metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[chloridobis(1,10-phenanthroline)copper(II)] penta­cyanido­nitro­soferrate(II) di­methyl­formamide monosolvate

aTaras Shevchenko National University, Department of Chemistry, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, and bSTC, "Institute for Single Crystals", National Academy of Sciences of Ukraine, Lenina ave. 60, Kharkov 61001, Ukraine
*Correspondence e-mail: kozachuk_o@yahoo.com

(Received 21 May 2013; accepted 4 June 2013; online 15 June 2013)

The title complex [CuCl(C12H8N2)2]2[Fe(CN)5(NO)]·C3H7NO, consists of discrete [Cu(phen)2Cl]+ cations (phen is 1,10-phenanthroline), [Fe(CN)5NO]2− anions and one di­methyl­formamide (DMF) solvent mol­ecule of crystallization per asymmetric unit. The CuII atom is coordinated by two phenanthroline ligands and one chloride ion in a distorted trigonal–bipyramidal geometry. The dihedral angle between the phen ligands is 77.92 (7)°. The cation charge is balanced by a disordered nitro­prusside counter-anion with the FeII atom located on an inversion center with a slightly distorted octa­hedral coordination geometry. In the crystal, weak C—H⋯N and C—H⋯Cl hydrogen bonds connect anions and cations into a two-dimensional network parallel to (100). In addition, ππ stacking inter­actions are observed with centroid–centroid distances in the range 3.565 (2)–3.760 (3)Å. The di­methyl­formamide solvent mol­ecule was refined as disordered about an inversion center.

Related literature

For background to the direct synthesis of coordination compounds, see: Buvaylo et al. (2005[Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976-4978.]); Makhankova et al. (2002[Makhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Sorace, L. & Gatteschi, D. (2002). J. Chem. Soc. Dalton Trans. pp. 4253-4259.]); Nesterova et al. (2004[Nesterova (Pryma), O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Linert, W. (2004). Inorg. Chem. Commun. 7, 450-454.], 2005[Nesterova, O. V., Lipetskaya, A. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Jezierska, J. (2005). Polyhedron, 24, 1425-1434.], 2008[Nesterova, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Jezierska, J., Linert, W. & Ozarowski, A. (2008). Dalton Trans. pp. 1431-1436.]); Pryma et al. (2003[Pryma, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Shishkin, O. V. & Teplytska, T. S. (2003). Eur. J. Inorg. Chem. pp. 1426-1432.]); Vinogradova et al. (2002[Vinogradova, E. A., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Bjernemose, J. K. & Raithby, P. R. (2002). J. Chem. Soc. Dalton Trans. pp. 4248-4252.]); Vassilyeva et al. (1997[Vassilyeva, O. Yu., Kokozay, V. N., Zhukova, N. I. & Kovbasyuk, L. A. (1997). Polyhedron, 16, 263-266.]). For the structures of related complexes, see: Nikitina et al. (2008[Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426-2430.]); Vreshch et al. (2009[Vreshch, O. V., Nesterova, O. V., Kokozay, V. N., Skelton, B. W., Garcia, C. J. G. & Jezierska, J. (2009). Inorg. Chem. Commun. 12, 890-894.]); Onawumi et al. (2010[Onawumi, O. O., Adekunle, F. A., Ibrahim, A. O., Rajasekharan, M. V. & Odunola, O. A. (2010). Synth. React. Inorg. Metal-Org. Nano-Met. Chem. 40, 78-83.]); Sui et al. (2006[Sui, A.-X., Zhu, G. & Tang, Z.-X. (2006). Acta Cryst. E62, m1592-m1594.]); Xiao et al. (2004[Xiao, H.-P., Hu, M.-L. & Li, X.-H. (2004). Acta Cryst. E60, m71-m72.]); Soria et al. (2002[Soria, D. B., Villalba, M. E. C., Piro, O. E. & Aymonino, P. J. (2002). Polyhedron, 21, 1767-1774.]); Shevyakova et al. (2002[Shevyakova, I. Yu., Buravov, L. I., Kushch, L. A., Yagubskii, E. B., Khasanov, S. S., Zorina, L. V., Shibaeva, R. P., Drichko, N. V. & Olejniczak, I. (2002). Russ. J. Coord. Chem. 28, 520-529.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl(C12H8N2)2]2[Fe(CN)5(NO)]·C3H7NO

  • Mr = 1207.85

  • Triclinic, [P \overline 1]

  • a = 9.9645 (13) Å

  • b = 10.6001 (18) Å

  • c = 12.623 (2) Å

  • α = 79.585 (14)°

  • β = 84.896 (12)°

  • γ = 82.047 (12)°

  • V = 1295.9 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.25 mm−1

  • T = 293 K

  • 0.50 × 0.40 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur 3 diffractometer

  • Absorption correction: numerical (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.575, Tmax = 0.789

  • 11289 measured reflections

  • 5647 independent reflections

  • 2685 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.182

  • S = 0.99

  • 5647 reflections

  • 366 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Cl1i 0.93 2.82 3.701 (6) 159
C23—H23⋯N6ii 0.93 2.52 3.425 (7) 163
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

This work is a continuation of our research in the field of direct synthesis of coordination compounds (Buvaylo et al., 2005; Makhankova et al., 2002; Nesterova et al., 2004,2005,2008; Pryma et al., 2003; Vinogradova et al., 2002; Vassilyeva et al., 1997). It was shown recently the possibility of using anionic complexes as a source of metalloligands or the second metal in direct synthesis of heterometallic compounds (Nikitina et al., 2008; Vreshch et al., 2009).

In this paper we present a novel Cu/Fe heterometallic ionic complex [CuCl(phen)2][Fe(CN)5NO].DMF which consists of discrete [CuCl(phen)2]+ and [Fe(CN)5NO]2- ions (Fig. 1) as well as dimethylformamide solvent molecules. The CuII ion adopts a distorted trigonal–bipyramidal environment by coordinating with four nitrogen atoms from two phen ligands and chlorine atom. The dihedral angle between the two phen ligands (77.92 (7)° ) as well as the range of Cu—N bond distances of 1.996 (3) - 2.177 (4) Å is in good agreement with the previously reported values for analagous complexes (Onawumi et al., 2010; Sui et al., 2006; Xiao et al., 2004). The nitroprusside ion lies across an inversion center. Therefore, the CN and NO groups occupy the axial positions with equal occupancies. It has the usual distorted octahedral, pagoda-like, conformation with average Fe—C and Fe—N bond distances of 1.90 Å and 1.78 Å respectively, in a good agreement with literature values (Soria et al. (2002); Shevyakova et al. (2002). In the crystal, weak C—H···N and C—H···Cl hydrogen bonds connect anions and cations into a two-dimensional network parallel to (100) (Fig. 2). In addition, π···π stacking interactions are observed with centroid to centroid distances in the range 3.565 (2)–3.760 (3)Å.

Related literature top

For background to the direct synthesis of coordination compounds, see: Buvaylo et al. (2005); Makhankova et al. (2002); Nesterova et al. (2004, 2005, 2008); Pryma et al. (2003); Vinogradova et al. (2002); Vassilyeva et al. (1997). For the structures of related complexes, see: Nikitina et al. (2008); Vreshch et al. (2009); Onawumi et al. (2010); Sui et al. (2006); Xiao et al. (2004); Soria et al. (2002); Shevyakova et al. (2002).

Experimental top

Copper powder (0.159 g, 2.50 mmol), Na2[Fe(CN)5(NO)].2H2O (0.372 g, 1.25 mmol) and phen.HCl.H2O (1.17 g, 5.00 mmol) in DMF (20 ml) were heated to 323–333 K and stirred magnetically until total dissolution of copper was observed (75 min). Green crystals suitable for X-ray crystallography were isolated in four days. The crystals (0.18 g, yield 14%) were filtered off, washed with dry methanol, and finally dried in vacuo at room temperature.

Refinement top

All H-atoms were placed in calculated positions with C—H = 0.93-1.00 Å and refined in riding-model approximation with Uiso(H) = 1.2Ueq(C).

Structure description top

This work is a continuation of our research in the field of direct synthesis of coordination compounds (Buvaylo et al., 2005; Makhankova et al., 2002; Nesterova et al., 2004,2005,2008; Pryma et al., 2003; Vinogradova et al., 2002; Vassilyeva et al., 1997). It was shown recently the possibility of using anionic complexes as a source of metalloligands or the second metal in direct synthesis of heterometallic compounds (Nikitina et al., 2008; Vreshch et al., 2009).

In this paper we present a novel Cu/Fe heterometallic ionic complex [CuCl(phen)2][Fe(CN)5NO].DMF which consists of discrete [CuCl(phen)2]+ and [Fe(CN)5NO]2- ions (Fig. 1) as well as dimethylformamide solvent molecules. The CuII ion adopts a distorted trigonal–bipyramidal environment by coordinating with four nitrogen atoms from two phen ligands and chlorine atom. The dihedral angle between the two phen ligands (77.92 (7)° ) as well as the range of Cu—N bond distances of 1.996 (3) - 2.177 (4) Å is in good agreement with the previously reported values for analagous complexes (Onawumi et al., 2010; Sui et al., 2006; Xiao et al., 2004). The nitroprusside ion lies across an inversion center. Therefore, the CN and NO groups occupy the axial positions with equal occupancies. It has the usual distorted octahedral, pagoda-like, conformation with average Fe—C and Fe—N bond distances of 1.90 Å and 1.78 Å respectively, in a good agreement with literature values (Soria et al. (2002); Shevyakova et al. (2002). In the crystal, weak C—H···N and C—H···Cl hydrogen bonds connect anions and cations into a two-dimensional network parallel to (100) (Fig. 2). In addition, π···π stacking interactions are observed with centroid to centroid distances in the range 3.565 (2)–3.760 (3)Å.

For background to the direct synthesis of coordination compounds, see: Buvaylo et al. (2005); Makhankova et al. (2002); Nesterova et al. (2004, 2005, 2008); Pryma et al. (2003); Vinogradova et al. (2002); Vassilyeva et al. (1997). For the structures of related complexes, see: Nikitina et al. (2008); Vreshch et al. (2009); Onawumi et al. (2010); Sui et al. (2006); Xiao et al. (2004); Soria et al. (2002); Shevyakova et al. (2002).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Symmetry code (A): -x+1, -y+1, -z+1.
[Figure 2] Fig. 2. Part of the crystal structure with weak hydrogen bonds shown as dashed lines. Only H atoms involved in hydrogen bonds are shown. The disordered solvent molecule is not shown as it is not involved in the hydrogen bond motif.
Bis[chloridobis(1,10-phenanthroline)copper(II)] pentacyanidonitrosoferrate(II) dimethylformamide monosolvate top
Crystal data top
[CuCl(C12H8N2)2]2[Fe(CN)5(NO)]·C3H7NOV = 1295.9 (4) Å3
Mr = 1207.85Z = 1
Triclinic, P1F(000) = 614
Hall symbol: -P 1Dx = 1.548 Mg m3
a = 9.9645 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6001 (18) ŵ = 1.25 mm1
c = 12.623 (2) ÅT = 293 K
α = 79.585 (14)°Block, green
β = 84.896 (12)°0.50 × 0.40 × 0.20 mm
γ = 82.047 (12)°
Data collection top
Oxford Diffraction Xcalibur 3
diffractometer
5647 independent reflections
Radiation source: fine-focus sealed tube2685 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 16.1827 pixels mm-1θmax = 27.0°, θmin = 3.9°
ω–scansh = 1212
Absorption correction: numerical
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1313
Tmin = 0.575, Tmax = 0.789l = 1616
11289 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.090P)2]
where P = (Fo2 + 2Fc2)/3
5647 reflections(Δ/σ)max = 0.001
366 parametersΔρmax = 0.73 e Å3
5 restraintsΔρmin = 0.61 e Å3
Crystal data top
[CuCl(C12H8N2)2]2[Fe(CN)5(NO)]·C3H7NOγ = 82.047 (12)°
Mr = 1207.85V = 1295.9 (4) Å3
Triclinic, P1Z = 1
a = 9.9645 (13) ÅMo Kα radiation
b = 10.6001 (18) ŵ = 1.25 mm1
c = 12.623 (2) ÅT = 293 K
α = 79.585 (14)°0.50 × 0.40 × 0.20 mm
β = 84.896 (12)°
Data collection top
Oxford Diffraction Xcalibur 3
diffractometer
5647 independent reflections
Absorption correction: numerical
(CrysAlis PRO; Oxford Diffraction, 2010)
2685 reflections with I > 2σ(I)
Tmin = 0.575, Tmax = 0.789Rint = 0.041
11289 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0615 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 0.99Δρmax = 0.73 e Å3
5647 reflectionsΔρmin = 0.61 e Å3
366 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.17993 (5)1.01179 (6)0.25097 (5)0.0663 (2)
Fe10.50000.50000.50000.0698 (3)
Cl10.04963 (14)1.13793 (15)0.12224 (12)0.0907 (4)
N10.3265 (4)1.1266 (4)0.2215 (3)0.0620 (9)
N20.3436 (4)0.8814 (4)0.1883 (3)0.0672 (10)
N30.0513 (3)0.8798 (4)0.2939 (3)0.0644 (10)
N40.2017 (3)0.9736 (3)0.4164 (3)0.0567 (9)
C250.6109 (5)0.4836 (4)0.3720 (5)0.0657 (12)
N50.6773 (4)0.4748 (5)0.2946 (4)0.0842 (12)
C260.3406 (5)0.5273 (5)0.4171 (4)0.0672 (12)
N60.2486 (4)0.5418 (4)0.3662 (4)0.0821 (12)
C270.514 (4)0.696 (3)0.474 (4)0.066 (6)0.50
N70.5204 (17)0.796 (3)0.446 (3)0.107 (9)0.50
N7B0.507 (3)0.660 (2)0.471 (3)0.057 (5)0.50
O7B0.517 (2)0.776 (2)0.457 (2)0.123 (8)0.50
C10.3150 (5)1.2477 (5)0.2380 (4)0.0752 (13)
H10.23211.28460.26540.090*
C20.4228 (6)1.3221 (6)0.2157 (4)0.0824 (15)
H20.41341.40500.23230.099*
C30.5410 (6)1.2716 (6)0.1697 (4)0.0872 (17)
H30.61211.32150.15200.105*
C40.5573 (4)1.1453 (6)0.1485 (4)0.0694 (13)
C50.4460 (4)1.0740 (5)0.1772 (3)0.0590 (11)
C60.4538 (4)0.9441 (5)0.1594 (3)0.0605 (11)
C70.5754 (5)0.8866 (6)0.1118 (4)0.0725 (14)
C80.5751 (7)0.7591 (7)0.0950 (4)0.0942 (19)
H80.65140.71680.06250.113*
C90.4641 (7)0.6979 (6)0.1260 (5)0.0972 (18)
H90.46480.61290.11630.117*
C100.3494 (6)0.7617 (5)0.1723 (4)0.0829 (15)
H100.27370.71830.19280.100*
C110.6773 (5)1.0833 (8)0.1005 (4)0.0872 (17)
H110.75231.12810.08200.105*
C120.6851 (5)0.9618 (7)0.0812 (4)0.0874 (18)
H120.76400.92590.04710.105*
C130.0238 (5)0.8380 (5)0.2298 (5)0.0808 (15)
H130.02290.87400.15690.097*
C140.1058 (5)0.7390 (5)0.2707 (5)0.0840 (15)
H140.15850.71060.22460.101*
C150.1078 (5)0.6856 (5)0.3758 (5)0.0766 (14)
H150.16170.62040.40270.092*
C160.0292 (4)0.7284 (4)0.4436 (4)0.0641 (12)
C170.0489 (4)0.8265 (4)0.3995 (4)0.0600 (11)
C180.1300 (4)0.8767 (4)0.4657 (4)0.0559 (10)
C190.1308 (4)0.8260 (4)0.5758 (4)0.0611 (11)
C200.2095 (5)0.8823 (5)0.6371 (4)0.0741 (13)
H200.21160.85390.71110.089*
C210.2825 (5)0.9787 (5)0.5879 (4)0.0753 (13)
H210.33561.01540.62810.090*
C220.2776 (4)1.0221 (5)0.4772 (4)0.0655 (12)
H220.32901.08720.44460.079*
C230.0211 (5)0.6775 (5)0.5573 (4)0.0723 (13)
H230.06900.60910.58800.087*
C240.0522 (5)0.7251 (5)0.6187 (4)0.0745 (14)
H240.05230.69160.69200.089*
N80.00000.50001.00000.157 (4)*
O10.2091 (11)0.465 (2)1.004 (2)0.273 (9)*0.50
C280.1053 (13)0.483 (3)0.9484 (13)0.213 (10)*0.50
H28A0.10300.48410.86880.256*0.50
C290.015 (2)0.504 (2)1.1107 (9)0.177 (8)*0.50
H29A0.07240.49601.15610.212*0.50
H29B0.08430.43051.13780.212*0.50
H29C0.04750.58761.11500.212*0.50
C300.1174 (18)0.512 (2)0.9282 (17)0.186 (8)*0.50
H30A0.08240.50770.85730.223*0.50
H30B0.15440.59620.92350.223*0.50
H30C0.19120.43910.94620.223*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0579 (3)0.0790 (4)0.0627 (4)0.0218 (3)0.0013 (3)0.0064 (3)
Fe10.0523 (5)0.0874 (7)0.0730 (7)0.0208 (5)0.0005 (4)0.0155 (5)
Cl10.0809 (8)0.1060 (11)0.0834 (9)0.0154 (7)0.0016 (7)0.0103 (8)
N10.058 (2)0.071 (3)0.059 (2)0.0179 (18)0.0037 (17)0.010 (2)
N20.066 (2)0.077 (3)0.053 (2)0.014 (2)0.0005 (18)0.003 (2)
N30.057 (2)0.072 (2)0.065 (2)0.0181 (18)0.0070 (18)0.005 (2)
N40.0478 (17)0.064 (2)0.059 (2)0.0160 (16)0.0040 (16)0.0101 (18)
C250.053 (2)0.063 (3)0.084 (3)0.010 (2)0.010 (2)0.016 (3)
N50.065 (2)0.105 (3)0.084 (3)0.012 (2)0.001 (2)0.025 (3)
C260.057 (3)0.063 (3)0.077 (3)0.015 (2)0.013 (2)0.003 (3)
N60.062 (2)0.096 (3)0.085 (3)0.021 (2)0.003 (2)0.001 (3)
C270.072 (9)0.048 (17)0.091 (11)0.030 (11)0.006 (7)0.033 (14)
N70.060 (7)0.068 (14)0.19 (2)0.003 (7)0.031 (10)0.001 (11)
N7B0.047 (5)0.043 (12)0.092 (8)0.016 (8)0.010 (5)0.028 (10)
O7B0.186 (15)0.047 (8)0.140 (13)0.058 (8)0.040 (10)0.017 (9)
C10.073 (3)0.082 (4)0.072 (3)0.020 (3)0.009 (3)0.014 (3)
C20.094 (4)0.086 (4)0.073 (3)0.035 (3)0.009 (3)0.019 (3)
C30.089 (4)0.111 (5)0.072 (3)0.058 (3)0.008 (3)0.009 (3)
C40.054 (2)0.106 (4)0.050 (3)0.021 (3)0.006 (2)0.005 (3)
C50.050 (2)0.084 (3)0.043 (2)0.021 (2)0.0032 (18)0.001 (2)
C60.063 (3)0.076 (3)0.040 (2)0.004 (2)0.009 (2)0.004 (2)
C70.065 (3)0.096 (4)0.051 (3)0.006 (3)0.016 (2)0.003 (3)
C80.098 (4)0.106 (5)0.065 (3)0.032 (4)0.010 (3)0.010 (3)
