metal-organic compounds
Bis[chloridobis(1,10-phenanthroline)copper(II)] pentacyanidonitrosoferrate(II) dimethylformamide monosolvate
aTaras Shevchenko National University, Department of Chemistry, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, and bSTC, "Institute for Single Crystals", National Academy of Sciences of Ukraine, Lenina ave. 60, Kharkov 61001, Ukraine
*Correspondence e-mail: kozachuk_o@yahoo.com
The title complex [CuCl(C12H8N2)2]2[Fe(CN)5(NO)]·C3H7NO, consists of discrete [Cu(phen)2Cl]+ cations (phen is 1,10-phenanthroline), [Fe(CN)5NO]2− anions and one dimethylformamide (DMF) solvent molecule of crystallization per The CuII atom is coordinated by two phenanthroline ligands and one chloride ion in a distorted trigonal–bipyramidal geometry. The dihedral angle between the phen ligands is 77.92 (7)°. The cation charge is balanced by a disordered nitroprusside counter-anion with the FeII atom located on an inversion center with a slightly distorted octahedral coordination geometry. In the crystal, weak C—H⋯N and C—H⋯Cl hydrogen bonds connect anions and cations into a two-dimensional network parallel to (100). In addition, π–π stacking interactions are observed with centroid–centroid distances in the range 3.565 (2)–3.760 (3)Å. The dimethylformamide solvent molecule was refined as disordered about an inversion center.
Related literature
For background to the direct synthesis of coordination compounds, see: Buvaylo et al. (2005); Makhankova et al. (2002); Nesterova et al. (2004, 2005, 2008); Pryma et al. (2003); Vinogradova et al. (2002); Vassilyeva et al. (1997). For the structures of related complexes, see: Nikitina et al. (2008); Vreshch et al. (2009); Onawumi et al. (2010); Sui et al. (2006); Xiao et al. (2004); Soria et al. (2002); Shevyakova et al. (2002).
Experimental
Crystal data
|
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536813015547/lh5620sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813015547/lh5620Isup2.hkl
Copper powder (0.159 g, 2.50 mmol), Na2[Fe(CN)5(NO)].2H2O (0.372 g, 1.25 mmol) and phen.HCl.H2O (1.17 g, 5.00 mmol) in DMF (20 ml) were heated to 323–333 K and stirred magnetically until total dissolution of copper was observed (75 min). Green crystals suitable for X-ray crystallography were isolated in four days. The crystals (0.18 g, yield 14%) were filtered off, washed with dry methanol, and finally dried in vacuo at room temperature.
All H-atoms were placed in calculated positions with C—H = 0.93-1.00 Å and refined in riding-model approximation with Uiso(H) = 1.2Ueq(C).
This work is a continuation of our research in the field of direct synthesis of coordination compounds (Buvaylo et al., 2005; Makhankova et al., 2002; Nesterova et al., 2004,2005,2008; Pryma et al., 2003; Vinogradova et al., 2002; Vassilyeva et al., 1997). It was shown recently the possibility of using anionic complexes as a source of metalloligands or the second metal in direct synthesis of heterometallic compounds (Nikitina et al., 2008; Vreshch et al., 2009).
In this paper we present a novel Cu/Fe heterometallic ionic complex [CuCl(phen)2][Fe(CN)5NO].DMF which consists of discrete [CuCl(phen)2]+ and [Fe(CN)5NO]2- ions (Fig. 1) as well as dimethylformamide solvent molecules. The CuII ion adopts a distorted trigonal–bipyramidal environment by coordinating with four nitrogen atoms from two phen ligands and chlorine atom. The dihedral angle between the two phen ligands (77.92 (7)° ) as well as the range of Cu—N bond distances of 1.996 (3) - 2.177 (4) Å is in good agreement with the previously reported values for analagous complexes (Onawumi et al., 2010; Sui et al., 2006; Xiao et al., 2004). The nitroprusside ion lies across an inversion center. Therefore, the CN and NO groups occupy the axial positions with equal occupancies. It has the usual distorted octahedral, pagoda-like, conformation with average Fe—C and Fe—N bond distances of 1.90 Å and 1.78 Å respectively, in a good agreement with literature values (Soria et al. (2002); Shevyakova et al. (2002). In the crystal, weak C—H···N and C—H···Cl hydrogen bonds connect anions and cations into a two-dimensional network parallel to (100) (Fig. 2). In addition, π···π stacking interactions are observed with centroid to centroid distances in the range 3.565 (2)–3.760 (3)Å.
For background to the direct synthesis of coordination compounds, see: Buvaylo et al. (2005); Makhankova et al. (2002); Nesterova et al. (2004, 2005, 2008); Pryma et al. (2003); Vinogradova et al. (2002); Vassilyeva et al. (1997). For the structures of related complexes, see: Nikitina et al. (2008); Vreshch et al. (2009); Onawumi et al. (2010); Sui et al. (2006); Xiao et al. (2004); Soria et al. (2002); Shevyakova et al. (2002).
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).[CuCl(C12H8N2)2]2[Fe(CN)5(NO)]·C3H7NO | V = 1295.9 (4) Å3 |
Mr = 1207.85 | Z = 1 |
Triclinic, P1 | F(000) = 614 |
Hall symbol: -P 1 | Dx = 1.548 Mg m−3 |
a = 9.9645 (13) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.6001 (18) Å | µ = 1.25 mm−1 |
c = 12.623 (2) Å | T = 293 K |
α = 79.585 (14)° | Block, green |
β = 84.896 (12)° | 0.50 × 0.40 × 0.20 mm |
γ = 82.047 (12)° |
Oxford Diffraction Xcalibur 3 diffractometer | 5647 independent reflections |
Radiation source: fine-focus sealed tube | 2685 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
Detector resolution: 16.1827 pixels mm-1 | θmax = 27.0°, θmin = 3.9° |
ω–scans | h = −12→12 |
Absorption correction: numerical (CrysAlis PRO; Oxford Diffraction, 2010) | k = −13→13 |
Tmin = 0.575, Tmax = 0.789 | l = −16→16 |
11289 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.061 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.182 | H-atom parameters constrained |
S = 0.99 | w = 1/[σ2(Fo2) + (0.090P)2] where P = (Fo2 + 2Fc2)/3 |
5647 reflections | (Δ/σ)max = 0.001 |
366 parameters | Δρmax = 0.73 e Å−3 |
5 restraints | Δρmin = −0.61 e Å−3 |
[CuCl(C12H8N2)2]2[Fe(CN)5(NO)]·C3H7NO | γ = 82.047 (12)° |
Mr = 1207.85 | V = 1295.9 (4) Å3 |
Triclinic, P1 | Z = 1 |
a = 9.9645 (13) Å | Mo Kα radiation |
b = 10.6001 (18) Å | µ = 1.25 mm−1 |
c = 12.623 (2) Å | T = 293 K |
α = 79.585 (14)° | 0.50 × 0.40 × 0.20 mm |
β = 84.896 (12)° |
Oxford Diffraction Xcalibur 3 diffractometer | 5647 independent reflections |
Absorption correction: numerical (CrysAlis PRO; Oxford Diffraction, 2010) | 2685 reflections with I > 2σ(I) |
Tmin = 0.575, Tmax = 0.789 | Rint = 0.041 |
11289 measured reflections |
R[F2 > 2σ(F2)] = 0.061 | 5 restraints |
wR(F2) = 0.182 | H-atom parameters constrained |
S = 0.99 | Δρmax = 0.73 e Å−3 |
5647 reflections | Δρmin = −0.61 e Å−3 |
366 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.17993 (5) | 1.01179 (6) | 0.25097 (5) | 0.0663 (2) | |
Fe1 | 0.5000 | 0.5000 | 0.5000 | 0.0698 (3) | |
Cl1 | 0.04963 (14) | 1.13793 (15) | 0.12224 (12) | 0.0907 (4) | |
N1 | 0.3265 (4) | 1.1266 (4) | 0.2215 (3) | 0.0620 (9) | |
N2 | 0.3436 (4) | 0.8814 (4) | 0.1883 (3) | 0.0672 (10) | |
N3 | 0.0513 (3) | 0.8798 (4) | 0.2939 (3) | 0.0644 (10) | |
N4 | 0.2017 (3) | 0.9736 (3) | 0.4164 (3) | 0.0567 (9) | |
C25 | 0.6109 (5) | 0.4836 (4) | 0.3720 (5) | 0.0657 (12) | |
N5 | 0.6773 (4) | 0.4748 (5) | 0.2946 (4) | 0.0842 (12) | |
C26 | 0.3406 (5) | 0.5273 (5) | 0.4171 (4) | 0.0672 (12) | |
N6 | 0.2486 (4) | 0.5418 (4) | 0.3662 (4) | 0.0821 (12) | |
C27 | 0.514 (4) | 0.696 (3) | 0.474 (4) | 0.066 (6) | 0.50 |
N7 | 0.5204 (17) | 0.796 (3) | 0.446 (3) | 0.107 (9) | 0.50 |
N7B | 0.507 (3) | 0.660 (2) | 0.471 (3) | 0.057 (5) | 0.50 |
O7B | 0.517 (2) | 0.776 (2) | 0.457 (2) | 0.123 (8) | 0.50 |
C1 | 0.3150 (5) | 1.2477 (5) | 0.2380 (4) | 0.0752 (13) | |
H1 | 0.2321 | 1.2846 | 0.2654 | 0.090* | |
C2 | 0.4228 (6) | 1.3221 (6) | 0.2157 (4) | 0.0824 (15) | |
H2 | 0.4134 | 1.4050 | 0.2323 | 0.099* | |
C3 | 0.5410 (6) | 1.2716 (6) | 0.1697 (4) | 0.0872 (17) | |
H3 | 0.6121 | 1.3215 | 0.1520 | 0.105* | |
C4 | 0.5573 (4) | 1.1453 (6) | 0.1485 (4) | 0.0694 (13) | |
C5 | 0.4460 (4) | 1.0740 (5) | 0.1772 (3) | 0.0590 (11) | |
C6 | 0.4538 (4) | 0.9441 (5) | 0.1594 (3) | 0.0605 (11) | |
C7 | 0.5754 (5) | 0.8866 (6) | 0.1118 (4) | 0.0725 (14) | |
C8 | 0.5751 (7) | 0.7591 (7) | 0.0950 (4) | 0.0942 (19) | |
H8 | 0.6514 | 0.7168 | 0.0625 | 0.113* | |
C9 | 0.4641 (7) | 0.6979 (6) | 0.1260 (5) | 0.0972 (18) | |
H9 | 0.4648 | 0.6129 | 0.1163 | 0.117* | |
C10 | 0.3494 (6) | 0.7617 (5) | 0.1723 (4) | 0.0829 (15) | |
H10 | 0.2737 | 0.7183 | 0.1928 | 0.100* | |
C11 | 0.6773 (5) | 1.0833 (8) | 0.1005 (4) | 0.0872 (17) | |
H11 | 0.7523 | 1.1281 | 0.0820 | 0.105* | |
C12 | 0.6851 (5) | 0.9618 (7) | 0.0812 (4) | 0.0874 (18) | |
H12 | 0.7640 | 0.9259 | 0.0471 | 0.105* | |
C13 | −0.0238 (5) | 0.8380 (5) | 0.2298 (5) | 0.0808 (15) | |
H13 | −0.0229 | 0.8740 | 0.1569 | 0.097* | |
C14 | −0.1058 (5) | 0.7390 (5) | 0.2707 (5) | 0.0840 (15) | |
H14 | −0.1585 | 0.7106 | 0.2246 | 0.101* | |
C15 | −0.1078 (5) | 0.6856 (5) | 0.3758 (5) | 0.0766 (14) | |
H15 | −0.1617 | 0.6204 | 0.4027 | 0.092* | |
C16 | −0.0292 (4) | 0.7284 (4) | 0.4436 (4) | 0.0641 (12) | |
C17 | 0.0489 (4) | 0.8265 (4) | 0.3995 (4) | 0.0600 (11) | |
C18 | 0.1300 (4) | 0.8767 (4) | 0.4657 (4) | 0.0559 (10) | |
C19 | 0.1308 (4) | 0.8260 (4) | 0.5758 (4) | 0.0611 (11) | |
C20 | 0.2095 (5) | 0.8823 (5) | 0.6371 (4) | 0.0741 (13) | |
H20 | 0.2116 | 0.8539 | 0.7111 | 0.089* | |
C21 | 0.2825 (5) | 0.9787 (5) | 0.5879 (4) | 0.0753 (13) | |
H21 | 0.3356 | 1.0154 | 0.6281 | 0.090* | |
C22 | 0.2776 (4) | 1.0221 (5) | 0.4772 (4) | 0.0655 (12) | |
H22 | 0.3290 | 1.0872 | 0.4446 | 0.079* | |
C23 | −0.0211 (5) | 0.6775 (5) | 0.5573 (4) | 0.0723 (13) | |
H23 | −0.0690 | 0.6091 | 0.5880 | 0.087* | |
C24 | 0.0522 (5) | 0.7251 (5) | 0.6187 (4) | 0.0745 (14) | |
H24 | 0.0523 | 0.6916 | 0.6920 | 0.089* | |
N8 | 0.0000 | 0.5000 | 1.0000 | 0.157 (4)* | |
O1 | −0.2091 (11) | 0.465 (2) | 1.004 (2) | 0.273 (9)* | 0.50 |
C28 | −0.1053 (13) | 0.483 (3) | 0.9484 (13) | 0.213 (10)* | 0.50 |
H28A | −0.1030 | 0.4841 | 0.8688 | 0.256* | 0.50 |
C29 | 0.015 (2) | 0.504 (2) | 1.1107 (9) | 0.177 (8)* | 0.50 |
H29A | −0.0724 | 0.4960 | 1.1561 | 0.212* | 0.50 |
H29B | 0.0843 | 0.4305 | 1.1378 | 0.212* | 0.50 |
H29C | 0.0475 | 0.5876 | 1.1150 | 0.212* | 0.50 |
C30 | 0.1174 (18) | 0.512 (2) | 0.9282 (17) | 0.186 (8)* | 0.50 |
H30A | 0.0824 | 0.5077 | 0.8573 | 0.223* | 0.50 |
H30B | 0.1544 | 0.5962 | 0.9235 | 0.223* | 0.50 |
H30C | 0.1912 | 0.4391 | 0.9462 | 0.223* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0579 (3) | 0.0790 (4) | 0.0627 (4) | −0.0218 (3) | 0.0013 (3) | −0.0064 (3) |
Fe1 | 0.0523 (5) | 0.0874 (7) | 0.0730 (7) | −0.0208 (5) | 0.0005 (4) | −0.0155 (5) |
Cl1 | 0.0809 (8) | 0.1060 (11) | 0.0834 (9) | −0.0154 (7) | −0.0016 (7) | −0.0103 (8) |
N1 | 0.058 (2) | 0.071 (3) | 0.059 (2) | −0.0179 (18) | 0.0037 (17) | −0.010 (2) |
N2 | 0.066 (2) | 0.077 (3) | 0.053 (2) | −0.014 (2) | −0.0005 (18) | 0.003 (2) |
N3 | 0.057 (2) | 0.072 (2) | 0.065 (2) | −0.0181 (18) | −0.0070 (18) | −0.005 (2) |
N4 | 0.0478 (17) | 0.064 (2) | 0.059 (2) | −0.0160 (16) | 0.0040 (16) | −0.0101 (18) |
C25 | 0.053 (2) | 0.063 (3) | 0.084 (3) | −0.010 (2) | −0.010 (2) | −0.016 (3) |
N5 | 0.065 (2) | 0.105 (3) | 0.084 (3) | −0.012 (2) | 0.001 (2) | −0.025 (3) |
C26 | 0.057 (3) | 0.063 (3) | 0.077 (3) | −0.015 (2) | 0.013 (2) | −0.003 (3) |
N6 | 0.062 (2) | 0.096 (3) | 0.085 (3) | −0.021 (2) | −0.003 (2) | 0.001 (3) |
C27 | 0.072 (9) | 0.048 (17) | 0.091 (11) | −0.030 (11) | 0.006 (7) | −0.033 (14) |
N7 | 0.060 (7) | 0.068 (14) | 0.19 (2) | −0.003 (7) | −0.031 (10) | 0.001 (11) |
N7B | 0.047 (5) | 0.043 (12) | 0.092 (8) | −0.016 (8) | −0.010 (5) | −0.028 (10) |
O7B | 0.186 (15) | 0.047 (8) | 0.140 (13) | −0.058 (8) | 0.040 (10) | −0.017 (9) |
C1 | 0.073 (3) | 0.082 (4) | 0.072 (3) | −0.020 (3) | 0.009 (3) | −0.014 (3) |
C2 | 0.094 (4) | 0.086 (4) | 0.073 (3) | −0.035 (3) | 0.009 (3) | −0.019 (3) |
C3 | 0.089 (4) | 0.111 (5) | 0.072 (3) | −0.058 (3) | −0.008 (3) | −0.009 (3) |
C4 | 0.054 (2) | 0.106 (4) | 0.050 (3) | −0.021 (3) | −0.006 (2) | −0.005 (3) |
C5 | 0.050 (2) | 0.084 (3) | 0.043 (2) | −0.021 (2) | −0.0032 (18) | −0.001 (2) |
C6 | 0.063 (3) | 0.076 (3) | 0.040 (2) | −0.004 (2) | −0.009 (2) | −0.004 (2) |
C7 | 0.065 (3) | 0.096 (4) | 0.051 (3) | 0.006 (3) | −0.016 (2) | −0.003 (3) |
C8 | 0.098 (4) | 0.106 (5) | 0.065 (3) | 0.032 (4) | −0.010 (3) | −0.010 (3) |
C9 | 0.132 (5) | 0.075 (4) | 0.075 (4) | 0.007 (4) | −0.009 (4) | 0.001 (3) |
C10 | 0.109 (4) | 0.071 (4) | 0.066 (3) | −0.020 (3) | −0.003 (3) | −0.001 (3) |
C11 | 0.053 (3) | 0.152 (6) | 0.059 (3) | −0.026 (3) | 0.000 (2) | −0.014 (4) |
C12 | 0.052 (3) | 0.152 (6) | 0.056 (3) | 0.003 (3) | −0.008 (2) | −0.019 (4) |
C13 | 0.070 (3) | 0.100 (4) | 0.079 (3) | −0.023 (3) | −0.015 (3) | −0.015 (3) |
C14 | 0.075 (3) | 0.091 (4) | 0.096 (4) | −0.033 (3) | −0.015 (3) | −0.023 (3) |
C15 | 0.056 (3) | 0.071 (3) | 0.104 (4) | −0.014 (2) | −0.007 (3) | −0.012 (3) |
C16 | 0.045 (2) | 0.059 (3) | 0.087 (3) | −0.011 (2) | 0.003 (2) | −0.010 (3) |
C17 | 0.047 (2) | 0.062 (3) | 0.069 (3) | −0.0097 (19) | 0.000 (2) | −0.007 (2) |
C18 | 0.044 (2) | 0.062 (3) | 0.061 (3) | −0.0095 (19) | 0.0022 (19) | −0.008 (2) |
C19 | 0.052 (2) | 0.067 (3) | 0.061 (3) | −0.007 (2) | 0.003 (2) | −0.004 (2) |
C20 | 0.074 (3) | 0.092 (4) | 0.055 (3) | −0.013 (3) | −0.002 (2) | −0.010 (3) |
C21 | 0.076 (3) | 0.089 (4) | 0.068 (3) | −0.021 (3) | −0.011 (3) | −0.020 (3) |
C22 | 0.062 (2) | 0.071 (3) | 0.065 (3) | −0.018 (2) | −0.001 (2) | −0.007 (2) |
C23 | 0.063 (3) | 0.070 (3) | 0.079 (3) | −0.020 (2) | 0.009 (3) | 0.003 (3) |
C24 | 0.067 (3) | 0.079 (3) | 0.070 (3) | −0.014 (3) | 0.009 (2) | 0.004 (3) |
Cu1—N1 | 1.996 (3) | C11—H11 | 0.9300 |
Cu1—N3 | 1.998 (4) | C12—H12 | 0.9300 |
Cu1—N4 | 2.079 (4) | C13—C14 | 1.415 (7) |
Cu1—N2 | 2.177 (4) | C13—H13 | 0.9300 |
Cu1—Cl1 | 2.2855 (16) | C14—C15 | 1.345 (7) |
Fe1—N7B | 1.68 (2) | C14—H14 | 0.9300 |
Fe1—N7Bi | 1.68 (2) | C15—C16 | 1.382 (7) |
Fe1—C25i | 1.895 (6) | C15—H15 | 0.9300 |
Fe1—C25 | 1.895 (6) | C16—C17 | 1.391 (6) |
Fe1—C26i | 1.939 (6) | C16—C23 | 1.444 (7) |
Fe1—C26 | 1.939 (6) | C17—C18 | 1.427 (6) |
Fe1—C27 | 2.07 (3) | C18—C19 | 1.397 (6) |
Fe1—C27i | 2.07 (3) | C19—C20 | 1.405 (7) |
N1—C1 | 1.325 (6) | C19—C24 | 1.413 (6) |
N1—C5 | 1.361 (5) | C20—C21 | 1.362 (7) |
N2—C10 | 1.313 (6) | C20—H20 | 0.9300 |
N2—C6 | 1.351 (6) | C21—C22 | 1.393 (7) |
N3—C13 | 1.320 (6) | C21—H21 | 0.9300 |
N3—C17 | 1.350 (6) | C22—H22 | 0.9300 |
N4—C22 | 1.334 (6) | C23—C24 | 1.317 (7) |
N4—C18 | 1.358 (5) | C23—H23 | 0.9300 |
C25—N5 | 1.141 (6) | C24—H24 | 0.9300 |
C26—N6 | 1.143 (6) | N8—C28ii | 1.333 (3) |
C27—O7B | 0.83 (4) | N8—C28 | 1.333 (3) |
C27—N7 | 1.06 (4) | N8—C30ii | 1.421 (9) |
N7—N7B | 1.45 (4) | N8—C30 | 1.421 (9) |
N7B—O7B | 1.23 (3) | N8—C29 | 1.426 (9) |
C1—C2 | 1.398 (7) | N8—C29ii | 1.426 (9) |
C1—H1 | 0.9300 | O1—C28 | 1.212 (3) |
C2—C3 | 1.351 (8) | O1—C30ii | 1.38 (3) |
C2—H2 | 0.9300 | C28—C29ii | 1.13 (2) |
C3—C4 | 1.397 (8) | C28—C30ii | 1.56 (2) |
C3—H3 | 0.9300 | C28—H28A | 1.0001 |
C4—C5 | 1.412 (6) | C29—C28ii | 1.13 (2) |
C4—C11 | 1.423 (8) | C29—C30ii | 1.49 (2) |
C5—C6 | 1.425 (7) | C29—H29A | 1.0000 |
C6—C7 | 1.414 (6) | C29—H29B | 0.9999 |
C7—C8 | 1.406 (8) | C29—H29C | 1.0000 |
C7—C12 | 1.426 (8) | C30—O1ii | 1.38 (3) |
C8—C9 | 1.352 (8) | C30—C29ii | 1.49 (2) |
C8—H8 | 0.9300 | C30—C28ii | 1.56 (2) |
C9—C10 | 1.383 (8) | C30—H30A | 1.0000 |
C9—H9 | 0.9300 | C30—H30B | 1.0000 |
C10—H10 | 0.9300 | C30—H30C | 1.0000 |
C11—C12 | 1.344 (8) | ||
N1—Cu1—N3 | 171.91 (15) | N3—C13—H13 | 119.6 |
N1—Cu1—N4 | 93.42 (14) | C14—C13—H13 | 119.6 |
N3—Cu1—N4 | 80.94 (14) | C15—C14—C13 | 120.3 (5) |
N1—Cu1—N2 | 80.03 (16) | C15—C14—H14 | 119.8 |
N3—Cu1—N2 | 95.56 (15) | C13—C14—H14 | 119.8 |
N4—Cu1—N2 | 103.41 (14) | C14—C15—C16 | 119.4 (5) |
N1—Cu1—Cl1 | 92.87 (12) | C14—C15—H15 | 120.3 |
N3—Cu1—Cl1 | 95.13 (11) | C16—C15—H15 | 120.3 |
N4—Cu1—Cl1 | 142.15 (10) | C15—C16—C17 | 118.0 (5) |
N2—Cu1—Cl1 | 114.45 (11) | C15—C16—C23 | 124.6 (4) |
N7B—Fe1—N7Bi | 180.000 (3) | C17—C16—C23 | 117.4 (4) |
N7B—Fe1—C25i | 92.0 (13) | N3—C17—C16 | 122.6 (4) |
N7Bi—Fe1—C25i | 88.0 (13) | N3—C17—C18 | 116.7 (4) |
N7B—Fe1—C25 | 88.0 (13) | C16—C17—C18 | 120.6 (4) |
N7Bi—Fe1—C25 | 92.0 (13) | N4—C18—C19 | 123.8 (4) |
C25i—Fe1—C25 | 180.000 (1) | N4—C18—C17 | 116.8 (4) |
N7B—Fe1—C26i | 91.7 (10) | C19—C18—C17 | 119.3 (4) |
N7Bi—Fe1—C26i | 88.3 (10) | C18—C19—C20 | 116.5 (4) |
C25i—Fe1—C26i | 89.34 (19) | C18—C19—C24 | 119.1 (4) |
C25—Fe1—C26i | 90.66 (19) | C20—C19—C24 | 124.4 (5) |
N7B—Fe1—C26 | 88.3 (10) | C21—C20—C19 | 119.9 (5) |
N7Bi—Fe1—C26 | 91.7 (10) | C21—C20—H20 | 120.1 |
C25i—Fe1—C26 | 90.66 (19) | C19—C20—H20 | 120.1 |
C25—Fe1—C26 | 89.34 (19) | C20—C21—C22 | 119.8 (5) |
C26i—Fe1—C26 | 180.000 (1) | C20—C21—H21 | 120.1 |
N7B—Fe1—C27 | 4 (2) | C22—C21—H21 | 120.1 |
N7Bi—Fe1—C27 | 176 (2) | N4—C22—C21 | 122.2 (4) |
C25i—Fe1—C27 | 89.7 (13) | N4—C22—H22 | 118.9 |
C25—Fe1—C27 | 90.3 (13) | C21—C22—H22 | 118.9 |
C26i—Fe1—C27 | 88.5 (12) | C24—C23—C16 | 121.9 (4) |
C26—Fe1—C27 | 91.5 (12) | C24—C23—H23 | 119.1 |
N7B—Fe1—C27i | 176 (2) | C16—C23—H23 | 119.1 |
N7Bi—Fe1—C27i | 4 (2) | C23—C24—C19 | 121.6 (5) |
C25i—Fe1—C27i | 90.3 (13) | C23—C24—H24 | 119.2 |
C25—Fe1—C27i | 89.7 (13) | C19—C24—H24 | 119.2 |
C26i—Fe1—C27i | 91.5 (12) | C28ii—N8—C28 | 180.000 (4) |
C26—Fe1—C27i | 88.5 (12) | C28ii—N8—C30ii | 111.0 (11) |
C27—Fe1—C27i | 180.000 (4) | C28—N8—C30ii | 69.0 (11) |
C1—N1—C5 | 118.9 (4) | C28ii—N8—C30 | 69.0 (11) |
C1—N1—Cu1 | 125.8 (3) | C28—N8—C30 | 111.0 (11) |
C5—N1—Cu1 | 115.3 (3) | C30ii—N8—C30 | 180.000 (5) |
C10—N2—C6 | 118.9 (4) | C28ii—N8—C29 | 48.1 (10) |
C10—N2—Cu1 | 131.9 (4) | C28—N8—C29 | 131.9 (10) |
C6—N2—Cu1 | 109.2 (3) | C30ii—N8—C29 | 62.9 (11) |
C13—N3—C17 | 118.9 (4) | C30—N8—C29 | 117.1 (11) |
C13—N3—Cu1 | 126.9 (4) | C28ii—N8—C29ii | 131.9 (10) |
C17—N3—Cu1 | 114.1 (3) | C28—N8—C29ii | 48.1 (10) |
C22—N4—C18 | 117.7 (4) | C30ii—N8—C29ii | 117.1 (11) |
C22—N4—Cu1 | 131.1 (3) | C30—N8—C29ii | 62.9 (11) |
C18—N4—Cu1 | 111.1 (3) | C29—N8—C29ii | 180.000 (7) |
N5—C25—Fe1 | 179.4 (5) | C28—O1—C30ii | 73.7 (8) |
N6—C26—Fe1 | 178.2 (5) | C29ii—C28—O1 | 173.4 (12) |
O7B—C27—N7 | 4 (3) | C29ii—C28—N8 | 70.3 (7) |
O7B—C27—Fe1 | 174 (5) | O1—C28—N8 | 116.3 (9) |
N7—C27—Fe1 | 170 (4) | C29ii—C28—C30ii | 128.3 (8) |
C27—N7—N7B | 7 (4) | O1—C28—C30ii | 58.2 (9) |
O7B—N7B—N7 | 4 (2) | N8—C28—C30ii | 58.1 (7) |
O7B—N7B—Fe1 | 175 (3) | C29ii—C28—H28A | 53.9 |
N7—N7B—Fe1 | 177 (2) | O1—C28—H28A | 119.6 |
C27—O7B—N7B | 7 (5) | N8—C28—H28A | 124.1 |
N1—C1—C2 | 122.5 (5) | C30ii—C28—H28A | 175.9 |
N1—C1—H1 | 118.7 | C28ii—C29—N8 | 61.6 (6) |
C2—C1—H1 | 118.7 | C28ii—C29—C30ii | 120.0 (10) |
C3—C2—C1 | 118.9 (5) | N8—C29—C30ii | 58.4 (7) |
C3—C2—H2 | 120.5 | C28ii—C29—H29A | 173.5 |
C1—C2—H2 | 120.5 | N8—C29—H29A | 112.6 |
C2—C3—C4 | 120.7 (5) | C30ii—C29—H29A | 54.2 |
C2—C3—H3 | 119.7 | C28ii—C29—H29B | 76.0 |
C4—C3—H3 | 119.7 | N8—C29—H29B | 107.6 |
C3—C4—C5 | 117.3 (4) | C30ii—C29—H29B | 124.3 |
C3—C4—C11 | 125.0 (5) | H29A—C29—H29B | 109.5 |
C5—C4—C11 | 117.7 (5) | C28ii—C29—H29C | 71.1 |
N1—C5—C4 | 121.6 (4) | N8—C29—H29C | 108.2 |
N1—C5—C6 | 117.2 (4) | C30ii—C29—H29C | 126.2 |
C4—C5—C6 | 121.2 (4) | H29A—C29—H29C | 109.5 |
N2—C6—C7 | 122.8 (5) | H29B—C29—H29C | 109.5 |
N2—C6—C5 | 118.2 (4) | O1ii—C30—N8 | 100.9 (13) |
C7—C6—C5 | 119.0 (4) | O1ii—C30—C29ii | 159.1 (13) |
C8—C7—C6 | 115.9 (5) | N8—C30—C29ii | 58.7 (7) |
C8—C7—C12 | 125.3 (5) | O1ii—C30—C28ii | 48.1 (8) |
C6—C7—C12 | 118.7 (5) | N8—C30—C28ii | 52.8 (6) |
C9—C8—C7 | 120.1 (5) | C29ii—C30—C28ii | 111.5 (8) |
C9—C8—H8 | 119.9 | O1ii—C30—H30A | 156.1 |
C7—C8—H8 | 119.9 | N8—C30—H30A | 102.4 |
C8—C9—C10 | 120.1 (6) | C29ii—C30—H30A | 43.6 |
C8—C9—H9 | 120.0 | C28ii—C30—H30A | 155.1 |
C10—C9—H9 | 120.0 | O1ii—C30—H30B | 55.3 |
N2—C10—C9 | 122.2 (5) | N8—C30—H30B | 113.5 |
N2—C10—H10 | 118.9 | C29ii—C30—H30B | 125.5 |
C9—C10—H10 | 118.9 | C28ii—C30—H30B | 82.6 |
C12—C11—C4 | 121.8 (5) | H30A—C30—H30B | 109.5 |
C12—C11—H11 | 119.1 | O1ii—C30—H30C | 65.8 |
C4—C11—H11 | 119.1 | N8—C30—H30C | 112.3 |
C11—C12—C7 | 121.6 (5) | C29ii—C30—H30C | 123.5 |
C11—C12—H12 | 119.2 | C28ii—C30—H30C | 85.5 |
C7—C12—H12 | 119.2 | H30A—C30—H30C | 109.5 |
N3—C13—C14 | 120.7 (5) | H30B—C30—H30C | 109.5 |
N4—Cu1—N1—C1 | −77.5 (4) | C17—N3—C13—C14 | 0.0 (7) |
N2—Cu1—N1—C1 | 179.5 (4) | Cu1—N3—C13—C14 | 176.8 (4) |
Cl1—Cu1—N1—C1 | 65.2 (4) | N3—C13—C14—C15 | −0.2 (8) |
N4—Cu1—N1—C5 | 104.9 (3) | C13—C14—C15—C16 | 0.1 (8) |
N2—Cu1—N1—C5 | 1.8 (3) | C14—C15—C16—C17 | 0.3 (7) |
Cl1—Cu1—N1—C5 | −112.5 (3) | C14—C15—C16—C23 | −178.9 (5) |
N1—Cu1—N2—C10 | −179.7 (5) | C13—N3—C17—C16 | 0.4 (7) |
N3—Cu1—N2—C10 | 7.2 (5) | Cu1—N3—C17—C16 | −176.8 (3) |
N4—Cu1—N2—C10 | 89.2 (5) | C13—N3—C17—C18 | −178.9 (4) |
Cl1—Cu1—N2—C10 | −91.0 (5) | Cu1—N3—C17—C18 | 3.9 (5) |
N1—Cu1—N2—C6 | −2.1 (3) | C15—C16—C17—N3 | −0.5 (7) |
N3—Cu1—N2—C6 | −175.2 (3) | C23—C16—C17—N3 | 178.8 (4) |
N4—Cu1—N2—C6 | −93.2 (3) | C15—C16—C17—C18 | 178.7 (4) |
Cl1—Cu1—N2—C6 | 86.6 (3) | C23—C16—C17—C18 | −2.0 (6) |
N4—Cu1—N3—C13 | 178.4 (4) | C22—N4—C18—C19 | 0.4 (6) |
N2—Cu1—N3—C13 | −78.8 (4) | Cu1—N4—C18—C19 | 176.7 (3) |
Cl1—Cu1—N3—C13 | 36.4 (4) | C22—N4—C18—C17 | 179.7 (4) |
N4—Cu1—N3—C17 | −4.6 (3) | Cu1—N4—C18—C17 | −3.9 (4) |
N2—Cu1—N3—C17 | 98.1 (3) | N3—C17—C18—N4 | 0.2 (6) |
Cl1—Cu1—N3—C17 | −146.6 (3) | C16—C17—C18—N4 | −179.1 (4) |
N1—Cu1—N4—C22 | 6.1 (4) | N3—C17—C18—C19 | 179.6 (4) |
N3—Cu1—N4—C22 | −179.7 (4) | C16—C17—C18—C19 | 0.3 (6) |
N2—Cu1—N4—C22 | 86.7 (4) | N4—C18—C19—C20 | 1.2 (6) |
Cl1—Cu1—N4—C22 | −93.0 (4) | C17—C18—C19—C20 | −178.1 (4) |
N1—Cu1—N4—C18 | −169.6 (3) | N4—C18—C19—C24 | 180.0 (4) |
N3—Cu1—N4—C18 | 4.6 (3) | C17—C18—C19—C24 | 0.7 (6) |
N2—Cu1—N4—C18 | −89.0 (3) | C18—C19—C20—C21 | −1.8 (7) |
Cl1—Cu1—N4—C18 | 91.3 (3) | C24—C19—C20—C21 | 179.5 (4) |
C5—N1—C1—C2 | −2.7 (7) | C19—C20—C21—C22 | 0.8 (8) |
Cu1—N1—C1—C2 | 179.7 (4) | C18—N4—C22—C21 | −1.5 (7) |
N1—C1—C2—C3 | 4.0 (8) | Cu1—N4—C22—C21 | −176.9 (3) |
C1—C2—C3—C4 | −2.5 (8) | C20—C21—C22—N4 | 0.9 (8) |
C2—C3—C4—C5 | 0.0 (8) | C15—C16—C23—C24 | −177.7 (5) |
C2—C3—C4—C11 | −180.0 (5) | C17—C16—C23—C24 | 3.0 (7) |
C1—N1—C5—C4 | 0.0 (6) | C16—C23—C24—C19 | −2.2 (8) |
Cu1—N1—C5—C4 | 177.8 (3) | C18—C19—C24—C23 | 0.3 (7) |
C1—N1—C5—C6 | −179.2 (4) | C20—C19—C24—C23 | 179.0 (5) |
Cu1—N1—C5—C6 | −1.4 (5) | C30ii—O1—C28—N8 | 3 (2) |
C3—C4—C5—N1 | 1.4 (6) | C30ii—N8—C28—C29ii | 178 (3) |
C11—C4—C5—N1 | −178.7 (4) | C30—N8—C28—C29ii | −2 (3) |
C3—C4—C5—C6 | −179.5 (4) | C29—N8—C28—C29ii | 180.000 (3) |
C11—C4—C5—C6 | 0.4 (6) | C28ii—N8—C28—O1 | 171 (100) |
C10—N2—C6—C7 | 0.5 (7) | C30ii—N8—C28—O1 | −3 (2) |
Cu1—N2—C6—C7 | −177.5 (3) | C30—N8—C28—O1 | 177 (2) |
C10—N2—C6—C5 | 180.0 (4) | C29—N8—C28—O1 | −1 (4) |
Cu1—N2—C6—C5 | 2.0 (5) | C29ii—N8—C28—O1 | 179 (4) |
N1—C5—C6—N2 | −0.6 (6) | C30—N8—C28—C30ii | 180.000 (5) |
C4—C5—C6—N2 | −179.8 (4) | C29—N8—C28—C30ii | 2 (3) |
N1—C5—C6—C7 | 178.9 (4) | C29ii—N8—C28—C30ii | −178 (3) |
C4—C5—C6—C7 | −0.2 (6) | C28—N8—C29—C28ii | 180.000 (4) |
N2—C6—C7—C8 | 0.5 (7) | C30ii—N8—C29—C28ii | −177 (3) |
C5—C6—C7—C8 | −179.0 (4) | C30—N8—C29—C28ii | 3 (3) |
N2—C6—C7—C12 | 178.2 (4) | C28ii—N8—C29—C30ii | 177 (3) |
C5—C6—C7—C12 | −1.3 (6) | C28—N8—C29—C30ii | −3 (3) |
C6—C7—C8—C9 | −1.5 (8) | C30—N8—C29—C30ii | 180.000 (4) |
C12—C7—C8—C9 | −179.0 (5) | C28ii—N8—C30—O1ii | −2.8 (19) |
C7—C8—C9—C10 | 1.4 (9) | C28—N8—C30—O1ii | 177.2 (19) |
C6—N2—C10—C9 | −0.6 (8) | C29—N8—C30—O1ii | −5 (2) |
Cu1—N2—C10—C9 | 176.9 (4) | C29ii—N8—C30—O1ii | 175 (2) |
C8—C9—C10—N2 | −0.4 (9) | C28ii—N8—C30—C29ii | −178 (2) |
C3—C4—C11—C12 | −179.1 (5) | C28—N8—C30—C29ii | 2 (2) |
C5—C4—C11—C12 | 1.0 (7) | C29—N8—C30—C29ii | 180.000 (4) |
C4—C11—C12—C7 | −2.6 (8) | C28—N8—C30—C28ii | 180.000 (4) |
C8—C7—C12—C11 | −179.8 (5) | C29—N8—C30—C28ii | −2 (2) |
C6—C7—C12—C11 | 2.7 (7) | C29ii—N8—C30—C28ii | 178 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···Cl1iii | 0.93 | 2.82 | 3.701 (6) | 159 |
C23—H23···N6iv | 0.93 | 2.52 | 3.425 (7) | 163 |
Symmetry codes: (iii) −x+1, −y+2, −z; (iv) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [CuCl(C12H8N2)2]2[Fe(CN)5(NO)]·C3H7NO |
Mr | 1207.85 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 9.9645 (13), 10.6001 (18), 12.623 (2) |
α, β, γ (°) | 79.585 (14), 84.896 (12), 82.047 (12) |
V (Å3) | 1295.9 (4) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.25 |
Crystal size (mm) | 0.50 × 0.40 × 0.20 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur 3 |
Absorption correction | Numerical (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.575, 0.789 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11289, 5647, 2685 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.061, 0.182, 0.99 |
No. of reflections | 5647 |
No. of parameters | 366 |
No. of restraints | 5 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.73, −0.61 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···Cl1i | 0.93 | 2.82 | 3.701 (6) | 159 |
C23—H23···N6ii | 0.93 | 2.52 | 3.425 (7) | 163 |
Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x, −y+1, −z+1. |
Acknowledgements
This work was partly supported by the State Fund for Fundamental Researches of Ukraine (project 54.3/005).
References
Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976–4978. Web of Science CSD CrossRef Google Scholar
Makhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Sorace, L. & Gatteschi, D. (2002). J. Chem. Soc. Dalton Trans. pp. 4253–4259. Web of Science CSD CrossRef Google Scholar
Nesterova, O. V., Lipetskaya, A. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Jezierska, J. (2005). Polyhedron, 24, 1425–1434. Web of Science CSD CrossRef CAS Google Scholar
Nesterova, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Jezierska, J., Linert, W. & Ozarowski, A. (2008). Dalton Trans. pp. 1431–1436. Web of Science CSD CrossRef PubMed Google Scholar
Nesterova (Pryma), O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Linert, W. (2004). Inorg. Chem. Commun. 7, 450–454. Google Scholar
Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426–2430. Web of Science CSD CrossRef CAS Google Scholar
Onawumi, O. O., Adekunle, F. A., Ibrahim, A. O., Rajasekharan, M. V. & Odunola, O. A. (2010). Synth. React. Inorg. Metal-Org. Nano-Met. Chem. 40, 78–83. CAS Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Pryma, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Shishkin, O. V. & Teplytska, T. S. (2003). Eur. J. Inorg. Chem. pp. 1426–1432. CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shevyakova, I. Yu., Buravov, L. I., Kushch, L. A., Yagubskii, E. B., Khasanov, S. S., Zorina, L. V., Shibaeva, R. P., Drichko, N. V. & Olejniczak, I. (2002). Russ. J. Coord. Chem. 28, 520–529. Web of Science CrossRef Google Scholar
Soria, D. B., Villalba, M. E. C., Piro, O. E. & Aymonino, P. J. (2002). Polyhedron, 21, 1767–1774. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sui, A.-X., Zhu, G. & Tang, Z.-X. (2006). Acta Cryst. E62, m1592–m1594. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Vassilyeva, O. Yu., Kokozay, V. N., Zhukova, N. I. & Kovbasyuk, L. A. (1997). Polyhedron, 16, 263–266. CSD CrossRef CAS Web of Science Google Scholar
Vinogradova, E. A., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Bjernemose, J. K. & Raithby, P. R. (2002). J. Chem. Soc. Dalton Trans. pp. 4248–4252. Web of Science CSD CrossRef Google Scholar
Vreshch, O. V., Nesterova, O. V., Kokozay, V. N., Skelton, B. W., Garcia, C. J. G. & Jezierska, J. (2009). Inorg. Chem. Commun. 12, 890–894. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xiao, H.-P., Hu, M.-L. & Li, X.-H. (2004). Acta Cryst. E60, m71–m72. CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
This work is a continuation of our research in the field of direct synthesis of coordination compounds (Buvaylo et al., 2005; Makhankova et al., 2002; Nesterova et al., 2004,2005,2008; Pryma et al., 2003; Vinogradova et al., 2002; Vassilyeva et al., 1997). It was shown recently the possibility of using anionic complexes as a source of metalloligands or the second metal in direct synthesis of heterometallic compounds (Nikitina et al., 2008; Vreshch et al., 2009).
In this paper we present a novel Cu/Fe heterometallic ionic complex [CuCl(phen)2][Fe(CN)5NO].DMF which consists of discrete [CuCl(phen)2]+ and [Fe(CN)5NO]2- ions (Fig. 1) as well as dimethylformamide solvent molecules. The CuII ion adopts a distorted trigonal–bipyramidal environment by coordinating with four nitrogen atoms from two phen ligands and chlorine atom. The dihedral angle between the two phen ligands (77.92 (7)° ) as well as the range of Cu—N bond distances of 1.996 (3) - 2.177 (4) Å is in good agreement with the previously reported values for analagous complexes (Onawumi et al., 2010; Sui et al., 2006; Xiao et al., 2004). The nitroprusside ion lies across an inversion center. Therefore, the CN and NO groups occupy the axial positions with equal occupancies. It has the usual distorted octahedral, pagoda-like, conformation with average Fe—C and Fe—N bond distances of 1.90 Å and 1.78 Å respectively, in a good agreement with literature values (Soria et al. (2002); Shevyakova et al. (2002). In the crystal, weak C—H···N and C—H···Cl hydrogen bonds connect anions and cations into a two-dimensional network parallel to (100) (Fig. 2). In addition, π···π stacking interactions are observed with centroid to centroid distances in the range 3.565 (2)–3.760 (3)Å.