metal-organic compounds
cis-(1,4,8,11-Tetraazacyclotetradecane-κN4)bis(thiocyanato-κN)chromium(III) thiocyanate
aPohang Accelerator Laboratory, POSTECH, Pohang 790-784, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 760-749, Republic of Korea
*Correspondence e-mail: jhchoi@andong.ac.kr
The 2(cyclam)]NCS (cyclam = 1,4,8,11-tetraazacyclotetradecane, C10H24N4) has been determined by using synchrotron radiation at 98 K. The CrIII atom is in a slightly distorted octahedral environment with four N atoms of the macrocyclic ligand and two N-coordinated NCS− anions in cis positions. The average Cr—N(cyclam) and Cr—NCS bond lengths are 2.085 (5) and 1.996 (15) Å, respectively. In the crystal, the uncoordinating SCN− anion is hydrogen bonded through N—H⋯S and N—H⋯N interactions to neighbouring complex cations.
of [Cr(NCS)Related literature
For the synthesis, see: Ferguson & Tobe (1970); For spectroscopic studies, see: Choi & Park (2003); Poon & Pun (1980). For related structures, see: Forsellini et al. (1986); Friesen et al. (1997); Meyer et al. (1998); Choi et al. (2004a,b, 2009); Subhan et al. (2011).
Experimental
Crystal data
|
Data collection: ADSC Quantum-210 ADX (Arvai & Nielsen, 1983); cell HKL-3000 (Otwinowski & Minor, 1997); data reduction: HKL-3000; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
https://doi.org/10.1107/S1600536813015456/lr2107sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813015456/lr2107Isup2.hkl
The free ligand cyclam was purchased from Stream Chemicals and used as provided. All chemicals were reagent grade materials and used without further purification. The cis-[Cr(cyclam)(NCS)2]SCN was synthesized according to the literature (Ferguson & Tobe, 1970).
Non-hydrogen atoms were refined anisotropically; hydrogen atoms were first located in a difference map; N–H hydrogen atoms were freely refined and C–H hydrogen atoms were constrained to ride on the parent carbon atom, with C–H = 0.98 Å and C–H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for methylene groups.
The cyclam (1,4,8,11-tetraazacyclotetradecane) ligand is moderately flexible structure, and can adopt both planer (trans) and folded (cis) configurations (Poon & Pun, 1980). There are five conformational trans isomers for the cyclam which differ in the
of the sec-NH centers. The trans-I, trans-II and trans-V configurations can fold to form cis-I, cis-II and cis-V isomers, respectively (Subhan et al., 2011). Furthermore, the NCS group is an ambidentate ligand because it can coordinate to a transition metal ion through the nitrogen (M-NCS), or the sulfur (M-SCN), or both (M-NCS-M).In this communication, we report the structure of [Cr(cyclam)(NCS)2]SCN in order to determine the mode of bonding of the thiocyanate group and to verify geometrical assignment made on the basis of spectroscopic measurements (Poon & Pun, 1980; Choi & Park (2003).
Counter anionic species play a very important role in coordination chemistry. This is another example of a cis-[Cr(cyclam)2(NCS)2]+ but with different counter anion (Friesen et al., 1997). The structural analysis shows that there is only one crystallographically independent Cr(III) complex cation where the nitrogen atoms of cyclam ligand occupy four adjacent sites and the two N-bonded NCS groups coordinate to the chromium centre in cis arrangement. The cyclam adopts the folded cis-V configuration with six- and five-membered chelate rings in chair and
conformation, respectively. The same conformational arrangement has been found in cis-[Cr(cyclam)(ONO)2]NO2(Choi et al., 2004a). An ellipsoid plot (50% probability level) of the cis-[Cr(cyclam)(NCS)2]SCN, together with the atomic labelling, is depicted in Fig. 1.The Cr—N(cyclam) distances of 2.0851 (14) and 2.0897 (14) Å are good agreement with the corresponding Cr—N distances found in [Cr(cyclam)(ox)]ClO4 (Choi et al., 2004b), [Cr(cyclam)(acac)](ClO4)2 (Subhan et al. , 2011) and trans-[Cr(cyclam)(nic-O)2]ClO4 (Choi, 2009). The mean Cr-NCS distance of 1.9957 (14) Å is close the value of the range 1.9827 (15)–1.9895 (16) Å found in trans-[Cr(Me2tn)2(NCS)2]SCN, but slightly longer than the 1.9698 (14) Å of Cr-ONO found in cis-[Cr(cyclam)(ONO)2]NO2 (Choi et al., 2004a). The folded angle of 97.11° in the cyclam is comparable to the corresponding angles of 98.55°, 97.03°, 95.09°, 94.51° and 92.8° in [Cr(cyclam)(ox)]ClO4, [Cr(cyclam)(acac)](ClO4)2, cis-[Cr(cyclam)(ONO)2]NO2, cis-[Cr(cyclam)(N3)2]ClO4 and cis-[Cr(cyclam)Cl2]Cl, respectively (Choi et al., 2004b; Subhan et al., 2011; Meyer et al., 1998; Forsellini et al., 1986). As usually observed, the five-membered chelate rings adopt a gauche, and six-membered ring is in the chair conformation. The average bond angles of five- and six-membered chelate rings around chromium(III) are the 83.13 (6) and 90.21 (6)°, respectively. The coordinated isothiocyanate ligands are almost linear with N—C—S angles of 179.69 (17)° and 178.83 (15)°. The uncoordinated NCS- anion also adopts a linear conformation and its N and S atoms participates in hydrogen bonds with the N—H groups of cyclam ligand. The C12—S2 and C13—S4 bond lengths [1.6232 (17) and 1.639 (2) Å] of are slightly shorter than the C11—S3 [1.6082 (17) Å] in the NCS- groups. It seems that the slight elongation of the distances are attributed to the weak H atoms bonds of both S2 and S3 atoms. Table 1 contains the distances and angles of hydrogen bonds. These hydrogen-bonded networks help to stabilize the crystal structure.
For the synthesis, see: Ferguson & Tobe (1970); For spectroscopic studies, see: Choi & Park (2003); Poon & Pun (1980). For related structures, see: Forsellini et al. (1986); Friesen et al. (1997) Meyer et al. (1998); Choi et al. (2004a,b, 2009); Subhan et al. (2011).
Data collection: ADSC Quantum-210 ADX (Arvai & Nielsen, 1983); cell
HKL-3000 (Otwinowski & Minor, 1997); data reduction: HKL-3000 (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: WinGX (Farrugia, 2012).[Cr(NCS)2(C10H24N4)]NCS | F(000) = 89 |
Mr = 426.57 | Dx = 1.469 Mg m−3 |
Monoclinic, P21/c | Synchrotron radiation, λ = 0.740 Å |
a = 10.590 (2) Å | Cell parameters from 39021 reflections |
b = 7.6970 (15) Å | θ = 1.9–33.1° |
c = 23.750 (5) Å | µ = 1.03 mm−1 |
β = 94.70 (3)° | T = 98 K |
V = 1929.4 (7) Å3 | Block, pink |
Z = 4 | 0.01 × 0.01 × 0.01 mm |
ADSC Q210 CCD area-detector diffractometer | 3998 reflections with I > 2σ(I) |
Radiation source: PLSII 2D bending magnet | Rint = 0.038 |
ω scan | θmax = 29.5°, θmin = 2.0° |
Absorption correction: empirical (using intensity measurements) (HKL-3000 SCALEPACK; Otwinowski & Minor, 1997) | h = −14→14 |
Tmin = 0.988, Tmax = 0.989 | k = −10→10 |
16587 measured reflections | l = −31→31 |
4727 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.030 | w = 1/[σ2(Fo2) + (0.0543P)2 + 0.0369P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.085 | (Δ/σ)max = 0.001 |
S = 1.07 | Δρmax = 0.38 e Å−3 |
4727 reflections | Δρmin = −0.46 e Å−3 |
234 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0149 (11) |
[Cr(NCS)2(C10H24N4)]NCS | V = 1929.4 (7) Å3 |
Mr = 426.57 | Z = 4 |
Monoclinic, P21/c | Synchrotron radiation, λ = 0.740 Å |
a = 10.590 (2) Å | µ = 1.03 mm−1 |
b = 7.6970 (15) Å | T = 98 K |
c = 23.750 (5) Å | 0.01 × 0.01 × 0.01 mm |
β = 94.70 (3)° |
ADSC Q210 CCD area-detector diffractometer | 4727 independent reflections |
Absorption correction: empirical (using intensity measurements) (HKL-3000 SCALEPACK; Otwinowski & Minor, 1997) | 3998 reflections with I > 2σ(I) |
Tmin = 0.988, Tmax = 0.989 | Rint = 0.038 |
16587 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.085 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.38 e Å−3 |
4727 reflections | Δρmin = −0.46 e Å−3 |
234 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cr1 | 0.78572 (2) | 0.65230 (3) | 0.13425 (2) | 0.01445 (9) | |
S2 | 0.80594 (3) | 1.01716 (5) | 0.29372 (2) | 0.02043 (10) | |
S3 | 1.17137 (4) | 0.91514 (6) | 0.09132 (2) | 0.03337 (12) | |
N1 | 0.87142 (12) | 0.48585 (16) | 0.19523 (5) | 0.0176 (3) | |
H1N1 | 0.949 (2) | 0.521 (2) | 0.2008 (8) | 0.030 (5)* | |
N2 | 0.60770 (11) | 0.58345 (16) | 0.15912 (5) | 0.0158 (2) | |
H1N2 | 0.5895 (18) | 0.494 (3) | 0.1465 (8) | 0.026 (5)* | |
N3 | 0.80817 (12) | 0.44123 (17) | 0.08083 (5) | 0.0194 (3) | |
H1N3 | 0.7441 (18) | 0.378 (2) | 0.0769 (8) | 0.024 (5)* | |
N4 | 0.67930 (12) | 0.78077 (18) | 0.06965 (5) | 0.0193 (3) | |
H1N4 | 0.6773 (17) | 0.888 (2) | 0.0783 (8) | 0.024 (5)* | |
N5 | 0.95059 (12) | 0.74035 (17) | 0.11200 (5) | 0.0216 (3) | |
N6 | 0.78208 (12) | 0.85015 (16) | 0.18914 (5) | 0.0203 (3) | |
C1 | 0.82134 (14) | 0.4809 (2) | 0.25209 (6) | 0.0199 (3) | |
H1A | 0.8357 | 0.5954 | 0.2705 | 0.024* | |
H1B | 0.8694 | 0.3932 | 0.2756 | 0.024* | |
C2 | 0.68044 (14) | 0.4373 (2) | 0.25004 (6) | 0.0203 (3) | |
H2A | 0.6664 | 0.3245 | 0.2305 | 0.024* | |
H2B | 0.6569 | 0.4225 | 0.2892 | 0.024* | |
C3 | 0.59240 (14) | 0.5705 (2) | 0.22082 (6) | 0.0195 (3) | |
H3A | 0.5037 | 0.5387 | 0.2263 | 0.023* | |
H3B | 0.6094 | 0.6855 | 0.2385 | 0.023* | |
C4 | 0.88174 (15) | 0.30950 (19) | 0.17019 (7) | 0.0224 (3) | |
H4A | 0.8016 | 0.2449 | 0.1728 | 0.027* | |
H4B | 0.9509 | 0.2437 | 0.1911 | 0.027* | |
C5 | 0.90900 (15) | 0.3290 (2) | 0.10901 (7) | 0.0248 (3) | |
H5A | 0.9932 | 0.3830 | 0.1064 | 0.030* | |
H5B | 0.9089 | 0.2138 | 0.0905 | 0.030* | |
C6 | 0.51544 (14) | 0.7103 (2) | 0.13191 (6) | 0.0215 (3) | |
H6A | 0.5239 | 0.8239 | 0.1514 | 0.026* | |
H6B | 0.4278 | 0.6677 | 0.1341 | 0.026* | |
C7 | 0.54392 (14) | 0.7294 (2) | 0.07095 (6) | 0.0228 (3) | |
H7A | 0.5283 | 0.6180 | 0.0507 | 0.027* | |
H7B | 0.4884 | 0.8191 | 0.0521 | 0.027* | |
C8 | 0.83850 (16) | 0.4808 (2) | 0.02215 (6) | 0.0266 (3) | |
H8A | 0.8490 | 0.3703 | 0.0017 | 0.032* | |
H8B | 0.9201 | 0.5441 | 0.0235 | 0.032* | |
C9 | 0.73707 (17) | 0.5890 (2) | −0.01027 (7) | 0.0295 (4) | |
H9A | 0.7568 | 0.5952 | −0.0503 | 0.035* | |
H9B | 0.6548 | 0.5286 | −0.0093 | 0.035* | |
C10 | 0.72283 (16) | 0.7724 (2) | 0.01150 (6) | 0.0257 (3) | |
H10A | 0.8054 | 0.8326 | 0.0114 | 0.031* | |
H10B | 0.6614 | 0.8356 | −0.0147 | 0.031* | |
C11 | 1.04332 (14) | 0.81402 (19) | 0.10314 (6) | 0.0200 (3) | |
C12 | 0.79292 (13) | 0.92117 (18) | 0.23267 (6) | 0.0172 (3) | |
S4 | 0.56857 (4) | 0.72414 (6) | 0.36233 (2) | 0.03051 (12) | |
N7 | 0.37447 (15) | 0.65647 (19) | 0.43301 (7) | 0.0338 (3) | |
C13 | 0.45576 (15) | 0.68218 (19) | 0.40360 (7) | 0.0235 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cr1 | 0.01319 (12) | 0.01531 (13) | 0.01455 (13) | −0.00352 (8) | −0.00060 (8) | 0.00023 (8) |
S2 | 0.01916 (18) | 0.02155 (19) | 0.02016 (19) | −0.00004 (13) | −0.00094 (14) | −0.00355 (14) |
S3 | 0.0250 (2) | 0.0448 (3) | 0.0303 (2) | −0.01871 (19) | 0.00255 (17) | 0.00597 (19) |
N1 | 0.0142 (6) | 0.0178 (6) | 0.0205 (6) | −0.0020 (5) | −0.0012 (5) | 0.0014 (5) |
N2 | 0.0142 (6) | 0.0153 (6) | 0.0176 (6) | −0.0019 (5) | 0.0005 (5) | −0.0001 (5) |
N3 | 0.0170 (6) | 0.0210 (6) | 0.0205 (6) | −0.0036 (5) | 0.0031 (5) | −0.0031 (5) |
N4 | 0.0183 (6) | 0.0204 (6) | 0.0184 (6) | −0.0053 (5) | −0.0028 (5) | 0.0018 (5) |
N5 | 0.0183 (6) | 0.0244 (7) | 0.0218 (6) | −0.0068 (5) | 0.0002 (5) | 0.0017 (5) |
N6 | 0.0216 (6) | 0.0171 (6) | 0.0217 (6) | −0.0036 (5) | −0.0012 (5) | −0.0002 (5) |
C1 | 0.0212 (7) | 0.0209 (7) | 0.0171 (7) | −0.0012 (6) | −0.0019 (6) | 0.0035 (6) |
C2 | 0.0213 (7) | 0.0213 (7) | 0.0183 (7) | −0.0019 (6) | 0.0022 (6) | 0.0036 (6) |
C3 | 0.0176 (7) | 0.0223 (7) | 0.0190 (7) | −0.0020 (6) | 0.0045 (6) | −0.0001 (6) |
C4 | 0.0208 (7) | 0.0177 (7) | 0.0282 (8) | 0.0016 (6) | 0.0000 (6) | 0.0006 (6) |
C5 | 0.0219 (7) | 0.0231 (8) | 0.0298 (8) | 0.0023 (6) | 0.0042 (6) | −0.0043 (6) |
C6 | 0.0154 (7) | 0.0230 (7) | 0.0256 (8) | 0.0005 (6) | −0.0006 (6) | 0.0038 (6) |
C7 | 0.0172 (7) | 0.0275 (8) | 0.0228 (7) | −0.0041 (6) | −0.0045 (6) | 0.0043 (6) |
C8 | 0.0293 (8) | 0.0320 (9) | 0.0195 (7) | −0.0042 (7) | 0.0077 (6) | −0.0062 (6) |
C9 | 0.0340 (9) | 0.0378 (9) | 0.0167 (7) | −0.0073 (8) | 0.0013 (7) | −0.0040 (7) |
C10 | 0.0284 (8) | 0.0323 (9) | 0.0160 (7) | −0.0071 (7) | −0.0006 (6) | 0.0049 (6) |
C11 | 0.0211 (7) | 0.0234 (7) | 0.0150 (7) | −0.0028 (6) | −0.0019 (6) | 0.0004 (6) |
C12 | 0.0146 (6) | 0.0146 (6) | 0.0218 (7) | −0.0024 (5) | −0.0017 (6) | 0.0028 (5) |
S4 | 0.0347 (2) | 0.0333 (2) | 0.0235 (2) | 0.01233 (18) | 0.00211 (17) | 0.00132 (17) |
N7 | 0.0297 (8) | 0.0263 (7) | 0.0453 (9) | 0.0070 (6) | 0.0013 (7) | 0.0027 (6) |
C13 | 0.0260 (8) | 0.0160 (7) | 0.0267 (8) | 0.0081 (6) | −0.0087 (7) | −0.0027 (6) |
Cr1—N5 | 1.9846 (13) | C2—C3 | 1.515 (2) |
Cr1—N6 | 2.0071 (13) | C2—H2A | 0.9900 |
Cr1—N4 | 2.0781 (14) | C2—H2B | 0.9900 |
Cr1—N1 | 2.0849 (13) | C3—H3A | 0.9900 |
Cr1—N3 | 2.0868 (13) | C3—H3B | 0.9900 |
Cr1—N2 | 2.0895 (13) | C4—C5 | 1.512 (2) |
S2—C12 | 1.6231 (15) | C4—H4A | 0.9900 |
S3—C11 | 1.6081 (16) | C4—H4B | 0.9900 |
N1—C4 | 1.4895 (19) | C5—H5A | 0.9900 |
N1—C1 | 1.4913 (19) | C5—H5B | 0.9900 |
N1—H1N1 | 0.86 (2) | C6—C7 | 1.510 (2) |
N2—C6 | 1.4904 (19) | C6—H6A | 0.9900 |
N2—C3 | 1.4909 (18) | C6—H6B | 0.9900 |
N2—H1N2 | 0.77 (2) | C7—H7A | 0.9900 |
N3—C8 | 1.4871 (19) | C7—H7B | 0.9900 |
N3—C5 | 1.489 (2) | C8—C9 | 1.518 (2) |
N3—H1N3 | 0.834 (19) | C8—H8A | 0.9900 |
N4—C7 | 1.4901 (19) | C8—H8B | 0.9900 |
N4—C10 | 1.4928 (19) | C9—C10 | 1.515 (2) |
N4—H1N4 | 0.851 (19) | C9—H9A | 0.9900 |
N5—C11 | 1.168 (2) | C9—H9B | 0.9900 |
N6—C12 | 1.1666 (19) | C10—H10A | 0.9900 |
C1—C2 | 1.526 (2) | C10—H10B | 0.9900 |
C1—H1A | 0.9900 | S4—C13 | 1.6384 (19) |
C1—H1B | 0.9900 | N7—C13 | 1.169 (2) |
N5—Cr1—N6 | 88.74 (6) | H2A—C2—H2B | 107.5 |
N5—Cr1—N4 | 94.39 (5) | N2—C3—C2 | 112.52 (12) |
N6—Cr1—N4 | 94.61 (6) | N2—C3—H3A | 109.1 |
N5—Cr1—N1 | 93.01 (5) | C2—C3—H3A | 109.1 |
N6—Cr1—N1 | 92.61 (5) | N2—C3—H3B | 109.1 |
N4—Cr1—N1 | 169.77 (5) | C2—C3—H3B | 109.1 |
N5—Cr1—N3 | 87.56 (6) | H3A—C3—H3B | 107.8 |
N6—Cr1—N3 | 174.14 (5) | N1—C4—C5 | 108.61 (12) |
N4—Cr1—N3 | 90.20 (5) | N1—C4—H4A | 110.0 |
N1—Cr1—N3 | 83.06 (5) | C5—C4—H4A | 110.0 |
N5—Cr1—N2 | 174.70 (5) | N1—C4—H4B | 110.0 |
N6—Cr1—N2 | 86.73 (5) | C5—C4—H4B | 110.0 |
N4—Cr1—N2 | 83.23 (5) | H4A—C4—H4B | 108.3 |
N1—Cr1—N2 | 89.96 (5) | N3—C5—C4 | 107.65 (12) |
N3—Cr1—N2 | 97.17 (5) | N3—C5—H5A | 110.2 |
C4—N1—C1 | 112.42 (11) | C4—C5—H5A | 110.2 |
C4—N1—Cr1 | 108.95 (9) | N3—C5—H5B | 110.2 |
C1—N1—Cr1 | 118.54 (9) | C4—C5—H5B | 110.2 |
C4—N1—H1N1 | 104.3 (13) | H5A—C5—H5B | 108.5 |
C1—N1—H1N1 | 105.8 (13) | N2—C6—C7 | 107.70 (12) |
Cr1—N1—H1N1 | 105.6 (13) | N2—C6—H6A | 110.2 |
C6—N2—C3 | 110.46 (12) | C7—C6—H6A | 110.2 |
C6—N2—Cr1 | 106.62 (9) | N2—C6—H6B | 110.2 |
C3—N2—Cr1 | 117.91 (9) | C7—C6—H6B | 110.2 |
C6—N2—H1N2 | 106.5 (14) | H6A—C6—H6B | 108.5 |
C3—N2—H1N2 | 106.1 (14) | N4—C7—C6 | 108.29 (12) |
Cr1—N2—H1N2 | 108.7 (14) | N4—C7—H7A | 110.0 |
C8—N3—C5 | 109.76 (12) | C6—C7—H7A | 110.0 |
C8—N3—Cr1 | 117.03 (10) | N4—C7—H7B | 110.0 |
C5—N3—Cr1 | 106.96 (10) | C6—C7—H7B | 110.0 |
C8—N3—H1N3 | 104.5 (13) | H7A—C7—H7B | 108.4 |
C5—N3—H1N3 | 105.0 (12) | N3—C8—C9 | 112.93 (13) |
Cr1—N3—H1N3 | 113.0 (13) | N3—C8—H8A | 109.0 |
C7—N4—C10 | 112.23 (12) | C9—C8—H8A | 109.0 |
C7—N4—Cr1 | 108.83 (9) | N3—C8—H8B | 109.0 |
C10—N4—Cr1 | 118.20 (10) | C9—C8—H8B | 109.0 |
C7—N4—H1N4 | 102.1 (12) | H8A—C8—H8B | 107.8 |
C10—N4—H1N4 | 106.4 (12) | C10—C9—C8 | 115.10 (13) |
Cr1—N4—H1N4 | 107.8 (12) | C10—C9—H9A | 108.5 |
C11—N5—Cr1 | 170.02 (13) | C8—C9—H9A | 108.5 |
C12—N6—Cr1 | 157.72 (12) | C10—C9—H9B | 108.5 |
N1—C1—C2 | 113.34 (12) | C8—C9—H9B | 108.5 |
N1—C1—H1A | 108.9 | H9A—C9—H9B | 107.5 |
C2—C1—H1A | 108.9 | N4—C10—C9 | 113.77 (13) |
N1—C1—H1B | 108.9 | N4—C10—H10A | 108.8 |
C2—C1—H1B | 108.9 | C9—C10—H10A | 108.8 |
H1A—C1—H1B | 107.7 | N4—C10—H10B | 108.8 |
C3—C2—C1 | 115.42 (12) | C9—C10—H10B | 108.8 |
C3—C2—H2A | 108.4 | H10A—C10—H10B | 107.7 |
C1—C2—H2A | 108.4 | N5—C11—S3 | 179.66 (15) |
C3—C2—H2B | 108.4 | N6—C12—S2 | 178.82 (14) |
C1—C2—H2B | 108.4 | N7—C13—S4 | 178.35 (14) |
C4—N1—C1—C2 | −72.13 (15) | C3—N2—C6—C7 | 174.88 (12) |
Cr1—N1—C1—C2 | 56.50 (15) | Cr1—N2—C6—C7 | 45.63 (13) |
N1—C1—C2—C3 | −64.97 (17) | C10—N4—C7—C6 | 169.85 (13) |
C6—N2—C3—C2 | 177.56 (12) | Cr1—N4—C7—C6 | 37.10 (15) |
Cr1—N2—C3—C2 | −59.54 (15) | N2—C6—C7—N4 | −55.65 (16) |
C1—C2—C3—N2 | 66.51 (17) | C5—N3—C8—C9 | 177.66 (13) |
C1—N1—C4—C5 | 169.43 (12) | Cr1—N3—C8—C9 | −60.26 (16) |
Cr1—N1—C4—C5 | 35.94 (14) | N3—C8—C9—C10 | 66.73 (19) |
C8—N3—C5—C4 | 173.69 (12) | C7—N4—C10—C9 | −71.42 (17) |
Cr1—N3—C5—C4 | 45.79 (14) | Cr1—N4—C10—C9 | 56.52 (16) |
N1—C4—C5—N3 | −54.89 (16) | C8—C9—C10—N4 | −64.47 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···S2i | 0.86 (2) | 2.59 (2) | 3.4138 (15) | 160.1 (17) |
N2—H1N2···S4ii | 0.77 (2) | 2.66 (2) | 3.3521 (14) | 149.8 (18) |
N3—H1N3···N7ii | 0.834 (19) | 2.119 (19) | 2.9238 (19) | 162.0 (17) |
N4—H1N4···N7iii | 0.851 (19) | 2.150 (19) | 2.947 (2) | 155.9 (17) |
Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+1, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cr(NCS)2(C10H24N4)]NCS |
Mr | 426.57 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 98 |
a, b, c (Å) | 10.590 (2), 7.6970 (15), 23.750 (5) |
β (°) | 94.70 (3) |
V (Å3) | 1929.4 (7) |
Z | 4 |
Radiation type | Synchrotron, λ = 0.740 Å |
µ (mm−1) | 1.03 |
Crystal size (mm) | 0.01 × 0.01 × 0.01 |
Data collection | |
Diffractometer | ADSC Q210 CCD area-detector |
Absorption correction | Empirical (using intensity measurements) (HKL-3000 SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.988, 0.989 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16587, 4727, 3998 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.665 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.085, 1.07 |
No. of reflections | 4727 |
No. of parameters | 234 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.38, −0.46 |
Computer programs: ADSC Quantum-210 ADX (Arvai & Nielsen, 1983), HKL-3000 (Otwinowski & Minor, 1997), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), DIAMOND (Brandenburg, 2007), WinGX (Farrugia, 2012).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···S2i | 0.86 (2) | 2.59 (2) | 3.4138 (15) | 160.1 (17) |
N2—H1N2···S4ii | 0.77 (2) | 2.66 (2) | 3.3521 (14) | 149.8 (18) |
N3—H1N3···N7ii | 0.834 (19) | 2.119 (19) | 2.9238 (19) | 162.0 (17) |
N4—H1N4···N7iii | 0.851 (19) | 2.150 (19) | 2.947 (2) | 155.9 (17) |
Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+1, y+1/2, −z+1/2. |
Acknowledgements
The research was supported by a grant from the 2012 International Academic Exchange Program of Andong National University. The experiment at PLS-II 2D-SMC beamline was supported in part by MEST and POSTECH.
References
Arvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA. Google Scholar
Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Choi, J. H. (2009). Inorg. Chim. Acta, 362, 4231–4236. Web of Science CSD CrossRef CAS Google Scholar
Choi, J.-H., Oh, I.-G., Lim, W.-T. & Park, K.-M. (2004a). Acta Cryst. C60, m238–m240. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Choi, J. H., Oh, I. G., Suzuki, T. & Kaizaki, S. (2004b). J. Mol. Struct. 694, 39–44. Web of Science CSD CrossRef CAS Google Scholar
Choi, J. H. & Park, Y. U. (2003). Bull. Korean Chem. Soc. 24, 384–388. CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ferguson, J. & Tobe, M. L. (1970). Inorg. Chim. Acta 4, 109–112. CrossRef CAS Google Scholar
Forsellini, E., Parasassi, T., Bombieri, G., Tobe, M. L. & Sosa, M. E. (1986). Acta Cryst. C42, 563–565. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Friesen, D. A., Quail, J. W., Waltz, W. L. & Nashiem, R. E. (1997). Acta Cryst. C53, 687–691. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Meyer, K., Bendix, J., Bill, E., Weyhermüller, T. & Weighardt, K. (1998). Inorg. Chem. 37, 5180–5188. Web of Science CSD CrossRef CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Poon, C. K. & Pun, K. C. (1980). Inorg. Chem. 19, 568–569. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Subhan, M. A., Choi, J. H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193-2197. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The cyclam (1,4,8,11-tetraazacyclotetradecane) ligand is moderately flexible structure, and can adopt both planer (trans) and folded (cis) configurations (Poon & Pun, 1980). There are five conformational trans isomers for the cyclam which differ in the chirality of the sec-NH centers. The trans-I, trans-II and trans-V configurations can fold to form cis-I, cis-II and cis-V isomers, respectively (Subhan et al., 2011). Furthermore, the NCS group is an ambidentate ligand because it can coordinate to a transition metal ion through the nitrogen (M-NCS), or the sulfur (M-SCN), or both (M-NCS-M).
In this communication, we report the structure of [Cr(cyclam)(NCS)2]SCN in order to determine the mode of bonding of the thiocyanate group and to verify geometrical assignment made on the basis of spectroscopic measurements (Poon & Pun, 1980; Choi & Park (2003).
Counter anionic species play a very important role in coordination chemistry. This is another example of a cis-[Cr(cyclam)2(NCS)2]+ but with different counter anion (Friesen et al., 1997). The structural analysis shows that there is only one crystallographically independent Cr(III) complex cation where the nitrogen atoms of cyclam ligand occupy four adjacent sites and the two N-bonded NCS groups coordinate to the chromium centre in cis arrangement. The cyclam adopts the folded cis-V configuration with six- and five-membered chelate rings in chair and gauche conformation, respectively. The same conformational arrangement has been found in cis-[Cr(cyclam)(ONO)2]NO2(Choi et al., 2004a). An ellipsoid plot (50% probability level) of the cis-[Cr(cyclam)(NCS)2]SCN, together with the atomic labelling, is depicted in Fig. 1.
The Cr—N(cyclam) distances of 2.0851 (14) and 2.0897 (14) Å are good agreement with the corresponding Cr—N distances found in [Cr(cyclam)(ox)]ClO4 (Choi et al., 2004b), [Cr(cyclam)(acac)](ClO4)2 (Subhan et al. , 2011) and trans-[Cr(cyclam)(nic-O)2]ClO4 (Choi, 2009). The mean Cr-NCS distance of 1.9957 (14) Å is close the value of the range 1.9827 (15)–1.9895 (16) Å found in trans-[Cr(Me2tn)2(NCS)2]SCN, but slightly longer than the 1.9698 (14) Å of Cr-ONO found in cis-[Cr(cyclam)(ONO)2]NO2 (Choi et al., 2004a). The folded angle of 97.11° in the cyclam is comparable to the corresponding angles of 98.55°, 97.03°, 95.09°, 94.51° and 92.8° in [Cr(cyclam)(ox)]ClO4, [Cr(cyclam)(acac)](ClO4)2, cis-[Cr(cyclam)(ONO)2]NO2, cis-[Cr(cyclam)(N3)2]ClO4 and cis-[Cr(cyclam)Cl2]Cl, respectively (Choi et al., 2004b; Subhan et al., 2011; Meyer et al., 1998; Forsellini et al., 1986). As usually observed, the five-membered chelate rings adopt a gauche, and six-membered ring is in the chair conformation. The average bond angles of five- and six-membered chelate rings around chromium(III) are the 83.13 (6) and 90.21 (6)°, respectively. The coordinated isothiocyanate ligands are almost linear with N—C—S angles of 179.69 (17)° and 178.83 (15)°. The uncoordinated NCS- anion also adopts a linear conformation and its N and S atoms participates in hydrogen bonds with the N—H groups of cyclam ligand. The C12—S2 and C13—S4 bond lengths [1.6232 (17) and 1.639 (2) Å] of are slightly shorter than the C11—S3 [1.6082 (17) Å] in the NCS- groups. It seems that the slight elongation of the distances are attributed to the weak H atoms bonds of both S2 and S3 atoms. Table 1 contains the distances and angles of hydrogen bonds. These hydrogen-bonded networks help to stabilize the crystal structure.