | 1.21456 (17) | 0.70706 (11) | 0.0080 (3) | |
O2W | 0.65618 (12) | 0.97776 (13) | 0.54757 (8) | 0.0154 (2) | |
O7 | 1.13514 (9) | 0.98991 (11) | 0.55422 (7) | 0.0107 (2) | |
O1W | 0.73539 (11) | 0.64714 (14) | 0.51598 (9) | 0.0155 (3) | |
O8 | 1.20517 (9) | 0.64982 (11) | 0.50651 (8) | 0.0112 (2) | |
C7 | 1.09085 (13) | 0.86799 (16) | 0.56650 (10) | 0.0075 (3) | |
C5 | 1.02281 (13) | 0.66277 (17) | 0.59606 (11) | 0.0083 (3) | |
C6 | 0.98586 (13) | 0.81173 (17) | 0.61497 (10) | 0.0074 (3) | |
O3 | 0.79995 (9) | 1.49094 (11) | 0.70579 (7) | 0.0093 (2) | |
C8 | 1.12363 (14) | 0.71099 (17) | 0.54615 (11) | 0.0083 (3) | |
O4 | 0.57822 (9) | 1.35215 (11) | 0.81426 (7) | 0.0103 (2) | |
O11W | 0.56817 (12) | 0.28422 (13) | 0.52709 (8) | 0.0116 (2) | |
O5W | 0.51886 (10) | 0.54413 (12) | 0.62332 (8) | 0.0111 (2) | |
H4A | 0.860 (2) | 0.681 (3) | 0.8658 (15) | 0.022 (6)* | |
H11A | 0.634 (2) | 0.293 (2) | 0.5207 (14) | 0.016 (5)* | |
H1B | 0.7564 (19) | 0.556 (3) | 0.5121 (15) | 0.030 (6)* | |
H1A | 0.750 (2) | 0.685 (3) | 0.4720 (18) | 0.033 (7)* | |
H4B | 0.892 (2) | 0.813 (3) | 0.8462 (16) | 0.034 (7)* | |
H3A | 0.5667 (19) | 0.563 (3) | 0.8392 (15) | 0.031 (6)* | |
H5A | 0.535 (2) | 0.465 (3) | 0.5962 (17) | 0.040 (7)* | |
H5B | 0.458 (2) | 0.529 (3) | 0.6545 (16) | 0.037 (6)* | |
H3B | 0.542 (2) | 0.690 (3) | 0.8807 (18) | 0.035 (7)* | |
H11B | 0.535 (2) | 0.323 (3) | 0.4773 (17) | 0.032 (6)* | |
H2A | 0.616 (2) | 1.046 (3) | 0.5350 (17) | 0.043 (7)* | |
H2B | 0.720 (3) | 0.985 (3) | 0.5169 (18) | 0.045 (7)* | |
H51 | 0.925 (2) | 0.518 (3) | 0.6447 (18) | 0.049 (7)* | |
H21 | 0.901 (2) | 1.068 (3) | 0.6630 (17) | 0.049 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1 | 0.00723 (7) | 0.00479 (6) | 0.00797 (7) | −0.00014 (3) | 0.00246 (4) | −0.00034 (3) |
O4W | 0.0108 (6) | 0.0094 (6) | 0.0149 (7) | −0.0005 (5) | 0.0006 (5) | 0.0027 (4) |
O1 | 0.0121 (5) | 0.0052 (5) | 0.0133 (6) | −0.0007 (4) | 0.0048 (4) | 0.0005 (4) |
C3 | 0.0077 (7) | 0.0086 (7) | 0.0062 (7) | −0.0005 (6) | −0.0015 (6) | 0.0002 (5) |
O6 | 0.0091 (5) | 0.0085 (5) | 0.0124 (5) | 0.0008 (4) | 0.0046 (4) | −0.0009 (4) |
C4 | 0.0082 (7) | 0.0072 (7) | 0.0068 (7) | −0.0008 (6) | −0.0015 (6) | 0.0003 (6) |
C1 | 0.0076 (7) | 0.0096 (8) | 0.0059 (7) | 0.0010 (6) | −0.0008 (6) | −0.0007 (6) |
O3W | 0.0198 (6) | 0.0093 (6) | 0.0136 (6) | −0.0004 (5) | 0.0085 (5) | −0.0006 (5) |
O2 | 0.0086 (5) | 0.0075 (5) | 0.0155 (6) | 0.0014 (4) | 0.0060 (4) | −0.0002 (4) |
O5 | 0.0095 (6) | 0.0067 (5) | 0.0187 (6) | −0.0007 (4) | 0.0062 (5) | 0.0012 (4) |
C2 | 0.0077 (8) | 0.0085 (7) | 0.0074 (8) | −0.0004 (6) | −0.0014 (6) | −0.0004 (6) |
O2W | 0.0157 (6) | 0.0129 (6) | 0.0186 (6) | 0.0038 (5) | 0.0078 (5) | 0.0049 (5) |
O7 | 0.0114 (5) | 0.0084 (5) | 0.0126 (6) | −0.0025 (4) | 0.0031 (4) | −0.0007 (4) |
O1W | 0.0251 (7) | 0.0096 (6) | 0.0128 (6) | 0.0018 (5) | 0.0088 (5) | 0.0011 (5) |
O8 | 0.0091 (5) | 0.0096 (5) | 0.0154 (6) | 0.0011 (4) | 0.0053 (4) | −0.0019 (4) |
C7 | 0.0070 (7) | 0.0097 (7) | 0.0057 (7) | −0.0003 (6) | −0.0011 (6) | 0.0002 (6) |
C5 | 0.0071 (7) | 0.0093 (8) | 0.0082 (7) | 0.0004 (6) | −0.0010 (6) | −0.0010 (6) |
C6 | 0.0059 (7) | 0.0094 (7) | 0.0067 (7) | −0.0007 (6) | −0.0013 (6) | 0.0006 (6) |
O3 | 0.0101 (5) | 0.0058 (5) | 0.0124 (5) | −0.0004 (4) | 0.0033 (4) | 0.0003 (4) |
C8 | 0.0083 (8) | 0.0081 (7) | 0.0082 (7) | −0.0004 (6) | −0.0020 (6) | −0.0001 (6) |
O4 | 0.0098 (5) | 0.0082 (5) | 0.0136 (6) | 0.0006 (4) | 0.0050 (4) | −0.0010 (4) |
O11W | 0.0085 (6) | 0.0140 (6) | 0.0125 (6) | −0.0003 (5) | 0.0031 (5) | 0.0018 (5) |
O5W | 0.0113 (6) | 0.0105 (6) | 0.0121 (6) | −0.0010 (4) | 0.0049 (5) | −0.0018 (4) |
Ba1—O1 | 2.6857 (10) | O3W—H3A | 0.85 (3) |
Ba1—O3W | 2.7032 (12) | O3W—H3B | 0.79 (3) |
Ba1—O5W | 2.7358 (11) | O2—C2 | 1.3058 (19) |
Ba1—O1W | 2.7500 (12) | O2—H21 | 0.85 (3) |
Ba1—O2W | 2.7791 (12) | O5—C5 | 1.3099 (19) |
Ba1—O6 | 2.7851 (11) | O5—H51 | 0.86 (3) |
Ba1—O4W | 2.8356 (14) | O2W—H2A | 0.77 (3) |
Ba1—O3i | 2.7983 (10) | O2W—H2B | 0.86 (3) |
Ba1—O4ii | 2.9630 (11) | O7—C7 | 1.2241 (18) |
O3—Ba1iii | 2.7983 (10) | O1W—H1B | 0.86 (3) |
O4—Ba1iv | 2.9630 (11) | O1W—H1A | 0.75 (3) |
O4W—H4A | 0.77 (2) | O8—C8 | 1.2351 (19) |
O4W—H4B | 0.80 (3) | C7—C6 | 1.491 (2) |
O1—C1 | 1.2380 (18) | C7—C8 | 1.497 (2) |
C3—O3 | 1.2496 (18) | C5—C6 | 1.438 (2) |
C3—C2 | 1.436 (2) | C5—C8 | 1.441 (2) |
C3—C4 | 1.499 (2) | O11W—H11A | 0.75 (2) |
O6—C6 | 1.2557 (19) | O11W—H11B | 0.85 (3) |
C4—O4 | 1.2255 (19) | O5W—H5A | 0.84 (3) |
C4—C1 | 1.495 (2) | O5W—H5B | 0.85 (3) |
C1—C2 | 1.442 (2) | ||
O1—Ba1—O3W | 84.89 (4) | O3—C3—C4 | 134.17 (14) |
O1—Ba1—O5W | 139.52 (3) | C2—C3—C4 | 89.30 (12) |
O3W—Ba1—O5W | 72.64 (4) | C6—O6—Ba1 | 127.48 (9) |
O1—Ba1—O1W | 138.85 (4) | O4—C4—C1 | 135.01 (14) |
O3W—Ba1—O1W | 136.03 (4) | O4—C4—C3 | 136.55 (14) |
O5W—Ba1—O1W | 68.66 (4) | C1—C4—C3 | 88.42 (11) |
O1—Ba1—O2W | 73.26 (3) | O1—C1—C2 | 135.70 (14) |
O3W—Ba1—O2W | 142.17 (4) | O1—C1—C4 | 135.04 (14) |
O5W—Ba1—O2W | 104.72 (4) | C2—C1—C4 | 89.25 (12) |
O1W—Ba1—O2W | 69.56 (4) | Ba1—O3W—H3A | 114.0 (14) |
O1—Ba1—O6 | 77.19 (3) | Ba1—O3W—H3B | 137.3 (18) |
O3W—Ba1—O6 | 134.32 (3) | H3A—O3W—H3B | 109 (2) |
O5W—Ba1—O6 | 141.71 (3) | C2—O2—H21 | 115.5 (17) |
O1W—Ba1—O6 | 74.54 (3) | C5—O5—H51 | 116.6 (17) |
O2W—Ba1—O6 | 70.83 (3) | O2—C2—C3 | 132.07 (14) |
O1—Ba1—O3i | 137.07 (3) | O2—C2—C1 | 134.86 (14) |
O3W—Ba1—O3i | 81.83 (3) | C3—C2—C1 | 93.04 (12) |
O5W—Ba1—O3i | 73.36 (3) | Ba1—O2W—H2A | 137.9 (18) |
O1W—Ba1—O3i | 67.90 (4) | Ba1—O2W—H2B | 112.5 (17) |
O2W—Ba1—O3i | 134.70 (3) | H2A—O2W—H2B | 108 (2) |
O6—Ba1—O3i | 83.50 (3) | Ba1—O1W—H1B | 119.7 (15) |
O1—Ba1—O4W | 68.80 (3) | Ba1—O1W—H1A | 131 (2) |
O3W—Ba1—O4W | 68.01 (4) | H1B—O1W—H1A | 108 (2) |
O5W—Ba1—O4W | 127.78 (3) | O7—C7—C6 | 135.31 (14) |
O1W—Ba1—O4W | 123.32 (4) | O7—C7—C8 | 135.78 (14) |
O2W—Ba1—O4W | 127.42 (4) | C6—C7—C8 | 88.76 (11) |
O6—Ba1—O4W | 66.36 (3) | O5—C5—C6 | 137.96 (14) |
O3i—Ba1—O4W | 68.36 (3) | O5—C5—C8 | 128.76 (14) |
O1—Ba1—O4ii | 73.80 (3) | C6—C5—C8 | 93.13 (12) |
O3W—Ba1—O4ii | 67.47 (3) | O6—C6—C5 | 136.74 (15) |
O5W—Ba1—O4ii | 66.64 (3) | O6—C6—C7 | 133.99 (14) |
O1W—Ba1—O4ii | 113.11 (3) | C5—C6—C7 | 89.21 (12) |
O2W—Ba1—O4ii | 76.82 (3) | C3—O3—Ba1iii | 131.74 (9) |
O6—Ba1—O4ii | 141.44 (3) | O8—C8—C5 | 135.85 (15) |
O3i—Ba1—O4ii | 134.97 (3) | O8—C8—C7 | 135.24 (14) |
O4W—Ba1—O4ii | 123.17 (3) | C5—C8—C7 | 88.86 (11) |
Ba1—O4W—H4A | 116.7 (16) | C4—O4—Ba1iv | 131.52 (9) |
Ba1—O4W—H4B | 113.6 (17) | H11A—O11W—H11B | 103 (2) |
H4A—O4W—H4B | 109 (3) | Ba1—O5W—H5A | 127.3 (16) |
C1—O1—Ba1 | 134.44 (9) | Ba1—O5W—H5B | 117.8 (16) |
O3—C3—C2 | 136.52 (14) | H5A—O5W—H5B | 108 (2) |
O3W—Ba1—O1—C1 | −176.77 (14) | O3—C3—C2—C1 | 178.50 (18) |
O5W—Ba1—O1—C1 | −121.24 (13) | C4—C3—C2—C1 | −0.12 (12) |
O1W—Ba1—O1—C1 | −1.98 (16) | O1—C1—C2—O2 | −0.4 (3) |
O2W—Ba1—O1—C1 | −28.01 (13) | C4—C1—C2—O2 | 178.04 (18) |
O6—Ba1—O1—C1 | 45.53 (13) | O1—C1—C2—C3 | −178.29 (18) |
O3i—Ba1—O1—C1 | 111.03 (13) | C4—C1—C2—C3 | 0.12 (12) |
O4W—Ba1—O1—C1 | 114.86 (14) | Ba1—O6—C6—C5 | −27.9 (2) |
O4ii—Ba1—O1—C1 | −108.77 (14) | Ba1—O6—C6—C7 | 155.81 (13) |
O1—Ba1—O6—C6 | 178.40 (12) | O5—C5—C6—O6 | −3.4 (3) |
O3W—Ba1—O6—C6 | 108.87 (12) | C8—C5—C6—O6 | −178.92 (18) |
O5W—Ba1—O6—C6 | −15.47 (14) | O5—C5—C6—C7 | 173.96 (19) |
O1W—Ba1—O6—C6 | −31.82 (11) | C8—C5—C6—C7 | −1.56 (11) |
O2W—Ba1—O6—C6 | −105.11 (12) | O7—C7—C6—O6 | 3.1 (3) |
O3i—Ba1—O6—C6 | 37.00 (12) | C8—C7—C6—O6 | 178.98 (17) |
O4W—Ba1—O6—C6 | 106.18 (12) | O7—C7—C6—C5 | −174.39 (18) |
O4ii—Ba1—O6—C6 | −139.67 (11) | C8—C7—C6—C5 | 1.50 (11) |
O3—C3—C4—O4 | −0.1 (3) | C2—C3—O3—Ba1iii | 155.33 (14) |
C2—C3—C4—O4 | 178.63 (18) | C4—C3—O3—Ba1iii | −26.6 (2) |
O3—C3—C4—C1 | −178.57 (17) | O5—C5—C8—O8 | 3.0 (3) |
C2—C3—C4—C1 | 0.12 (11) | C6—C5—C8—O8 | 179.15 (18) |
Ba1—O1—C1—C2 | −38.1 (3) | O5—C5—C8—C7 | −174.60 (16) |
Ba1—O1—C1—C4 | 144.19 (13) | C6—C5—C8—C7 | 1.55 (11) |
O4—C4—C1—O1 | −0.2 (3) | O7—C7—C8—O8 | −3.3 (3) |
C3—C4—C1—O1 | 178.31 (17) | C6—C7—C8—O8 | −179.12 (18) |
O4—C4—C1—C2 | −178.67 (18) | O7—C7—C8—C5 | 174.36 (18) |
C3—C4—C1—C2 | −0.12 (11) | C6—C7—C8—C5 | −1.50 (11) |
O3—C3—C2—O2 | 0.5 (3) | C1—C4—O4—Ba1iv | −43.2 (2) |
C4—C3—C2—O2 | −178.13 (17) | C3—C4—O4—Ba1iv | 138.94 (15) |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, y−1/2, −z+3/2; (iii) x, y+1, z; (iv) −x+1, y+1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1A···O4Wv | 0.74 (3) | 2.13 (2) | 2.8448 (19) | 162 (3) |
O1W—H1B···O8vi | 0.86 (3) | 1.93 (3) | 2.7854 (16) | 175 (2) |
O2W—H2A···O11Wiii | 0.78 (3) | 2.22 (3) | 2.9431 (17) | 156 (2) |
O2W—H2B···O7vii | 0.86 (3) | 1.98 (3) | 2.8451 (17) | 178 (3) |
O3W—H3A···O4i | 0.85 (3) | 1.94 (3) | 2.7724 (16) | 165 (2) |
O3W—H3B···O11Wiv | 0.79 (3) | 2.05 (2) | 2.8160 (17) | 165 (2) |
O4W—H4A···O7viii | 0.77 (3) | 2.07 (3) | 2.7916 (16) | 156 (2) |
O4W—H4B···O5ix | 0.80 (2) | 2.37 (3) | 3.1245 (17) | 156 (2) |
O5W—H5A···O11W | 0.84 (3) | 1.96 (3) | 2.7941 (16) | 177 (3) |
O5W—H5B···O1ii | 0.85 (2) | 1.87 (2) | 2.7176 (15) | 173 (3) |
O11W—H11A···O8vi | 0.75 (2) | 1.93 (2) | 2.6730 (17) | 169 (2) |
O11W—H11B···O5Wx | 0.85 (2) | 1.94 (3) | 2.7711 (16) | 165 (2) |
O2—H21···O6 | 0.86 (3) | 1.77 (3) | 2.6207 (15) | 178 (2) |
O5—H51···O3i | 0.87 (2) | 1.71 (2) | 2.5795 (15) | 176 (3) |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, y−1/2, −z+3/2; (iii) x, y+1, z; (iv) −x+1, y+1/2, −z+3/2; (v) x, −y+3/2, z−1/2; (vi) −x+2, −y+1, −z+1; (vii) −x+2, −y+2, −z+1; (viii) −x+2, y−1/2, −z+3/2; (ix) −x+2, y+1/2, −z+3/2; (x) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ba(C4HO4)2(H2O)5]·H2O |
Mr | 471.53 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 150 |
a, b, c (Å) | 11.1522 (11), 9.0268 (8), 14.3025 (14) |
β (°) | 94.009 (5) |
V (Å3) | 1436.3 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.84 |
Crystal size (mm) | 0.12 × 0.1 × 0.09 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2002) |
Tmin, Tmax | 0.731, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12082, 2550, 2471 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.013, 0.034, 1.06 |
No. of reflections | 2550 |
No. of parameters | 264 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.53, −0.25 |
Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2011), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 2012).
Ba1—O1 | 2.6857 (10) | Ba1—O6 | 2.7851 (11) |
Ba1—O3W | 2.7032 (12) | Ba1—O4W | 2.8356 (14) |
Ba1—O5W | 2.7358 (11) | Ba1—O3i | 2.7983 (10) |
Ba1—O1W | 2.7500 (12) | Ba1—O4ii | 2.9630 (11) |
Ba1—O2W | 2.7791 (12) |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, y−1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1A···O4Wiii | 0.74 (3) | 2.13 (2) | 2.8448 (19) | 162 (3) |
O1W—H1B···O8iv | 0.86 (3) | 1.93 (3) | 2.7854 (16) | 175 (2) |
O2W—H2A···O11Wv | 0.78 (3) | 2.22 (3) | 2.9431 (17) | 156 (2) |
O2W—H2B···O7vi | 0.86 (3) | 1.98 (3) | 2.8451 (17) | 178 (3) |
O3W—H3A···O4i | 0.85 (3) | 1.94 (3) | 2.7724 (16) | 165 (2) |
O3W—H3B···O11Wvii | 0.79 (3) | 2.05 (2) | 2.8160 (17) | 165 (2) |
O4W—H4A···O7viii | 0.77 (3) | 2.07 (3) | 2.7916 (16) | 156 (2) |
O4W—H4B···O5ix | 0.80 (2) | 2.37 (3) | 3.1245 (17) | 156 (2) |
O5W—H5A···O11W | 0.84 (3) | 1.96 (3) | 2.7941 (16) | 177 (3) |
O5W—H5B···O1ii | 0.85 (2) | 1.87 (2) | 2.7176 (15) | 173 (3) |
O11W—H11A···O8iv | 0.75 (2) | 1.93 (2) | 2.6730 (17) | 169 (2) |
O11W—H11B···O5Wx | 0.85 (2) | 1.94 (3) | 2.7711 (16) | 165 (2) |
O2—H21···O6 | 0.86 (3) | 1.77 (3) | 2.6207 (15) | 178 (2) |
O5—H51···O3i | 0.87 (2) | 1.71 (2) | 2.5795 (15) | 176 (3) |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, y−1/2, −z+3/2; (iii) x, −y+3/2, z−1/2; (iv) −x+2, −y+1, −z+1; (v) x, y+1, z; (vi) −x+2, −y+2, −z+1; (vii) −x+1, y+1/2, −z+3/2; (viii) −x+2, y−1/2, −z+3/2; (ix) −x+2, y+1/2, −z+3/2; (x) −x+1, −y+1, −z+1. |
Acknowledgements
We are grateful to all personal of the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine, for their assistance. Thanks are due to MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algérie) for financial support.
References
Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (2001). Acta Cryst. B57, 591–598. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bouhali, A., Trifa, C., Bouacida, S., Boudaren, C. & Bataille, T. (2011). Acta Cryst. E67, m1130–m1131. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Brach, I., Rozière, J., Anselment, B. & Peters, K. (1987). Acta Cryst. C43, 458–460. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cohen, S., Lacher, J. R. & Park, J. D. (1959). J. Am. Chem. Soc. 81, 3480. CrossRef Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hormillosa, C., Healy, S., Stephen, T. & Brown, I. D. (1993). Bond Valence Calculator; http://CCP14.ac.uk. Google Scholar
Koferstein, R. & Robl, C. Z. (2002). Z. Anorg. Allg. Chem. 629, 371–373. Google Scholar
Lee, C.-R., Wang, C.-C. & Wang, Y. (1996). Acta Cryst. B52, 966–975. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Robl, C. & Weiss, A. (1986a). Z. Naturforsch. Teil B, 41, 1485–1489. Google Scholar
Robl, C. & Weiss, A. (1986b). Z. Naturforsch. Teil B, 41, 1490–1494. Google Scholar
Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trifa, C., Bouhali, A., Bouacida, S., Boudaren, C. & Bataille, T. (2011). Acta Cryst. E67, m275–m276. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Uçar, İ., Bulut, A. & Büyükgüngör, O. (2005). Acta Cryst. C61, m266–m268. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Squaric acid, H2C4O4 (3,4-dihydroxycyclobut-3-ene-1,2-dione, Sq), was synthesized for the first time by Cohen et al. in 1959 and has attracted interest because of its cyclic structure and possible aromaticity. It belongs to the series of cyclic oxocarbons of formula H2CnOn (n = 3–6 for deltic, squaric, croconic and rhodizonic acids, respectively). It and its anions (Hsq- and sq2-) are also a useful tools for constructing crystalline architectures and they possess proton donating and accepting capabilities for hydrogen bonding (Cohen et al.1959; Bertolasi et al. 2001). The molecule presents high degree of electron delocalization, which is very important in crystal packing (Brach et al. 1987; Ucar et al. 2005; Lee et al. 1996). The crystal structure of alkaline earth squarates (Robl et al. 1986a,b; Koferstein & Robl. 2002) have already been published. Recently, we reported the crystal structures of a hemihydrate barium strontium hydrogen squarate (Trifa et al. 2011) and strontium hydrogen squarate (Bouhali et al. 2011). This paper describes the synthesis and crystal structure of the title compound, (I).
The asymmetric unit of (I) consists of one BaII ion, two hydrogen squarate anions, five coordinated water molecules and one solvent water molecule (Fig. 1). Each BaII ion displays a slightly-distorted tricapped trigonal prismatic geometry, defined by four O atoms of two hydrogen squarate anions and five water molecules. The mean value deduced from the Ba–O bonding interactions taken in the range 2.6857 (10)–2.9630 (11) Å agrees with that calculated from the program VALENCE (Hormillosa et al. 1993). The C—O bond lengths indicate that the degree of delocalization in the HSQ– ion in (I) is comparable with literature values (Bertolasi et al. 2001). The structure of (I) consists of infinite linear chains with composition [Ba(HC4O4)2(H2O)5]n running along [010] (Fig. 2). The bridging squarate groups adopt two coordination modes, µ-1monodentate and µ-2 trans bis monodentate. In the crystal, O—H···O hydrogen bonds link the one-dimenaional chains and solvent water molecules into a three-dimensional network (Fig. 3).
It is particularly interesting to compare the crystal structure of this compound with that of its corresponding hemi hydrate barium strontium hydrogen squarate, [Ba0.35Sr0.65(HC4O4)2(H2O)5], 0.5H2O (Trifa et al. 2011). Indeed both structures can be described by chains connected by hydrogen squarate group, However, we can note the following important differences: the presence of Ba/SrO9 polyhedra in the barium strontium hydrogen squarate and a different space group (C2/c) and lattice parameters. Moreover, due to the higher symmetry, the structure is built from dimers of edge-sharing monocapped square antiprisms [(Ba/Sr)O3(H2O)6].