organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-{5-[(2-Bromo­benz­yl)sulfan­yl]-1H-tetra­zol-1-yl}benzoic acid

aInstituto de Física de São Carlos, Av. do Trab. Sãocarlense, 400, São Carlos, SP, Brazil
*Correspondence e-mail: mafud@usp.br

(Received 19 April 2013; accepted 29 May 2013; online 12 June 2013)

In the title compound, C15H11BrN4O2S, the tetra­zole ring makes dihedral angles of 45.97 (10) and 75.41 (1)°, respectively, with the benzoyl and bromo­benzene rings while the dihedral angle between the benzene rings is 73.77 (1)°. In the crystal, mol­ecules are linked through O—H⋯ N and C—H⋯ O hydrogen bonds, giving infinite chains in both the [110] and [1-10] directions. These chains are further connected by C—Br⋯π and C—O⋯π inter­actions and also by ππ stacking between tetra­zole rings [centroid–centroid distance = 3.312 (1) Å], generating a three-dimensional network.

Related literature

For details of the ZINC database, see: Irwin et al. (2012[Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S. & Coleman, R. G. (2012). J. Chem. Inf. Model. 52, 1757-1768.]). For biological properties of tetra­zoles, see: Kees et al. (1989[Kees, K. L., Cheeseman, R. S., Prozialeck, D. H. & Steiner, K. E. (1989). J. Med. Chem. 32, 11-13.]); Nolte et al. (1998[Nolte, R. T., Wisely, G. B., Westin, S., Cobb, J. E., Lambert, M. H., Kurokawa, R., Rosenfeldk, M. G., Willson, T. M., Glass, C. K. & Milburn, M. V. (1998). Nature, 395, 137-143.]); Mafud et al. (2013[Mafud, A. C., Mascarenhas, Y. P. & Nascimento, A. S. (2013). Acta Cryst. E69, o759.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11BrN4O2S

  • Mr = 391.25

  • Monoclinic, P 21 /n

  • a = 7.4570 (5) Å

  • b = 8.3500 (5) Å

  • c = 25.3680 (14) Å

  • β = 97.626 (3)°

  • V = 1565.59 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.77 mm−1

  • T = 290 K

  • 0.1 x 0.1 (radius) mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: for a cylinder mounted on the φ axis (modified Dwiggins, 1975[Dwiggins, C. W. (1975). Acta Cryst. A31, 146-148.]) Tmin = 0.604, Tmax = 0.608

  • 24464 measured reflections

  • 2889 independent reflections

  • 2388 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.114

  • S = 1.06

  • 2889 reflections

  • 213 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1–N4/C8 tetra­zole ring and the C10–C15 benzene ring, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O1i 0.97 2.41 3.351 (4) 163
O2—H1⋯N4ii 0.73 (4) 2.05 (4) 2.746 (3) 161 (5)
C1—O1⋯Cg1iii 1.21 (1) 3.62 (1) 4.534 (1) 133 (2)
C11—Br1⋯Cg2iv 1.90 (1) 3.58 (1) 4.895 (2) 124 (1)
Symmetry codes: (i) x+1, y-1, z; (ii) x-1, y+1, z; (iii) x, y+1, z; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The title acid is a screening molecule available in the ZINC database (Irwin et al., 2012) among the 'drugs-now' subset. This molecule has been identified as a PPAR gamma ligand candidate in a virtual screening study. The Peroxisome Proliferator-Activated Receptor, isoform gamma, is a transcription factor that regulates the expression of genes involved in glucose and lipid metabolism (Nolte et al., 1998). Our group recently described the crystal structure of a similar compound, evaluated as a PPARgligand in a competition assay (Mafud et al., 2013). Since tetrazoles are already known to have glucose lowering effects in vivo (Kees et al., 1989), in this virtual screening we chose some different representative molecules to evaluate the affinities and the extent of receptor activation. Here, we report the crystal structure of the title compound.