C90.132 (5)0.075 (4)0.075 (4)0.007 (4)0.009 (4)0.001 (3)
C100.109 (4)0.071 (4)0.066 (3)0.020 (3)0.003 (3)0.001 (3)
C110.053 (3)0.152 (6)0.059 (3)0.026 (3)0.000 (2)0.014 (4)
C120.052 (3)0.152 (6)0.056 (3)0.003 (3)0.008 (2)0.019 (4)
C130.070 (3)0.100 (4)0.079 (3)0.023 (3)0.015 (3)0.015 (3)
C140.075 (3)0.091 (4)0.096 (4)0.033 (3)0.015 (3)0.023 (3)
C150.056 (3)0.071 (3)0.104 (4)0.014 (2)0.007 (3)0.012 (3)
C160.045 (2)0.059 (3)0.087 (3)0.011 (2)0.003 (2)0.010 (3)
C170.047 (2)0.062 (3)0.069 (3)0.0097 (19)0.000 (2)0.007 (2)
C180.044 (2)0.062 (3)0.061 (3)0.0095 (19)0.0022 (19)0.008 (2)
C190.052 (2)0.067 (3)0.061 (3)0.007 (2)0.003 (2)0.004 (2)
C200.074 (3)0.092 (4)0.055 (3)0.013 (3)0.002 (2)0.010 (3)
C210.076 (3)0.089 (4)0.068 (3)0.021 (3)0.011 (3)0.020 (3)
C220.062 (2)0.071 (3)0.065 (3)0.018 (2)0.001 (2)0.007 (2)
C230.063 (3)0.070 (3)0.079 (3)0.020 (2)0.009 (3)0.003 (3)
C240.067 (3)0.079 (3)0.070 (3)0.014 (3)0.009 (2)0.004 (3)
Geometric parameters (Å, º) top
Cu1—N11.996 (3)C11—H110.9300
Cu1—N31.998 (4)C12—H120.9300
Cu1—N42.079 (4)C13—C141.415 (7)
Cu1—N22.177 (4)C13—H130.9300
Cu1—Cl12.2855 (16)C14—C151.345 (7)
Fe1—N7B1.68 (2)C14—H140.9300
Fe1—N7Bi1.68 (2)C15—C161.382 (7)
Fe1—C25i1.895 (6)C15—H150.9300
Fe1—C251.895 (6)C16—C171.391 (6)
Fe1—C26i1.939 (6)C16—C231.444 (7)
Fe1—C261.939 (6)C17—C181.427 (6)
Fe1—C272.07 (3)C18—C191.397 (6)
Fe1—C27i2.07 (3)C19—C201.405 (7)
N1—C11.325 (6)C19—C241.413 (6)
N1—C51.361 (5)C20—C211.362 (7)
N2—C101.313 (6)C20—H200.9300
N2—C61.351 (6)C21—C221.393 (7)
N3—C131.320 (6)C21—H210.9300
N3—C171.350 (6)C22—H220.9300
N4—C221.334 (6)C23—C241.317 (7)
N4—C181.358 (5)C23—H230.9300
C25—N51.141 (6)C24—H240.9300
C26—N61.143 (6)N8—C28ii1.333 (3)
C27—O7B0.83 (4)N8—C281.333 (3)
C27—N71.06 (4)N8—C30ii1.421 (9)
N7—N7B1.45 (4)N8—C301.421 (9)
N7B—O7B1.23 (3)N8—C291.426 (9)
C1—C21.398 (7)N8—C29ii1.426 (9)
C1—H10.9300O1—C281.212 (3)
C2—C31.351 (8)O1—C30ii1.38 (3)
C2—H20.9300C28—C29ii1.13 (2)
C3—C41.397 (8)C28—C30ii1.56 (2)
C3—H30.9300C28—H28A1.0001
C4—C51.412 (6)C29—C28ii1.13 (2)
C4—C111.423 (8)C29—C30ii1.49 (2)
C5—C61.425 (7)C29—H29A1.0000
C6—C71.414 (6)C29—H29B0.9999
C7—C81.406 (8)C29—H29C1.0000
C7—C121.426 (8)C30—O1ii1.38 (3)
C8—C91.352 (8)C30—C29ii1.49 (2)
C8—H80.9300C30—C28ii1.56 (2)
C9—C101.383 (8)C30—H30A1.0000
C9—H90.9300C30—H30B1.0000
C10—H100.9300C30—H30C1.0000
C11—C121.344 (8)
N1—Cu1—N3171.91 (15)N3—C13—H13119.6
N1—Cu1—N493.42 (14)C14—C13—H13119.6
N3—Cu1—N480.94 (14)C15—C14—C13120.3 (5)
N1—Cu1—N280.03 (16)C15—C14—H14119.8
N3—Cu1—N295.56 (15)C13—C14—H14119.8
N4—Cu1—N2103.41 (14)C14—C15—C16119.4 (5)
N1—Cu1—Cl192.87 (12)C14—C15—H15120.3
N3—Cu1—Cl195.13 (11)C16—C15—H15120.3
N4—Cu1—Cl1142.15 (10)C15—C16—C17118.0 (5)
N2—Cu1—Cl1114.45 (11)C15—C16—C23124.6 (4)
N7B—Fe1—N7Bi180.000 (3)C17—C16—C23117.4 (4)
N7B—Fe1—C25i92.0 (13)N3—C17—C16122.6 (4)
N7Bi—Fe1—C25i88.0 (13)N3—C17—C18116.7 (4)
N7B—Fe1—C2588.0 (13)C16—C17—C18120.6 (4)
N7Bi—Fe1—C2592.0 (13)N4—C18—C19123.8 (4)
C25i—Fe1—C25180.000 (1)N4—C18—C17116.8 (4)
N7B—Fe1—C26i91.7 (10)C19—C18—C17119.3 (4)
N7Bi—Fe1—C26i88.3 (10)C18—C19—C20116.5 (4)
C25i—Fe1—C26i89.34 (19)C18—C19—C24119.1 (4)
C25—Fe1—C26i90.66 (19)C20—C19—C24124.4 (5)
N7B—Fe1—C2688.3 (10)C21—C20—C19119.9 (5)
N7Bi—Fe1—C2691.7 (10)C21—C20—H20120.1
C25i—Fe1—C2690.66 (19)C19—C20—H20120.1
C25—Fe1—C2689.34 (19)C20—C21—C22119.8 (5)
C26i—Fe1—C26180.000 (1)C20—C21—H21120.1
N7B—Fe1—C274 (2)C22—C21—H21120.1
N7Bi—Fe1—C27176 (2)N4—C22—C21122.2 (4)
C25i—Fe1—C2789.7 (13)N4—C22—H22118.9
C25—Fe1—C2790.3 (13)C21—C22—H22118.9
C26i—Fe1—C2788.5 (12)C24—C23—C16121.9 (4)
C26—Fe1—C2791.5 (12)C24—C23—H23119.1
N7B—Fe1—C27i176 (2)C16—C23—H23119.1
N7Bi—Fe1—C27i4 (2)C23—C24—C19121.6 (5)
C25i—Fe1—C27i90.3 (13)C23—C24—H24119.2
C25—Fe1—C27i89.7 (13)C19—C24—H24119.2
C26i—Fe1—C27i91.5 (12)C28ii—N8—C28180.000 (4)
C26—Fe1—C27i88.5 (12)C28ii—N8—C30ii111.0 (11)
C27—Fe1—C27i180.000 (4)C28—N8—C30ii69.0 (11)
C1—N1—C5118.9 (4)C28ii—N8—C3069.0 (11)
C1—N1—Cu1125.8 (3)C28—N8—C30111.0 (11)
C5—N1—Cu1115.3 (3)C30ii—N8—C30180.000 (5)
C10—N2—C6118.9 (4)C28ii—N8—C2948.1 (10)
C10—N2—Cu1131.9 (4)C28—N8—C29131.9 (10)
C6—N2—Cu1109.2 (3)C30ii—N8—C2962.9 (11)
C13—N3—C17118.9 (4)C30—N8—C29117.1 (11)
C13—N3—Cu1126.9 (4)C28ii—N8—C29ii131.9 (10)
C17—N3—Cu1114.1 (3)C28—N8—C29ii48.1 (10)
C22—N4—C18117.7 (4)C30ii—N8—C29ii117.1 (11)
C22—N4—Cu1131.1 (3)C30—N8—C29ii62.9 (11)
C18—N4—Cu1111.1 (3)C29—N8—C29ii180.000 (7)
N5—C25—Fe1179.4 (5)C28—O1—C30ii73.7 (8)
N6—C26—Fe1178.2 (5)C29ii—C28—O1173.4 (12)
O7B—C27—N74 (3)C29ii—C28—N870.3 (7)
O7B—C27—Fe1174 (5)O1—C28—N8116.3 (9)
N7—C27—Fe1170 (4)C29ii—C28—C30ii128.3 (8)
C27—N7—N7B7 (4)O1—C28—C30ii58.2 (9)
O7B—N7B—N74 (2)N8—C28—C30ii58.1 (7)
O7B—N7B—Fe1175 (3)C29ii—C28—H28A53.9
N7—N7B—Fe1177 (2)O1—C28—H28A119.6
C27—O7B—N7B7 (5)N8—C28—H28A124.1
N1—C1—C2122.5 (5)C30ii—C28—H28A175.9
N1—C1—H1118.7C28ii—C29—N861.6 (6)
C2—C1—H1118.7C28ii—C29—C30ii120.0 (10)
C3—C2—C1118.9 (5)N8—C29—C30ii58.4 (7)
C3—C2—H2120.5C28ii—C29—H29A173.5
C1—C2—H2120.5N8—C29—H29A112.6
C2—C3—C4120.7 (5)C30ii—C29—H29A54.2
C2—C3—H3119.7C28ii—C29—H29B76.0
C4—C3—H3119.7N8—C29—H29B107.6
C3—C4—C5117.3 (4)C30ii—C29—H29B124.3
C3—C4—C11125.0 (5)H29A—C29—H29B109.5
C5—C4—C11117.7 (5)C28ii—C29—H29C71.1
N1—C5—C4121.6 (4)N8—C29—H29C108.2
N1—C5—C6117.2 (4)C30ii—C29—H29C126.2
C4—C5—C6121.2 (4)H29A—C29—H29C109.5
N2—C6—C7122.8 (5)H29B—C29—H29C109.5
N2—C6—C5118.2 (4)O1ii—C30—N8100.9 (13)
C7—C6—C5119.0 (4)O1ii—C30—C29ii159.1 (13)
C8—C7—C6115.9 (5)N8—C30—C29ii58.7 (7)
C8—C7—C12125.3 (5)O1ii—C30—C28ii48.1 (8)
C6—C7—C12118.7 (5)N8—C30—C28ii52.8 (6)
C9—C8—C7120.1 (5)C29ii—C30—C28ii111.5 (8)
C9—C8—H8119.9O1ii—C30—H30A156.1
C7—C8—H8119.9N8—C30—H30A102.4
C8—C9—C10120.1 (6)C29ii—C30—H30A43.6
C8—C9—H9120.0C28ii—C30—H30A155.1
C10—C9—H9120.0O1ii—C30—H30B55.3
N2—C10—C9122.2 (5)N8—C30—H30B113.5
N2—C10—H10118.9C29ii—C30—H30B125.5
C9—C10—H10118.9C28ii—C30—H30B82.6
C12—C11—C4121.8 (5)H30A—C30—H30B109.5
C12—C11—H11119.1O1ii—C30—H30C65.8
C4—C11—H11119.1N8—C30—H30C112.3
C11—C12—C7121.6 (5)C29ii—C30—H30C123.5
C11—C12—H12119.2C28ii—C30—H30C85.5
C7—C12—H12119.2H30A—C30—H30C109.5
N3—C13—C14120.7 (5)H30B—C30—H30C109.5
N4—Cu1—N1—C177.5 (4)C17—N3—C13—C140.0 (7)
N2—Cu1—N1—C1179.5 (4)Cu1—N3—C13—C14176.8 (4)
Cl1—Cu1—N1—C165.2 (4)N3—C13—C14—C150.2 (8)
N4—Cu1—N1—C5104.9 (3)C13—C14—C15—C160.1 (8)
N2—Cu1—N1—C51.8 (3)C14—C15—C16—C170.3 (7)
Cl1—Cu1—N1—C5112.5 (3)C14—C15—C16—C23178.9 (5)
N1—Cu1—N2—C10179.7 (5)C13—N3—C17—C160.4 (7)
N3—Cu1—N2—C107.2 (5)Cu1—N3—C17—C16176.8 (3)
N4—Cu1—N2—C1089.2 (5)C13—N3—C17—C18178.9 (4)
Cl1—Cu1—N2—C1091.0 (5)Cu1—N3—C17—C183.9 (5)
N1—Cu1—N2—C62.1 (3)C15—C16—C17—N30.5 (7)
N3—Cu1—N2—C6175.2 (3)C23—C16—C17—N3178.8 (4)
N4—Cu1—N2—C693.2 (3)C15—C16—C17—C18178.7 (4)
Cl1—Cu1—N2—C686.6 (3)C23—C16—C17—C182.0 (6)
N4—Cu1—N3—C13178.4 (4)C22—N4—C18—C190.4 (6)
N2—Cu1—N3—C1378.8 (4)Cu1—N4—C18—C19176.7 (3)
Cl1—Cu1—N3—C1336.4 (4)C22—N4—C18—C17179.7 (4)
N4—Cu1—N3—C174.6 (3)Cu1—N4—C18—C173.9 (4)
N2—Cu1—N3—C1798.1 (3)N3—C17—C18—N40.2 (6)
Cl1—Cu1—N3—C17146.6 (3)C16—C17—C18—N4179.1 (4)
N1—Cu1—N4—C226.1 (4)N3—C17—C18—C19179.6 (4)
N3—Cu1—N4—C22179.7 (4)C16—C17—C18—C190.3 (6)
N2—Cu1—N4—C2286.7 (4)N4—C18—C19—C201.2 (6)
Cl1—Cu1—N4—C2293.0 (4)C17—C18—C19—C20178.1 (4)
N1—Cu1—N4—C18169.6 (3)N4—C18—C19—C24180.0 (4)
N3—Cu1—N4—C184.6 (3)C17—C18—C19—C240.7 (6)
N2—Cu1—N4—C1889.0 (3)C18—C19—C20—C211.8 (7)
Cl1—Cu1—N4—C1891.3 (3)C24—C19—C20—C21179.5 (4)
C5—N1—C1—C22.7 (7)C19—C20—C21—C220.8 (8)
Cu1—N1—C1—C2179.7 (4)C18—N4—C22—C211.5 (7)
N1—C1—C2—C34.0 (8)Cu1—N4—C22—C21176.9 (3)
C1—C2—C3—C42.5 (8)C20—C21—C22—N40.9 (8)
C2—C3—C4—C50.0 (8)C15—C16—C23—C24177.7 (5)
C2—C3—C4—C11180.0 (5)C17—C16—C23—C243.0 (7)
C1—N1—C5—C40.0 (6)C16—C23—C24—C192.2 (8)
Cu1—N1—C5—C4177.8 (3)C18—C19—C24—C230.3 (7)
C1—N1—C5—C6179.2 (4)C20—C19—C24—C23179.0 (5)
Cu1—N1—C5—C61.4 (5)C30ii—O1—C28—N83 (2)
C3—C4—C5—N11.4 (6)C30ii—N8—C28—C29ii178 (3)
C11—C4—C5—N1178.7 (4)C30—N8—C28—C29ii2 (3)
C3—C4—C5—C6179.5 (4)C29—N8—C28—C29ii180.000 (3)
C11—C4—C5—C60.4 (6)C28ii—N8—C28—O1171 (100)
C10—N2—C6—C70.5 (7)C30ii—N8—C28—O13 (2)
Cu1—N2—C6—C7177.5 (3)C30—N8—C28—O1177 (2)
C10—N2—C6—C5180.0 (4)C29—N8—C28—O11 (4)
Cu1—N2—C6—C52.0 (5)C29ii—N8—C28—O1179 (4)
N1—C5—C6—N20.6 (6)C30—N8—C28—C30ii180.000 (5)
C4—C5—C6—N2179.8 (4)C29—N8—C28—C30ii2 (3)
N1—C5—C6—C7178.9 (4)C29ii—N8—C28—C30ii178 (3)
C4—C5—C6—C70.2 (6)C28—N8—C29—C28ii180.000 (4)
N2—C6—C7—C80.5 (7)C30ii—N8—C29—C28ii177 (3)
C5—C6—C7—C8179.0 (4)C30—N8—C29—C28ii3 (3)
N2—C6—C7—C12178.2 (4)C28ii—N8—C29—C30ii177 (3)
C5—C6—C7—C121.3 (6)C28—N8—C29—C30ii3 (3)
C6—C7—C8—C91.5 (8)C30—N8—C29—C30ii180.000 (4)
C12—C7—C8—C9179.0 (5)C28ii—N8—C30—O1ii2.8 (19)
C7—C8—C9—C101.4 (9)C28—N8—C30—O1ii177.2 (19)
C6—N2—C10—C90.6 (8)C29—N8—C30—O1ii5 (2)
Cu1—N2—C10—C9176.9 (4)C29ii—N8—C30—O1ii175 (2)
C8—C9—C10—N20.4 (9)C28ii—N8—C30—C29ii178 (2)
C3—C4—C11—C12179.1 (5)C28—N8—C30—C29ii2 (2)
C5—C4—C11—C121.0 (7)C29—N8—C30—C29ii180.000 (4)
C4—C11—C12—C72.6 (8)C28—N8—C30—C28ii180.000 (4)
C8—C7—C12—C11179.8 (5)C29—N8—C30—C28ii2 (2)
C6—C7—C12—C112.7 (7)C29ii—N8—C30—C28ii178 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cl1iii0.932.823.701 (6)159
C23—H23···N6iv0.932.523.425 (7)163
Symmetry codes: (iii) x+1, y+2, z; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[CuCl(C12H8N2)2]2[Fe(CN)5(NO)]·C3H7NO
Mr1207.85
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.9645 (13), 10.6001 (18), 12.623 (2)
α, β, γ (°)79.585 (14), 84.896 (12), 82.047 (12)
V3)1295.9 (4)
Z1
Radiation typeMo Kα
µ (mm1)1.25
Crystal size (mm)0.50 × 0.40 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur 3
Absorption correctionNumerical
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.575, 0.789
No. of measured, independent and
observed [I > 2σ(I)] reflections
11289, 5647, 2685
Rint0.041
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.182, 0.99
No. of reflections5647
No. of parameters366
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.61

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cl1i0.932.823.701 (6)159
C23—H23···N6ii0.932.523.425 (7)163
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+1, z+1.
 

Acknowledgements

This work was partly supported by the State Fund for Fundamental Researches of Ukraine (project 54.3/005).

References

First citationBuvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976–4978.  Web of Science CSD CrossRef Google Scholar
First citationMakhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Sorace, L. & Gatteschi, D. (2002). J. Chem. Soc. Dalton Trans. pp. 4253–4259.  Web of Science CSD CrossRef Google Scholar
First citationNesterova, O. V., Lipetskaya, A. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Jezierska, J. (2005). Polyhedron, 24, 1425–1434.  Web of Science CSD CrossRef CAS Google Scholar
First citationNesterova, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Jezierska, J., Linert, W. & Ozarowski, A. (2008). Dalton Trans. pp. 1431–1436.  Web of Science CSD CrossRef PubMed Google Scholar
First citationNesterova (Pryma), O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Linert, W. (2004). Inorg. Chem. Commun. 7, 450–454.  Google Scholar
First citationNikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426–2430.  Web of Science CSD CrossRef CAS Google Scholar
First citationOnawumi, O. O., Adekunle, F. A., Ibrahim, A. O., Rajasekharan, M. V. & Odunola, O. A. (2010). Synth. React. Inorg. Metal-Org. Nano-Met. Chem. 40, 78–83.  CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPryma, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Shishkin, O. V. & Teplytska, T. S. (2003). Eur. J. Inorg. Chem. pp. 1426–1432.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShevyakova, I. Yu., Buravov, L. I., Kushch, L. A., Yagubskii, E. B., Khasanov, S. S., Zorina, L. V., Shibaeva, R. P., Drichko, N. V. & Olejniczak, I. (2002). Russ. J. Coord. Chem. 28, 520–529.  Web of Science CrossRef Google Scholar
First citationSoria, D. B., Villalba, M. E. C., Piro, O. E. & Aymonino, P. J. (2002). Polyhedron, 21, 1767–1774.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSui, A.-X., Zhu, G. & Tang, Z.-X. (2006). Acta Cryst. E62, m1592–m1594.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationVassilyeva, O. Yu., Kokozay, V. N., Zhukova, N. I. & Kovbasyuk, L. A. (1997). Polyhedron, 16, 263–266.  CSD CrossRef CAS Web of Science Google Scholar
First citationVinogradova, E. A., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Bjernemose, J. K. & Raithby, P. R. (2002). J. Chem. Soc. Dalton Trans. pp. 4248–4252.  Web of Science CSD CrossRef Google Scholar
First citationVreshch, O. V., Nesterova, O. V., Kokozay, V. N., Skelton, B. W., Garcia, C. J. G. & Jezierska, J. (2009). Inorg. Chem. Commun. 12, 890–894.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, H.-P., Hu, M.-L. & Li, X.-H. (2004). Acta Cryst. E60, m71–m72.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds