metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[bis­­(μ3-2-phenyl­acetato-κ3O,O′:O)bis­­(μ2-2-phenyl­acetato-κ2O:O′)dicopper(II)(CuCu)]

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, Faculté des Sciences Exactes, Département de Chimie, Université de Constantine 1, 25000 Constantine, Algeria, and bLaboratoire de Chimie de Coordination, UPR-CNRS 8241, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
*Correspondence e-mail: b_meriem80@yahoo.fr

(Received 16 May 2013; accepted 6 June 2013; online 15 June 2013)

The title polymeric compound, [Cu2(C8H7O2)4]n, was synthesized by the reaction of copper acetate with aqueous phenyl­acetic acid. The unique CuII atom is coordinated by five O atoms from the carboxyl­ate groups of phenyl­acetate ligands, and the strongly distorted octa­hedral coordination environment is completed by a Cu—Cu bond of 2.581 (2) Å, at whose mid-point is located an inversion centre. The crystal structure consists of infinite polymeric linear chains of Cu2+ ions, running along [100], linked by bridging phenyl­acetate groups.

Related literature

For the biological activity of divalent transition metals, see: Stem et al. (1990[Stem, M. K., Bashkin, J. K. & Sail, E. D. (1990). J. Am. Chem. Soc. 112, 5357-5359.]); Kimura (1994[Kimura, E. (1994). Prog. Inorg. Chem. 41, 443-491.]). For related compounds, see: Cui et al. (1999[Cui, Y., Zheng, F. & Huang, J. (1999). Acta Cryst. C55, 1067-1069.]); Kong et al. (2005a[Kong, L.-L., Huo, L.-H., Gao, S. & Zhao, J.-G. (2005a). Acta Cryst. E61, m2485-m2487.],b[Kong, L.-L., Huo, L.-H., Gao, S. & Zhao, J.-G. (2005b). Acta Cryst. E61, m2289-m2290.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C8H7O2)4]

  • Mr = 667.62

  • Monoclinic, P 21 /c

  • a = 5.1829 (6) Å

  • b = 26.328 (4) Å

  • c = 10.2279 (13) Å

  • β = 97.892 (7)°

  • V = 1382.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.59 mm−1

  • T = 180 K

  • 0.15 × 0.10 × 0.01 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.552, Tmax = 0.745

  • 4056 measured reflections

  • 2382 independent reflections

  • 1927 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.082

  • wR(F2) = 0.254

  • S = 1.20

  • 2382 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 2.24 e Å−3

  • Δρmin = −1.14 e Å−3

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Carboxylate groups may interact as bridging ligands with divalent transition metals present in the biological environment, thereby altering the bioavailability of the drug. Moreover, it is well known that many complexes of divalent transition metals are capable of catalyzing the hydrolysis of RNA (Stem et al., 1990; Kimura, 1994). The coordination chemistry of polynuclear Cu2+ complexes bridged by phenylacetate has not been much reported. To date, we have found only two report of a dinuclear Co2+ complexes, namely tetrakis(phenylacetato)bis[(quinoline-N)-cobalt(II)] (Cui et al., 1999), µ-Aqua-κ2O:O-di-µ-phenylacetato-κ4O:O' -bis[(1,10-phenanthroline-κ2N,N')(phenylacetato- κO)cobalt(II)](Kong et al., 2005a) and dinuclear Cu2+ complex, namely tetrakis(phenylacetato)bis-[(N,N-dimethylformamide)copper(II)] (Kong et al., 2005b), in which all phenylacetate groups are in bidendate bridging modes. In this paper, we describe the crystal structure of new polymeric complex obtained by reaction of phenylacetic acid with copper(II) acetate.

The molecular geometry of the title compound is illustrated in Fig.1. Each CuII atom is six-coordinated by five O atoms from carboxylate groups of the phenylacetate and is completed by a Cu—Cu bond in a strongly distorted octahedral coordination, in which an inversion center is located at the mid-point of the Cu—Cu bond with a Cu···Cu distance is 2.581 (2) Å. The Cu—O bond length ranges from 1.944 (7) to 2.200 (6) Å. The two carboxylate groups [O3/C1/O1 and O2/C2/O4] are almost perpendicular to one another with a dihedral angle of 78.4 (16)°. The structure, consists of polymeric infinite linear chains running along [100](Fig.2). The chains are formed by Cu2+ ions linked with bridging phenylacetate groups.

Related literature top

For the biological activity of divalent transition metals, see: Stem et al. (1990; Kimura (1994). For related comopunds, see: Cui et al. (1999); Kong et al. (2005a,b).

Experimental top

To a solution of Cu(CH3CO2)2.H2O (0.049 g, 0.25 mmol) in methanol (10 cm3) at room temperature was added solid phenylacetic acid (0.068 g, 0.5 mmol) in small portions under constant stirring.The mixture was then filtered and the filtrate allowed to stand for 10 days, after which small blue block-like crystals of the title complex were obtained.

Refinement top

The C-bound hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atom positions with a C–H distances of 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Structure description top

Carboxylate groups may interact as bridging ligands with divalent transition metals present in the biological environment, thereby altering the bioavailability of the drug. Moreover, it is well known that many complexes of divalent transition metals are capable of catalyzing the hydrolysis of RNA (Stem et al., 1990; Kimura, 1994). The coordination chemistry of polynuclear Cu2+ complexes bridged by phenylacetate has not been much reported. To date, we have found only two report of a dinuclear Co2+ complexes, namely tetrakis(phenylacetato)bis[(quinoline-N)-cobalt(II)] (Cui et al., 1999), µ-Aqua-κ2O:O-di-µ-phenylacetato-κ4O:O' -bis[(1,10-phenanthroline-κ2N,N')(phenylacetato- κO)cobalt(II)](Kong et al., 2005a) and dinuclear Cu2+ complex, namely tetrakis(phenylacetato)bis-[(N,N-dimethylformamide)copper(II)] (Kong et al., 2005b), in which all phenylacetate groups are in bidendate bridging modes. In this paper, we describe the crystal structure of new polymeric complex obtained by reaction of phenylacetic acid with copper(II) acetate.

The molecular geometry of the title compound is illustrated in Fig.1. Each CuII atom is six-coordinated by five O atoms from carboxylate groups of the phenylacetate and is completed by a Cu—Cu bond in a strongly distorted octahedral coordination, in which an inversion center is located at the mid-point of the Cu—Cu bond with a Cu···Cu distance is 2.581 (2) Å. The Cu—O bond length ranges from 1.944 (7) to 2.200 (6) Å. The two carboxylate groups [O3/C1/O1 and O2/C2/O4] are almost perpendicular to one another with a dihedral angle of 78.4 (16)°. The structure, consists of polymeric infinite linear chains running along [100](Fig.2). The chains are formed by Cu2+ ions linked with bridging phenylacetate groups.

For the biological activity of divalent transition metals, see: Stem et al. (1990; Kimura (1994). For related comopunds, see: Cui et al. (1999); Kong et al. (2005a,b).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.[Symmetry code: (i): 2 - x, -y, 1 - z].
[Figure 2] Fig. 2. A view of the crystal structure, showing chains along [100]. Hydrogen atoms have been omitted for clarity
catena-Poly[bis(µ3-2-phenylacetato-κ3O,O':O)bis(µ2-2-phenylacetato-κ2O:O')dicopper(II)(CuCu)] top
Crystal data top
[Cu2(C8H7O2)4]F(000) = 684
Mr = 667.62Dx = 1.604 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4583 reflections
a = 5.1829 (6) Åθ = 3.1–26.3°
b = 26.328 (4) ŵ = 1.59 mm1
c = 10.2279 (13) ÅT = 180 K
β = 97.892 (7)°Box, blue
V = 1382.4 (3) Å30.15 × 0.1 × 0.01 mm
Z = 2
Data collection top
Bruker APEXII
diffractometer
2382 independent reflections
Radiation source: fine-focus sealed tube1927 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω and φ scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 66
Tmin = 0.552, Tmax = 0.745k = 2231
4056 measured reflectionsl = 012
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.082 w = 1/[σ2(Fo2) + (0.089P)2 + 25.7899P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.254(Δ/σ)max = 0.003
S = 1.20Δρmax = 2.24 e Å3
2382 reflectionsΔρmin = 1.14 e Å3
190 parameters
Crystal data top
[Cu2(C8H7O2)4]V = 1382.4 (3) Å3
Mr = 667.62Z = 2
Monoclinic, P21/cMo Kα radiation
a = 5.1829 (6) ŵ = 1.59 mm1
b = 26.328 (4) ÅT = 180 K
c = 10.2279 (13) Å0.15 × 0.1 × 0.01 mm
β = 97.892 (7)°
Data collection top
Bruker APEXII
diffractometer
2382 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1927 reflections with I > 2σ(I)
Tmin = 0.552, Tmax = 0.745Rint = 0.036
4056 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0820 restraints
wR(F2) = 0.254H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.089P)2 + 25.7899P]
where P = (Fo2 + 2Fc2)/3
2382 reflectionsΔρmax = 2.24 e Å3
190 parametersΔρmin = 1.14 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9678 (18)0.0897 (3)0.4136 (9)0.017 (2)
C20.8188 (19)0.0341 (3)0.7030 (10)0.019 (2)
C110.948 (2)0.1445 (4)0.3711 (10)0.024 (2)
H11A0.83560.1470.28740.028*
H11B1.11950.15670.35820.028*
C120.840 (2)0.1779 (4)0.4725 (10)0.023 (2)
C130.932 (2)0.2267 (4)0.4983 (12)0.033 (3)
H131.06310.23910.45360.04*
C140.833 (3)0.2573 (5)0.5886 (14)0.045 (3)
H140.89910.28980.60540.054*
C150.634 (3)0.2395 (5)0.6546 (12)0.038 (3)
H150.56460.260.7150.046*
C160.542 (2)0.1914 (5)0.6295 (12)0.035 (3)
H160.41090.17910.67450.042*
C170.640 (2)0.1606 (4)0.5389 (12)0.030 (2)
H170.57130.12820.52190.036*
C210.7117 (19)0.0600 (4)0.8179 (9)0.021 (2)
H21A0.5850.08540.78340.025*
H21B0.62270.03490.8650.025*
C220.9225 (19)0.0851 (4)0.9136 (10)0.020 (2)
C231.054 (2)0.1279 (4)0.8743 (10)0.025 (2)
H230.99960.14260.79240.03*
C241.265 (2)0.1486 (4)0.9567 (11)0.032 (3)
H241.35340.17650.92930.038*
C251.340 (2)0.1274 (5)1.0781 (11)0.034 (3)
H251.47920.14141.13320.041*
C261.213 (2)0.0860 (5)1.1204 (11)0.033 (3)
H261.26890.07171.20260.04*
C270.998 (2)0.0652 (4)1.0378 (10)0.026 (2)
H270.90730.0381.06720.031*
O11.1763 (13)0.0758 (2)0.4846 (7)0.0213 (15)
O21.0628 (12)0.0308 (3)0.7092 (6)0.0193 (15)
O31.2268 (13)0.0615 (3)0.6233 (6)0.0206 (15)
O41.3446 (11)0.0181 (2)0.3911 (6)0.0170 (14)
Cu11.2319 (2)0.00810 (4)0.56015 (11)0.0143 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.016 (5)0.023 (5)0.014 (5)0.003 (4)0.008 (4)0.001 (4)
C20.021 (5)0.017 (5)0.021 (5)0.003 (4)0.008 (4)0.001 (4)
C110.023 (5)0.028 (5)0.020 (5)0.001 (4)0.002 (4)0.003 (4)
C120.025 (6)0.024 (5)0.019 (5)0.001 (4)0.002 (4)0.002 (4)
C130.026 (6)0.032 (6)0.040 (7)0.003 (5)0.001 (5)0.004 (5)
C140.049 (8)0.027 (6)0.059 (9)0.004 (6)0.010 (7)0.013 (6)
C150.039 (7)0.040 (7)0.035 (7)0.008 (5)0.004 (6)0.011 (5)
C160.026 (6)0.044 (7)0.035 (7)0.008 (5)0.012 (5)0.004 (5)
C170.027 (6)0.022 (5)0.041 (7)0.003 (4)0.002 (5)0.003 (5)
C210.013 (5)0.040 (6)0.010 (5)0.001 (4)0.003 (4)0.009 (4)
C220.011 (5)0.034 (5)0.016 (5)0.002 (4)0.000 (4)0.008 (4)
C230.023 (5)0.040 (6)0.013 (5)0.000 (4)0.001 (4)0.004 (4)
C240.026 (6)0.037 (6)0.032 (6)0.011 (5)0.001 (5)0.012 (5)
C250.030 (6)0.050 (7)0.021 (6)0.002 (5)0.007 (5)0.016 (5)
C260.035 (7)0.047 (7)0.013 (5)0.005 (5)0.007 (5)0.010 (5)
C270.028 (6)0.036 (6)0.015 (5)0.002 (5)0.008 (5)0.004 (4)
O10.014 (3)0.023 (3)0.027 (4)0.000 (3)0.001 (3)0.001 (3)
O20.006 (3)0.035 (4)0.017 (3)0.002 (3)0.001 (3)0.006 (3)
O30.023 (4)0.025 (4)0.014 (3)0.000 (3)0.002 (3)0.002 (3)
O40.005 (3)0.030 (4)0.016 (3)0.000 (3)0.002 (3)0.005 (3)
Cu10.0114 (6)0.0186 (6)0.0134 (6)0.0004 (4)0.0033 (4)0.0023 (5)
Geometric parameters (Å, º) top
C1—O3i1.267 (11)C21—H21B0.97
C1—O11.270 (12)C22—C271.380 (15)
C1—C111.507 (13)C22—C231.402 (15)
C2—O21.261 (12)C23—C241.397 (14)
C2—O4i1.264 (12)C23—H230.93
C2—C211.527 (13)C24—C251.368 (16)
C11—C121.524 (14)C24—H240.93
C11—H11A0.97C25—C261.371 (17)
C11—H11B0.97C25—H250.93
C12—C131.381 (15)C26—C271.414 (15)
C12—C171.395 (15)C26—H260.93
C13—C141.377 (17)C27—H270.93
C13—H130.93O1—Cu11.948 (7)
C14—C151.388 (19)O2—Cu11.954 (6)
C14—H140.93O3—C1i1.267 (11)
C15—C161.365 (17)O3—Cu11.944 (7)
C15—H150.93O4—C2i1.264 (12)
C16—C171.379 (16)O4—Cu12.021 (6)
C16—H160.93O4—Cu1ii2.199 (6)
C17—H170.93Cu1—O4ii2.199 (6)
C21—C221.515 (13)Cu1—Cu1i2.581 (2)
C21—H21A0.97
O3i—C1—O1125.6 (9)C23—C22—C21120.0 (9)
O3i—C1—C11117.1 (9)C24—C23—C22120.7 (10)
O1—C1—C11117.3 (8)C24—C23—H23119.6
O2—C2—O4i125.3 (9)C22—C23—H23119.6
O2—C2—C21117.4 (9)C25—C24—C23119.3 (11)
O4i—C2—C21117.3 (8)C25—C24—H24120.4
C1—C11—C12111.9 (8)C23—C24—H24120.4
C1—C11—H11A109.2C24—C25—C26121.5 (10)
C12—C11—H11A109.2C24—C25—H25119.3
C1—C11—H11B109.2C26—C25—H25119.3
C12—C11—H11B109.2C25—C26—C27119.4 (10)
H11A—C11—H11B107.9C25—C26—H26120.3
C13—C12—C17118.0 (10)C27—C26—H26120.3
C13—C12—C11121.2 (10)C22—C27—C26120.3 (10)
C17—C12—C11120.7 (9)C22—C27—H27119.9
C14—C13—C12121.5 (11)C26—C27—H27119.9
C14—C13—H13119.3C1—O1—Cu1123.9 (6)
C12—C13—H13119.3C2—O2—Cu1122.4 (6)
C13—C14—C15119.9 (11)C1i—O3—Cu1119.9 (6)
C13—C14—H14120C2i—O4—Cu1121.6 (6)
C15—C14—H14120C2i—O4—Cu1ii139.1 (6)
C16—C15—C14119.0 (11)Cu1—O4—Cu1ii99.3 (3)
C16—C15—H15120.5O3—Cu1—O1170.4 (3)
C14—C15—H15120.5O3—Cu1—O290.1 (3)
C15—C16—C17121.4 (11)O1—Cu1—O288.4 (3)
C15—C16—H16119.3O3—Cu1—O488.9 (3)
C17—C16—H16119.3O1—Cu1—O491.0 (3)
C16—C17—C12120.1 (10)O2—Cu1—O4170.2 (3)
C16—C17—H17119.9O3—Cu1—O4ii95.5 (3)
C12—C17—H17119.9O1—Cu1—O4ii93.9 (3)
C22—C21—C2112.7 (8)O2—Cu1—O4ii109.1 (3)
C22—C21—H21A109.1O4—Cu1—O4ii80.7 (3)
C2—C21—H21A109.1O3—Cu1—Cu1i87.0 (2)
C22—C21—H21B109.1O1—Cu1—Cu1i83.4 (2)
C2—C21—H21B109.1O2—Cu1—Cu1i86.24 (19)
H21A—C21—H21B107.8O4—Cu1—Cu1i83.99 (18)
C27—C22—C23118.8 (9)O4ii—Cu1—Cu1i164.41 (18)
C27—C22—C21121.1 (9)
Symmetry codes: (i) x+2, y, z+1; (ii) x+3, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C8H7O2)4]
Mr667.62
Crystal system, space groupMonoclinic, P21/c
Temperature (K)180
a, b, c (Å)5.1829 (6), 26.328 (4), 10.2279 (13)
β (°) 97.892 (7)
V3)1382.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.59
Crystal size (mm)0.15 × 0.1 × 0.01
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.552, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
4056, 2382, 1927
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.082, 0.254, 1.20
No. of reflections2382
No. of parameters190
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.089P)2 + 25.7899P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.24, 1.14

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012).

 

Acknowledgements

This work was supported by the University of Constantine 1.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCui, Y., Zheng, F. & Huang, J. (1999). Acta Cryst. C55, 1067–1069.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKimura, E. (1994). Prog. Inorg. Chem. 41, 443–491.  CrossRef CAS Web of Science Google Scholar
First citationKong, L.-L., Huo, L.-H., Gao, S. & Zhao, J.-G. (2005a). Acta Cryst. E61, m2485–m2487.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKong, L.-L., Huo, L.-H., Gao, S. & Zhao, J.-G. (2005b). Acta Cryst. E61, m2289–m2290.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStem, M. K., Bashkin, J. K. & Sail, E. D. (1990). J. Am. Chem. Soc. 112, 5357–5359.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds