organic compounds
{2-[(1,3-Benzothiazol-2-yl)methoxy]-5-chlorophenyl}(4-chlorophenyl)methanone
aDepartment of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa, and bEquipe Chimie du Solide et Matériaux, UMR 6226 Institut des Sciences, Université de Rennes 1, Campus de Beaulieu, Avenue du Général Leclerc, 35042 Rennes cedex, France
*Correspondence e-mail: katharigattav@dut.ac.za, nksusa@gmail.com
In the title compound, C21H13Cl2NO2S, the benzothiazole ring makes dihedral angles of 0.94 (1) and 70.65 (5)° with the 4-chlorophenylmethanone unit and the 5-chlorophenyl ring, respectively. The dihedral angle between the 4-chlorophenylmethanone unit and the 5-chlorophenyl ring is 66.20 (5)°. The consists of dimeric units generated by C—H⋯N hydrogen bonds, further linked by C—H⋯O and C—H⋯π interactions, leading to a three-dimensional network.
Related literature
For crystal structures of benzothiazole derivatives, see: Venugopala et al. (2012); Nayak et al. (2013). For background to the applications of benzothiazole derivatives, see: Rana et al. (2007); Saeed et al. (2010); Kelarev et al. (2003); Telvekar et al. (2012).
Experimental
Crystal data
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).
Supporting information
https://doi.org/10.1107/S1600536813016243/lx2286sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813016243/lx2286Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536813016243/lx2286Isup3.cml
A mixture of (2-chloromethyl)benzo[d]thiazole (1 mmol) and (5-chloro-2-hydroxyphenyl)(4-chlorophenyl)methanone (1 mmol) and in dry THF, dry potassium carbonate (1 mmol) was added and stirred at room temperature. The reaction mixture was added and the reaction mixture was stirred at room temperature for 14 h. The reaction mixture was concentrated to remove the solvent, diluted with ethyl acetate, washed with water, brine solution and dried over anhydrous sodium sulfate. The organic layer was concentrated to yield a residue which was purified by
using ethyl acetate and n-hexane as (7:3, Rf = 0.73) to afford the product in 83% as a brown solid (m. p. 448 (2) K). Suitable crystals for single-crystal X-ray study were obtained from dichloromethane solvent using slow evaporation technique at room temperature.All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 Å for aryl and 0.99 Å for methylene H atoms. Uiso(H) = 1.2Ueq(C) for aryl and methylene H atoms.
Substituted benzothiazole derivatives have been reported to exhibit various pharmacological properties such as analgesic, antibacterial, antifungal, antidepressant, antitumor, antihypertensive, anthelmintic, and herbicidal activity (Kelarev et al. (2003)). However, the variety of biological and structural features of new benzothiazole derivatives is of great scientific interest (Rana et al. (2007); Telvekar et al. (2012); Saeed et al. (2010) and Nayak et al. (2013)). In continuation of our interest on such molecules (Venugopala et al. (2012)) here, we report the single-crystal structure of the title compound.
In the title molecule (Fig. 1), the benzothiazole ring makes dihedral angles of 0.94 (1)° and 70.65 (5)° with the 4-chlorophenylmethanone unit and the 5-chlorophenyl ring, respectively. The dihedral angle between the 4-chlorophenylmethanone unit and the 5-chlorophenyl ring is 66.20 (5)°. The π interactions, which lead to a three-dimensional network (Table 1 and Fig. 2, Cg is the centroid of the S1/C1/C6/N1/C7 thiazole ring). The consists of dimeric units generated by C–H···N hydrogen bonds, further linked by C–H···O and C–H···π interactions, which lead to a three-dimensional network (Table 1 and Fig. 2).
consists of dimeric units generated by C–H···N hydrogen bonds, further linked by C–H···O and C–H···For crystal structures of benzothiazole derivatives, see: Venugopala et al. (2012); Nayak et al. (2013). For background to the applications of benzothiazole derivatives, see: Rana et al. (2007); Saeed et al. (2010); Kelarev et al. (2003); Telvekar et al. (2012).
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius. | |
Fig. 2. A view of the C–H···N, C–H..O and C–H···π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i)x-1/2,-y+3/2,z-1/2; (ii)-x+1,-y+1,-z+1; (iii)x,y-1, z] |
C21H13Cl2NO2S | F(000) = 848 |
Mr = 414.29 | Dx = 1.498 Mg m−3 |
Monoclinic, P21/n | Melting point: 448(2) K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.7107 Å |
a = 13.6452 (4) Å | Cell parameters from 340 reflections |
b = 7.47005 (19) Å | θ = 1.0–28.0° |
c = 18.7286 (6) Å | µ = 0.48 mm−1 |
β = 105.772 (3)° | T = 292 K |
V = 1837.14 (9) Å3 | Plate, colourless |
Z = 4 | 0.23 × 0.21 × 0.14 mm |
Oxford Diffraction Xcalibur (Eos, Nova) diffractometer | 3602 independent reflections |
Radiation source: Mova (Mo) X-ray Source | 2544 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.047 |
Detector resolution: 16.0839 pixels mm-1 | θmax = 26.0°, θmin = 3.0° |
ω scans | h = −16→16 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | k = −9→9 |
Tmin = 0.897, Tmax = 0.935 | l = −23→22 |
18937 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0429P)2 + 0.3056P] where P = (Fo2 + 2Fc2)/3 |
3602 reflections | (Δ/σ)max = 0.001 |
241 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
C21H13Cl2NO2S | V = 1837.14 (9) Å3 |
Mr = 414.29 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 13.6452 (4) Å | µ = 0.48 mm−1 |
b = 7.47005 (19) Å | T = 292 K |
c = 18.7286 (6) Å | 0.23 × 0.21 × 0.14 mm |
β = 105.772 (3)° |
Oxford Diffraction Xcalibur (Eos, Nova) diffractometer | 3602 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 2544 reflections with I > 2σ(I) |
Tmin = 0.897, Tmax = 0.935 | Rint = 0.047 |
18937 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.24 e Å−3 |
3602 reflections | Δρmin = −0.29 e Å−3 |
241 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.03821 (5) | 0.35913 (10) | 0.66313 (5) | 0.0683 (2) | |
Cl2 | 0.27764 (6) | 0.15904 (12) | 0.68234 (5) | 0.0776 (3) | |
S1 | 0.41607 (5) | 0.64525 (9) | 0.62033 (3) | 0.0465 (2) | |
O1 | 0.61507 (12) | 0.6008 (2) | 0.61055 (9) | 0.0449 (4) | |
O2 | 0.75637 (13) | 0.4439 (3) | 0.80903 (9) | 0.0571 (5) | |
N1 | 0.39772 (14) | 0.8383 (2) | 0.50261 (9) | 0.0357 (4) | |
C1 | 0.29751 (17) | 0.7360 (3) | 0.57862 (12) | 0.0384 (5) | |
C2 | 0.20652 (19) | 0.7169 (3) | 0.59779 (13) | 0.0496 (7) | |
H2 | 0.2033 | 0.6494 | 0.6388 | 0.060* | |
C3 | 0.12177 (14) | 0.8006 (3) | 0.55448 (11) | 0.0551 (7) | |
H3 | 0.0600 | 0.7892 | 0.5661 | 0.066* | |
C4 | 0.12656 (14) | 0.9025 (3) | 0.49327 (11) | 0.0524 (7) | |
H4 | 0.0681 | 0.9592 | 0.4652 | 0.063* | |
C5 | 0.21558 (18) | 0.9210 (3) | 0.47357 (12) | 0.0433 (6) | |
H5 | 0.2179 | 0.9891 | 0.4325 | 0.052* | |
C6 | 0.30286 (17) | 0.8354 (3) | 0.51649 (11) | 0.0344 (5) | |
C7 | 0.46196 (17) | 0.7448 (3) | 0.55169 (11) | 0.0335 (5) | |
C8 | 0.56983 (17) | 0.7178 (3) | 0.55111 (12) | 0.0410 (6) | |
H8A | 0.5729 | 0.6658 | 0.5043 | 0.049* | |
H8B | 0.6056 | 0.8315 | 0.5574 | 0.049* | |
C9 | 0.71332 (16) | 0.5456 (3) | 0.61952 (12) | 0.0359 (5) | |
C10 | 0.76869 (18) | 0.5827 (3) | 0.56916 (13) | 0.0423 (6) | |
H10 | 0.7387 | 0.6468 | 0.5262 | 0.051* | |
C11 | 0.86790 (19) | 0.5250 (3) | 0.58258 (14) | 0.0476 (6) | |
H11 | 0.9046 | 0.5490 | 0.5485 | 0.057* | |
C12 | 0.91267 (17) | 0.4315 (3) | 0.64669 (15) | 0.0455 (6) | |
C13 | 0.85941 (17) | 0.3962 (3) | 0.69754 (13) | 0.0406 (6) | |
H13 | 0.8910 | 0.3356 | 0.7411 | 0.049* | |
C14 | 0.75846 (16) | 0.4504 (3) | 0.68441 (12) | 0.0352 (5) | |
C15 | 0.70758 (17) | 0.4179 (3) | 0.74501 (13) | 0.0364 (5) | |
C16 | 0.60070 (17) | 0.3519 (3) | 0.72806 (11) | 0.0328 (5) | |
C17 | 0.55910 (17) | 0.2434 (3) | 0.66717 (12) | 0.0375 (5) | |
H17 | 0.5975 | 0.2137 | 0.6348 | 0.045* | |
C18 | 0.46132 (18) | 0.1796 (3) | 0.65457 (13) | 0.0413 (6) | |
H18 | 0.4343 | 0.1034 | 0.6148 | 0.050* | |
C19 | 0.40357 (17) | 0.2297 (3) | 0.70148 (13) | 0.0426 (6) | |
C20 | 0.44320 (18) | 0.3374 (3) | 0.76184 (13) | 0.0435 (6) | |
H20 | 0.4035 | 0.3705 | 0.7929 | 0.052* | |
C21 | 0.54231 (18) | 0.3957 (3) | 0.77580 (12) | 0.0388 (6) | |
H21 | 0.5704 | 0.4650 | 0.8176 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0348 (4) | 0.0681 (5) | 0.1045 (6) | 0.0057 (3) | 0.0233 (4) | −0.0048 (4) |
Cl2 | 0.0439 (5) | 0.0873 (6) | 0.1010 (6) | −0.0192 (4) | 0.0186 (4) | −0.0089 (5) |
S1 | 0.0465 (4) | 0.0513 (4) | 0.0448 (4) | 0.0111 (3) | 0.0174 (3) | 0.0183 (3) |
O1 | 0.0344 (9) | 0.0520 (10) | 0.0520 (10) | 0.0117 (8) | 0.0180 (8) | 0.0215 (8) |
O2 | 0.0495 (11) | 0.0790 (14) | 0.0378 (10) | −0.0129 (10) | 0.0032 (9) | −0.0004 (9) |
N1 | 0.0373 (11) | 0.0370 (11) | 0.0321 (10) | 0.0027 (8) | 0.0084 (9) | 0.0035 (8) |
C1 | 0.0397 (14) | 0.0370 (13) | 0.0398 (13) | 0.0046 (10) | 0.0131 (11) | 0.0034 (10) |
C2 | 0.0507 (17) | 0.0545 (16) | 0.0502 (15) | 0.0031 (13) | 0.0245 (13) | 0.0062 (13) |
C3 | 0.0427 (16) | 0.0652 (18) | 0.0626 (18) | 0.0036 (13) | 0.0231 (14) | 0.0006 (14) |
C4 | 0.0386 (15) | 0.0629 (18) | 0.0525 (16) | 0.0123 (13) | 0.0068 (13) | 0.0026 (13) |
C5 | 0.0421 (15) | 0.0465 (14) | 0.0390 (14) | 0.0040 (11) | 0.0068 (12) | 0.0054 (11) |
C6 | 0.0379 (14) | 0.0325 (12) | 0.0327 (12) | −0.0002 (10) | 0.0093 (11) | −0.0035 (10) |
C7 | 0.0366 (13) | 0.0302 (12) | 0.0340 (12) | 0.0004 (10) | 0.0102 (10) | 0.0004 (10) |
C8 | 0.0385 (14) | 0.0431 (14) | 0.0422 (14) | 0.0059 (11) | 0.0123 (11) | 0.0114 (11) |
C9 | 0.0321 (13) | 0.0318 (12) | 0.0454 (14) | 0.0011 (10) | 0.0131 (11) | −0.0007 (10) |
C10 | 0.0433 (15) | 0.0406 (14) | 0.0468 (14) | −0.0005 (11) | 0.0187 (12) | 0.0018 (11) |
C11 | 0.0454 (15) | 0.0439 (15) | 0.0608 (16) | −0.0051 (12) | 0.0270 (13) | −0.0046 (13) |
C12 | 0.0309 (13) | 0.0403 (14) | 0.0673 (17) | −0.0023 (11) | 0.0166 (13) | −0.0105 (13) |
C13 | 0.0348 (14) | 0.0359 (13) | 0.0487 (14) | 0.0006 (10) | 0.0073 (12) | −0.0020 (11) |
C14 | 0.0320 (13) | 0.0300 (12) | 0.0433 (13) | −0.0014 (10) | 0.0100 (11) | −0.0038 (10) |
C15 | 0.0376 (14) | 0.0318 (12) | 0.0377 (14) | 0.0040 (10) | 0.0066 (11) | 0.0034 (10) |
C16 | 0.0354 (13) | 0.0303 (12) | 0.0313 (12) | 0.0020 (10) | 0.0065 (10) | 0.0043 (9) |
C17 | 0.0453 (15) | 0.0316 (13) | 0.0371 (13) | 0.0047 (11) | 0.0136 (11) | 0.0012 (10) |
C18 | 0.0437 (15) | 0.0339 (13) | 0.0440 (14) | −0.0028 (11) | 0.0078 (12) | −0.0039 (10) |
C19 | 0.0327 (13) | 0.0417 (14) | 0.0516 (15) | −0.0038 (11) | 0.0083 (12) | 0.0077 (12) |
C20 | 0.0440 (15) | 0.0500 (15) | 0.0406 (14) | 0.0002 (12) | 0.0184 (12) | 0.0038 (11) |
C21 | 0.0452 (15) | 0.0412 (14) | 0.0295 (12) | −0.0018 (11) | 0.0094 (11) | −0.0014 (10) |
Cl1—C12 | 1.742 (2) | C9—C10 | 1.387 (3) |
Cl2—C19 | 1.739 (2) | C9—C14 | 1.398 (3) |
S1—C1 | 1.732 (2) | C10—C11 | 1.377 (3) |
S1—C7 | 1.742 (2) | C10—H10 | 0.9300 |
O1—C9 | 1.369 (2) | C11—C12 | 1.380 (3) |
O1—C8 | 1.418 (3) | C11—H11 | 0.9300 |
O2—C15 | 1.218 (3) | C12—C13 | 1.372 (3) |
N1—C7 | 1.290 (3) | C13—C14 | 1.392 (3) |
N1—C6 | 1.388 (3) | C13—H13 | 0.9300 |
C1—C2 | 1.390 (3) | C14—C15 | 1.502 (3) |
C1—C6 | 1.399 (3) | C15—C16 | 1.490 (3) |
C2—C3 | 1.370 (3) | C16—C17 | 1.389 (3) |
C2—H2 | 0.9300 | C16—C21 | 1.389 (3) |
C3—C4 | 1.3923 | C17—C18 | 1.375 (3) |
C3—H3 | 0.9300 | C17—H17 | 0.9300 |
C4—C5 | 1.369 (3) | C18—C19 | 1.382 (3) |
C4—H4 | 0.9300 | C18—H18 | 0.9300 |
C5—C6 | 1.398 (3) | C19—C20 | 1.373 (3) |
C5—H5 | 0.9300 | C20—C21 | 1.376 (3) |
C7—C8 | 1.489 (3) | C20—H20 | 0.9300 |
C8—H8A | 0.9700 | C21—H21 | 0.9300 |
C8—H8B | 0.9700 | ||
C1—S1—C7 | 88.81 (11) | C9—C10—H10 | 119.9 |
C9—O1—C8 | 119.01 (16) | C10—C11—C12 | 119.9 (2) |
C7—N1—C6 | 110.21 (18) | C10—C11—H11 | 120.1 |
C2—C1—C6 | 121.4 (2) | C12—C11—H11 | 120.1 |
C2—C1—S1 | 129.33 (18) | C13—C12—C11 | 120.6 (2) |
C6—C1—S1 | 109.22 (17) | C13—C12—Cl1 | 119.9 (2) |
C3—C2—C1 | 118.0 (2) | C11—C12—Cl1 | 119.50 (19) |
C3—C2—H2 | 121.0 | C12—C13—C14 | 120.5 (2) |
C1—C2—H2 | 121.0 | C12—C13—H13 | 119.8 |
C2—C3—C4 | 121.07 (13) | C14—C13—H13 | 119.8 |
C2—C3—H3 | 119.5 | C13—C14—C9 | 118.9 (2) |
C4—C3—H3 | 119.5 | C13—C14—C15 | 117.2 (2) |
C5—C4—C3 | 121.37 (13) | C9—C14—C15 | 123.62 (19) |
C5—C4—H4 | 119.3 | O2—C15—C16 | 120.2 (2) |
C3—C4—H4 | 119.3 | O2—C15—C14 | 118.5 (2) |
C4—C5—C6 | 118.6 (2) | C16—C15—C14 | 121.3 (2) |
C4—C5—H5 | 120.7 | C17—C16—C21 | 119.2 (2) |
C6—C5—H5 | 120.7 | C17—C16—C15 | 121.8 (2) |
N1—C6—C5 | 125.3 (2) | C21—C16—C15 | 119.0 (2) |
N1—C6—C1 | 115.25 (19) | C18—C17—C16 | 120.3 (2) |
C5—C6—C1 | 119.5 (2) | C18—C17—H17 | 119.9 |
N1—C7—C8 | 123.36 (19) | C16—C17—H17 | 119.9 |
N1—C7—S1 | 116.50 (17) | C17—C18—C19 | 119.4 (2) |
C8—C7—S1 | 120.13 (16) | C17—C18—H18 | 120.3 |
O1—C8—C7 | 107.34 (17) | C19—C18—H18 | 120.3 |
O1—C8—H8A | 110.2 | C20—C19—C18 | 121.1 (2) |
C7—C8—H8A | 110.2 | C20—C19—Cl2 | 119.58 (19) |
O1—C8—H8B | 110.2 | C18—C19—Cl2 | 119.27 (19) |
C7—C8—H8B | 110.2 | C19—C20—C21 | 119.3 (2) |
H8A—C8—H8B | 108.5 | C19—C20—H20 | 120.4 |
O1—C9—C10 | 123.5 (2) | C21—C20—H20 | 120.4 |
O1—C9—C14 | 116.45 (18) | C20—C21—C16 | 120.6 (2) |
C10—C9—C14 | 120.0 (2) | C20—C21—H21 | 119.7 |
C11—C10—C9 | 120.2 (2) | C16—C21—H21 | 119.7 |
C11—C10—H10 | 119.9 | ||
C7—S1—C1—C2 | 177.6 (2) | C10—C11—C12—Cl1 | −179.97 (18) |
C7—S1—C1—C6 | −0.48 (17) | C11—C12—C13—C14 | 1.6 (3) |
C6—C1—C2—C3 | −0.9 (4) | Cl1—C12—C13—C14 | −178.83 (17) |
S1—C1—C2—C3 | −178.70 (18) | C12—C13—C14—C9 | −1.7 (3) |
C1—C2—C3—C4 | −0.3 (3) | C12—C13—C14—C15 | −175.9 (2) |
C2—C3—C4—C5 | 0.85 (17) | O1—C9—C14—C13 | −177.90 (19) |
C3—C4—C5—C6 | −0.2 (3) | C10—C9—C14—C13 | 0.7 (3) |
C7—N1—C6—C5 | −179.2 (2) | O1—C9—C14—C15 | −4.1 (3) |
C7—N1—C6—C1 | 0.3 (3) | C10—C9—C14—C15 | 174.5 (2) |
C4—C5—C6—N1 | 178.5 (2) | C13—C14—C15—O2 | 40.4 (3) |
C4—C5—C6—C1 | −0.9 (3) | C9—C14—C15—O2 | −133.5 (2) |
C2—C1—C6—N1 | −178.0 (2) | C13—C14—C15—C16 | −138.4 (2) |
S1—C1—C6—N1 | 0.2 (2) | C9—C14—C15—C16 | 47.7 (3) |
C2—C1—C6—C5 | 1.5 (3) | O2—C15—C16—C17 | −148.8 (2) |
S1—C1—C6—C5 | 179.73 (18) | C14—C15—C16—C17 | 30.0 (3) |
C6—N1—C7—C8 | 178.5 (2) | O2—C15—C16—C21 | 29.2 (3) |
C6—N1—C7—S1 | −0.7 (2) | C14—C15—C16—C21 | −152.1 (2) |
C1—S1—C7—N1 | 0.70 (18) | C21—C16—C17—C18 | −0.2 (3) |
C1—S1—C7—C8 | −178.48 (19) | C15—C16—C17—C18 | 177.7 (2) |
C9—O1—C8—C7 | 176.11 (18) | C16—C17—C18—C19 | 2.3 (3) |
N1—C7—C8—O1 | −176.87 (19) | C17—C18—C19—C20 | −2.1 (3) |
S1—C7—C8—O1 | 2.3 (3) | C17—C18—C19—Cl2 | 176.40 (17) |
C8—O1—C9—C10 | −6.9 (3) | C18—C19—C20—C21 | −0.2 (4) |
C8—O1—C9—C14 | 171.7 (2) | Cl2—C19—C20—C21 | −178.73 (18) |
O1—C9—C10—C11 | 179.0 (2) | C19—C20—C21—C16 | 2.3 (3) |
C14—C9—C10—C11 | 0.4 (3) | C17—C16—C21—C20 | −2.1 (3) |
C9—C10—C11—C12 | −0.6 (4) | C15—C16—C21—C20 | 179.9 (2) |
C10—C11—C12—C13 | −0.4 (4) |
Cg is the centroid of the S1/C1/C6/N1/C7 thiazole ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O2i | 0.93 | 2.56 | 3.429 (3) | 157 |
C17—H17···N1ii | 0.93 | 2.62 | 3.442 (3) | 148 |
C18—H18···Cgiii | 0.93 | 2.83 | 3.682 (2) | 152 |
Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) −x+1, −y+1, −z+1; (iii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C21H13Cl2NO2S |
Mr | 414.29 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 292 |
a, b, c (Å) | 13.6452 (4), 7.47005 (19), 18.7286 (6) |
β (°) | 105.772 (3) |
V (Å3) | 1837.14 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.48 |
Crystal size (mm) | 0.23 × 0.21 × 0.14 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur (Eos, Nova) |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.897, 0.935 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18937, 3602, 2544 |
Rint | 0.047 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.109, 1.08 |
No. of reflections | 3602 |
No. of parameters | 241 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.29 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and PARST (Nardelli, 1995).
Cg is the centroid of the S1/C1/C6/N1/C7 thiazole ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O2i | 0.9300 | 2.5600 | 3.429 (3) | 157.00 |
C17—H17···N1ii | 0.9300 | 2.6200 | 3.442 (3) | 148.00 |
C18—H18···Cgiii | 0.93 | 2.83 | 3.682 (2) | 152.1 |
Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) −x+1, −y+1, −z+1; (iii) x, y−1, z. |
Acknowledgements
We are thankful to SSCU, IISc, India for the Oxford Diffraction facility funded under DST–FIST (Level II) and are grateful to the Durban University of Technology for facilities. KNV thanks the NRF South Africa for a DST/NRF Innovation Postdoctoral Fellowship.
References
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kelarev, V. I., Kobrakov, K. I. & Rybina, I. I. (2003). Chem. Heterocycl. Compd, 39, 1267–1306. CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Nayak, S. K., Venugopala, K. N., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2013). Acta Cryst. E69, o70. CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Rana, A., Siddiqui, N. & Khan, S. A. (2007). Indian J. Pharm. Sci. 69, 10–17. CAS Google Scholar
Saeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010). Eur. J. Med. Chem. 45, 1323–1331. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Telvekar, V. N., Bairwa, V. K., Satardekar, K. & Bellubi, A. (2012). Bioorg. Med. Chem. Lett. 22, 649–652. Web of Science CrossRef CAS PubMed Google Scholar
Venugopala, K. N., Nayak, S. K., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2012). Acta Cryst. E68, o3125. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Substituted benzothiazole derivatives have been reported to exhibit various pharmacological properties such as analgesic, antibacterial, antifungal, antidepressant, antitumor, antihypertensive, anthelmintic, and herbicidal activity (Kelarev et al. (2003)). However, the variety of biological and structural features of new benzothiazole derivatives is of great scientific interest (Rana et al. (2007); Telvekar et al. (2012); Saeed et al. (2010) and Nayak et al. (2013)). In continuation of our interest on such molecules (Venugopala et al. (2012)) here, we report the single-crystal structure of the title compound.
In the title molecule (Fig. 1), the benzothiazole ring makes dihedral angles of 0.94 (1)° and 70.65 (5)° with the 4-chlorophenylmethanone unit and the 5-chlorophenyl ring, respectively. The dihedral angle between the 4-chlorophenylmethanone unit and the 5-chlorophenyl ring is 66.20 (5)°. The crystal structure consists of dimeric units generated by C–H···N hydrogen bonds, further linked by C–H···O and C–H···π interactions, which lead to a three-dimensional network (Table 1 and Fig. 2, Cg is the centroid of the S1/C1/C6/N1/C7 thiazole ring). The crystal structure consists of dimeric units generated by C–H···N hydrogen bonds, further linked by C–H···O and C–H···π interactions, which lead to a three-dimensional network (Table 1 and Fig. 2).