The dihedral angles between the tetrazole and the benzoyl and the bromo benzene rings are 45.97 (10)° and 75.41 (1)° respectively, while between the two benzene rings is 73.77 (1)°. The crystal packing is established through interactions of three types (Table 1):

The first one are intermolecular hydrogen bonds: O2—H1···N4(ii) and C9—H9···O1(i), with symmetry codes: (i)1+ x, -1 + y, z and (ii) -1+x, 1+y, z

The second one are C–X···π interactions: C1—O1 ··· Cg1(iii), 3.619 (2) Å and C11—Br1 ··· Cg2(iv), 3.581 (2) Å, where Cg1 and Cg2 are the centroids of the {N1, N2, N3, N4, C8} and {C10, C11, C12, C13, C14, C15} rings, respectively, with symmetry codes: (iii) x, 1 + y, z; (iv) 1/2 - x,-1/2 + y,1/2 - z.

And the last type is π-π stacking between centrosymmetric tetrazole neighbour rings (centroid-centroid distance=3.312 (1) Å )

Related literature top

For details of the ZINC database, see: Irwin et al. (2012). For biological properties of tetrazoles, see: Kees et al. (1989); Nolte et al. (1998); Mafud et al. (2013).

Experimental top

A colourless single-crystal of the title compound was selected from the sample as supplied (Pharmeks Ltd.) without recrystallization.

Refinement top

The hydroxyl H atom was located in a difference Fourier map and refined with Uiso(H) = 1.5Ueq(O). The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 and 0.97 Å, for CH and CH2 respectively, with Uiso(H) = 1.2Ueq(C).

Structure description top

The title acid is a screening molecule available in the ZINC database (Irwin et al., 2012) among the 'drugs-now' subset. This molecule has been identified as a PPAR gamma ligand candidate in a virtual screening study. The Peroxisome Proliferator-Activated Receptor, isoform gamma, is a transcription factor that regulates the expression of genes involved in glucose and lipid metabolism (Nolte et al., 1998). Our group recently described the crystal structure of a similar compound, evaluated as a PPARgligand in a competition assay (Mafud et al., 2013). Since tetrazoles are already known to have glucose lowering effects in vivo (Kees et al., 1989), in this virtual screening we chose some different representative molecules to evaluate the affinities and the extent of receptor activation. Here, we report the crystal structure of the title compound.

The dihedral angles between the tetrazole and the benzoyl and the bromo benzene rings are 45.97 (10)° and 75.41 (1)° respectively, while between the two benzene rings is 73.77 (1)°. The crystal packing is established through interactions of three types (Table 1):

The first one are intermolecular hydrogen bonds: O2—H1···N4(ii) and C9—H9···O1(i), with symmetry codes: (i)1+ x, -1 + y, z and (ii) -1+x, 1+y, z

The second one are C–X···π interactions: C1—O1 ··· Cg1(iii), 3.619 (2) Å and C11—Br1 ··· Cg2(iv), 3.581 (2) Å, where Cg1 and Cg2 are the centroids of the {N1, N2, N3, N4, C8} and {C10, C11, C12, C13, C14, C15} rings, respectively, with symmetry codes: (iii) x, 1 + y, z; (iv) 1/2 - x,-1/2 + y,1/2 - z.

And the last type is π-π stacking between centrosymmetric tetrazole neighbour rings (centroid-centroid distance=3.312 (1) Å )

For details of the ZINC database, see: Irwin et al. (2012). For biological properties of tetrazoles, see: Kees et al. (1989); Nolte et al. (1998); Mafud et al. (2013).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound.
4-{5-[(2-Bromobenzyl)sulfanyl]-1H-tetrazol-1-yl}benzoic acid top
Crystal data top
C15H11BrN4O2SF(000) = 784
Mr = 391.25Dx = 1.66 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3980 reflections
a = 7.4570 (5) Åθ = 12.0–18.1°
b = 8.3500 (5) ŵ = 2.77 mm1
c = 25.3680 (14) ÅT = 290 K
β = 97.626 (3)°Prism, colourless
V = 1565.59 (17) Å30.1 × 0.1 × 0.1 × 0.1 (radius) mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2889 independent reflections
Graphite monochromator2388 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.069
CCD scansθmax = 25.7°, θmin = 2.9°
Absorption correction: for a cylinder mounted on the φ axis
(Dwiggins, 1975)
h = 99
Tmin = 0.604, Tmax = 0.608k = 1010
24464 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0623P)2 + 0.5855P]
where P = (Fo2 + 2Fc2)/3
2889 reflections(Δ/σ)max < 0.001
213 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C15H11BrN4O2SV = 1565.59 (17) Å3
Mr = 391.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.4570 (5) ŵ = 2.77 mm1
b = 8.3500 (5) ÅT = 290 K
c = 25.3680 (14) Å0.1 × 0.1 × 0.1 × 0.1 (radius) mm
β = 97.626 (3)°
Data collection top
Nonius KappaCCD
diffractometer
2889 independent reflections
Absorption correction: for a cylinder mounted on the φ axis
(Dwiggins, 1975)
2388 reflections with I > 2σ(I)
Tmin = 0.604, Tmax = 0.608Rint = 0.069
24464 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.38 e Å3
2889 reflectionsΔρmin = 0.47 e Å3
213 parameters
Special details top

Experimental. Absorption correction: interpolation using Int.Tab. Vol. C (1992) p. 523,Tab. 6.3.3.3 for values of muR in the range 0-2.5, and Int.Tab. Vol.II (1959) p.302; Table 5.3.6 B for muR in the range 2.6-10.0. The interpolation procedure of (Dwiggins, 1975) is used with some modification

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.16110 (5)0.03469 (5)0.285194 (14)0.07850 (19)
S10.11800 (10)0.09831 (9)0.14388 (3)0.0586 (2)
O10.4811 (3)0.7429 (2)0.08768 (9)0.0684 (6)
O20.7294 (3)0.5931 (3)0.06893 (9)0.0644 (6)
H10.769 (6)0.671 (5)0.0724 (17)0.097*
N10.1430 (3)0.0490 (2)0.05969 (8)0.0424 (5)
N20.1946 (3)0.0608 (2)0.02100 (9)0.0482 (5)
N30.0817 (3)0.1770 (3)0.02891 (9)0.0514 (5)
N40.0451 (3)0.1480 (2)0.07213 (8)0.0484 (5)
C10.5529 (4)0.6156 (3)0.07638 (10)0.0506 (6)
C20.4489 (3)0.4647 (3)0.07046 (10)0.0462 (6)
C30.5338 (3)0.3184 (3)0.06132 (11)0.0515 (6)
H30.65940.31240.05770.062*
C40.4328 (3)0.1809 (3)0.05749 (10)0.0496 (6)
H40.48910.08190.05150.059*
C50.2460 (3)0.1937 (3)0.06285 (9)0.0421 (5)
C60.1586 (3)0.3385 (3)0.07012 (11)0.0495 (6)
H60.03340.34460.07220.059*
C70.2614 (4)0.4750 (3)0.07421 (11)0.0507 (6)
H70.20480.57410.07950.061*
C80.0051 (3)0.0061 (3)0.09069 (10)0.0442 (5)
C90.2832 (4)0.0542 (4)0.16947 (12)0.0618 (8)
H9A0.22210.14350.18380.074*
H9B0.34590.09380.1410.074*
C100.4163 (4)0.0194 (3)0.21228 (11)0.0568 (7)
C110.3845 (4)0.0329 (3)0.26468 (11)0.0567 (7)
C120.5133 (4)0.0977 (4)0.30333 (13)0.0699 (8)
H120.49020.10310.33840.084*
C130.6728 (5)0.1533 (5)0.29027 (15)0.0862 (11)
H130.75820.1970.31640.103*
C140.7079 (5)0.1450 (6)0.23877 (17)0.0932 (12)
H140.81590.18520.22970.112*
C150.5817 (4)0.0764 (5)0.20012 (14)0.0781 (10)
H150.60810.06840.16540.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0729 (3)0.0918 (3)0.0707 (3)0.00307 (17)0.00932 (18)0.00600 (16)
S10.0576 (4)0.0567 (4)0.0563 (4)0.0182 (3)0.0120 (3)0.0109 (3)
O10.0681 (12)0.0486 (11)0.0884 (15)0.0129 (10)0.0105 (10)0.0114 (10)
O20.0531 (12)0.0549 (12)0.0823 (14)0.0223 (9)0.0014 (10)0.0076 (10)
N10.0388 (10)0.0404 (11)0.0466 (11)0.0060 (8)0.0005 (8)0.0039 (8)
N20.0435 (11)0.0446 (11)0.0550 (12)0.0048 (9)0.0011 (9)0.0070 (9)
N30.0468 (11)0.0477 (12)0.0583 (13)0.0048 (9)0.0018 (9)0.0063 (10)
N40.0445 (11)0.0464 (12)0.0532 (12)0.0101 (9)0.0027 (9)0.0019 (9)
C10.0530 (15)0.0498 (16)0.0480 (14)0.0154 (12)0.0030 (11)0.0014 (11)
C20.0472 (14)0.0459 (14)0.0442 (13)0.0136 (11)0.0013 (10)0.0011 (10)
C30.0391 (12)0.0516 (14)0.0623 (15)0.0094 (11)0.0007 (11)0.0028 (12)
C40.0414 (13)0.0442 (13)0.0610 (15)0.0043 (10)0.0010 (11)0.0028 (11)
C50.0409 (12)0.0413 (12)0.0429 (12)0.0101 (10)0.0012 (9)0.0009 (9)
C60.0391 (12)0.0458 (14)0.0624 (15)0.0063 (10)0.0026 (11)0.0007 (11)
C70.0500 (14)0.0413 (13)0.0589 (15)0.0015 (11)0.0009 (12)0.0023 (11)
C80.0406 (12)0.0457 (13)0.0456 (13)0.0090 (10)0.0037 (10)0.0001 (10)
C90.0615 (17)0.0648 (18)0.0545 (16)0.0235 (14)0.0098 (13)0.0083 (13)
C100.0516 (16)0.0634 (17)0.0519 (15)0.0204 (13)0.0066 (12)0.0011 (12)
C110.0564 (16)0.0570 (16)0.0538 (16)0.0134 (12)0.0038 (12)0.0022 (12)
C120.0649 (19)0.080 (2)0.0589 (17)0.0110 (16)0.0149 (14)0.0054 (15)
C130.066 (2)0.105 (3)0.079 (2)0.0006 (19)0.0213 (18)0.0040 (19)
C140.0483 (18)0.129 (3)0.098 (3)0.0027 (19)0.0050 (17)0.013 (2)
C150.0581 (18)0.113 (3)0.0615 (19)0.0226 (19)0.0036 (15)0.0099 (18)
Geometric parameters (Å, º) top
Br1—C111.896 (3)C4—H40.93
S1—C81.728 (3)C5—C61.374 (4)
S1—C91.830 (3)C6—C71.386 (3)
O1—C11.208 (3)C6—H60.93
O2—C11.318 (3)C7—H70.93
O2—H10.72 (4)C9—C101.502 (4)
N1—C81.349 (3)C9—H9A0.97
N1—N21.361 (3)C9—H9B0.97
N1—C51.440 (3)C10—C111.386 (4)
N2—N31.283 (3)C10—C151.394 (5)
N3—N41.371 (3)C11—C121.388 (4)
N4—C81.324 (3)C12—C131.358 (5)
C1—C21.498 (3)C12—H120.93
C2—C31.381 (4)C13—C141.368 (6)
C2—C71.392 (4)C13—H130.93
C3—C41.384 (4)C14—C151.389 (5)
C3—H30.93C14—H140.93
C4—C51.386 (3)C15—H150.93
C8—S1—C999.29 (12)C2—C7—H7119.9
C1—O2—H1106 (4)N4—C8—N1107.7 (2)
C8—N1—N2108.81 (18)N4—C8—S1128.29 (19)
C8—N1—C5130.9 (2)N1—C8—S1124.04 (18)
N2—N1—C5120.24 (19)C10—C9—S1108.74 (19)
N3—N2—N1106.25 (19)C10—C9—H9A109.9
N2—N3—N4111.12 (19)S1—C9—H9A109.9
C8—N4—N3106.15 (19)C10—C9—H9B109.9
O1—C1—O2124.2 (2)S1—C9—H9B109.9
O1—C1—C2123.1 (2)H9A—C9—H9B108.3
O2—C1—C2112.7 (2)C11—C10—C15117.0 (3)
C3—C2—C7120.1 (2)C11—C10—C9123.1 (3)
C3—C2—C1121.9 (2)C15—C10—C9119.9 (3)
C7—C2—C1118.0 (2)C10—C11—C12121.3 (3)
C2—C3—C4120.3 (2)C10—C11—Br1120.5 (2)
C2—C3—H3119.9C12—C11—Br1118.2 (2)
C4—C3—H3119.9C13—C12—C11120.5 (3)
C3—C4—C5118.6 (2)C13—C12—H12119.8
C3—C4—H4120.7C11—C12—H12119.8
C5—C4—H4120.7C12—C13—C14120.0 (3)
C6—C5—C4122.3 (2)C12—C13—H13120
C6—C5—N1119.9 (2)C14—C13—H13120
C4—C5—N1117.8 (2)C13—C14—C15119.9 (4)
C5—C6—C7118.5 (2)C13—C14—H14120.1
C5—C6—H6120.8C15—C14—H14120.1
C7—C6—H6120.8C14—C15—C10121.4 (3)
C6—C7—C2120.3 (2)C14—C15—H15119.3
C6—C7—H7119.9C10—C15—H15119.3
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1–N4/C8 tetrazole ring and the C10–C15 benzene ring, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9B···O1i0.972.413.351 (4)163
O2—H1···N4ii0.73 (4)2.05 (4)2.746 (3)161 (5)
C1—O1···Cg1iii1.21 (1)3.62 (1)4.534 (1)133 (2)
C11—Br1···Cg2iv1.90 (1)3.58 (1)4.895 (2)124 (1)
Symmetry codes: (i) x+1, y1, z; (ii) x1, y+1, z; (iii) x, y+1, z; (iv) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H11BrN4O2S
Mr391.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)290
a, b, c (Å)7.4570 (5), 8.3500 (5), 25.3680 (14)
β (°) 97.626 (3)
V3)1565.59 (17)
Z4
Radiation typeMo Kα
µ (mm1)2.77
Crystal size (mm)0.1 × 0.1 × 0.1 × 0.1 (radius)
Data collection
DiffractometerNonius KappaCCD
Absorption correctionFor a cylinder mounted on the φ axis
(Dwiggins, 1975)
Tmin, Tmax0.604, 0.608
No. of measured, independent and
observed [I > 2σ(I)] reflections
24464, 2889, 2388
Rint0.069
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.114, 1.06
No. of reflections2889
No. of parameters213
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.47

Computer programs: COLLECT (Nonius, 1999), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1–N4/C8 tetrazole ring and the C10–C15 benzene ring, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9B···O1i0.972.413.351 (4)163
O2—H1···N4ii0.73 (4)2.05 (4)2.746 (3)161 (5)
C1—O1···Cg1iii1.208 (3)3.618 (2)4.534 (1)133 (2)
C11—Br1···Cg2iv1.896 (3)3.582 (2)4.895 (2)124 (1)
Symmetry codes: (i) x+1, y1, z; (ii) x1, y+1, z; (iii) x, y+1, z; (iv) x+1/2, y1/2, z+1/2.
 

Acknowledgements

We are grateful to CAPES (National Council for the Improvement of Higher Education) and FAPESP (São Paulo Research Foundation) for supporting this study.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDwiggins, C. W. (1975). Acta Cryst. A31, 146–148.  CrossRef IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIrwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S. & Coleman, R. G. (2012). J. Chem. Inf. Model. 52, 1757–1768.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKees, K. L., Cheeseman, R. S., Prozialeck, D. H. & Steiner, K. E. (1989). J. Med. Chem. 32, 11–13.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMafud, A. C., Mascarenhas, Y. P. & Nascimento, A. S. (2013). Acta Cryst. E69, o759.  CSD CrossRef IUCr Journals Google Scholar
First citationNolte, R. T., Wisely, G. B., Westin, S., Cobb, J. E., Lambert, M. H., Kurokawa, R., Rosenfeldk, M. G., Willson, T. M., Glass, C. K. & Milburn, M. V. (1998). Nature, 395, 137–143.  Web of Science CAS PubMed Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds