organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(5-{2-[5-(4-Cyano­phen­yl)-3-methyl­thio­phen-2-yl]-3,3,4,4,5,5-hexa­fluoro­cyclo­pent-1-en-1-yl}-4-methyl­thio­phen-2-yl)benzo­nitrile chloro­form hemisolvate

aDepartment of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, and bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales
*Correspondence e-mail: gelhiti@ksu.edu.sa

(Received 26 May 2013; accepted 29 May 2013; online 8 June 2013)

The crystal structure of the title compound, C29H16F6N2S2·0.5CHCl3, consists of mol­ecules with disordered perfluoro­cyclo­pentene rings [occupancy ratio 0.685 (3):0.315 (3)] and close F⋯F contacts (in the range 2.45–2.73 Å) between mol­ecules. The short contacts are associated with the disorder. The dihedral angle between thiophene rings is 57.44 (8)°. The 5-(4-cyano­phen­yl)-3-methyl-2-thienyl groups of adjacent mol­ecules are parallel, leading to zigzag chains of mol­ecules along [101]. The dihedral angles between each thiophene ring and its adjacent cyanobenzene ring are 8.9 (2) and 7.15 (10)°.

Related literature

For applications of substituted thienylperfluoro­cyclo­pentenes as switches, see: Waldeck (1991[Waldeck, D. H. (1991). Chem. Rev. 91, 415-436.]); Pu et al. (2006[Pu, S., Zhang, F., Xu, J., Shen, L., Xiao, Q. & Chen, B. (2006). Mater. Lett. 60, 485-489.]); Dulic et al. (2007[Dulic, D., Kudernac, T., Puzys, A., Feringa, B. L. & Wees, B. J. (2007). Adv. Mater. 19, 2898-2902.]). For related structures, see: Irie et al. (1995[Irie, M., Sakemura, K., Okinaka, M. & Uchida, K. (1995). J. Org. Chem. 1995, 60, 8305-8309.], 2000[Irie, M., Lifka, T., Kobatake, S. & Kato, N. (2000). J. Am. Chem. Soc. 122, 4871-4876.]); Morimitsu et al. (2002[Morimitsu, K., Shibata, K., Kobatake, S. & Irie, M. (2002). J. Org. Chem. 67, 4574-4578.]); Mori et al. (2011[Mori, K., Ishibashi, Y., Mastsuda, H., Ito, S., Nagasawa, Y., Nakagawa, H., Uchida, K., Yokojima, S., Nakamura, S., Irie, M. & Miyasaka, H. (2011). J. Am. Chem. Soc. 133, 2621-2625.]).

[Scheme 1]

Experimental

Crystal data
  • C29H16F6N2S2·0.5CHCl3

  • Mr = 630.24

  • Monoclinic, C 2/c

  • a = 18.4237 (4) Å

  • b = 15.7594 (6) Å

  • c = 20.9299 (7) Å

  • β = 113.280 (2)°

  • V = 5582.2 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 150 K

  • 0.40 × 0.30 × 0.30 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.857, Tmax = 0.890

  • 10636 measured reflections

  • 6329 independent reflections

  • 4168 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.174

  • S = 1.04

  • 6329 reflections

  • 455 parameters

  • 92 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP99 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CHEMDRAW Ultra (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

Supporting information


Comment top

During research focused on new synthetic routes towards novel substituted thienylperfluorocyclopentene, we have synthesized and purified the title compound (I). The crystal structure of I contains disordered chloroform solvent located close to a two-fold axis. The perfluorocyclopentene ring is disordered with two components having 68.5 (3)% and 31.5 (3)% occupancy related by a flip between alternative envelope configurations (Figure 2). Unfavourably close F···F contacts with distances in the range 2.45–2.73 Å between pairs of molecules may partly account for the disorder in the ring. The planes of both 5-(4-cyanophenyl)-3-methyl-2-thienyl groups of the molecule are parallel with similar groups of neighbouring molecules, with interplanar distances of 3.39 Å and 3.50 Å, forming zigzag chains parallel to the [101] direction (Figure 2). Stacking of the chains forms planes parallel to the (101) plane.

Related literature top

For applications of substituted thienylperfluorocyclopentenes as switchers, see: Waldeck (1991); Pu et al. (2006); Dulic et al. (2007). For related structures, see: Irie et al. (1995, 2000); Morimitsu et al. (2002); Mori et al. (2011).

Refinement top

H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 times Ueq for the associated atom (1.5 times for methyl groups with free rotation about the C—C bond). The perfluorocyclopentene ring is disordered with two components. Refinement of the disorder was performed using PART 1, PART 2 and FVAR in SHELX. The minor component was restrained using the SAME instruction in SHELX to give similar bond distances and angles as the major component. Related atoms and atoms in close proximity were refined with identical or similar displacement parameters using either EADP or SIMU instructions in SHELX. The chloroform site is also disordered and contains half of the molecules with two unique components close to a symmetry element. The geometry of the major component of disordered chloform was restrained and the second component was constrained to the same geometry.

Structure description top

During research focused on new synthetic routes towards novel substituted thienylperfluorocyclopentene, we have synthesized and purified the title compound (I). The crystal structure of I contains disordered chloroform solvent located close to a two-fold axis. The perfluorocyclopentene ring is disordered with two components having 68.5 (3)% and 31.5 (3)% occupancy related by a flip between alternative envelope configurations (Figure 2). Unfavourably close F···F contacts with distances in the range 2.45–2.73 Å between pairs of molecules may partly account for the disorder in the ring. The planes of both 5-(4-cyanophenyl)-3-methyl-2-thienyl groups of the molecule are parallel with similar groups of neighbouring molecules, with interplanar distances of 3.39 Å and 3.50 Å, forming zigzag chains parallel to the [101] direction (Figure 2). Stacking of the chains forms planes parallel to the (101) plane.

For applications of substituted thienylperfluorocyclopentenes as switchers, see: Waldeck (1991); Pu et al. (2006); Dulic et al. (2007). For related structures, see: Irie et al. (1995, 2000); Morimitsu et al. (2002); Mori et al. (2011).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP99 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

Figures top
[Figure 1] Fig. 1. A molecule of I showing the major component of the disorder with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A segment of the crystal structure of I showing the parallel arrangement of 5-(4-cyanophenyl)-3-methyl-2-thienyl groups with the minor component of the disorder and hydrogen atoms omitted.
4-(5-{2-[5-(4-Cyanophenyl)-3-methylthiophen-2-yl]-3,3,4,4,5,5-hexafluorocyclopent-1-en-1-yl}-4-methylthiophen-2-yl)benzonitrile chloroform hemisolvate top
Crystal data top
C29H16F6N2S2·0.5CHCl3F(000) = 2552
Mr = 630.24Dx = 1.500 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4168 reflections
a = 18.4237 (4) Åθ = 2.8–27.4°
b = 15.7594 (6) ŵ = 0.40 mm1
c = 20.9299 (7) ÅT = 150 K
β = 113.280 (2)°Block, yellow
V = 5582.2 (3) Å30.40 × 0.30 × 0.30 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
6329 independent reflections
Radiation source: fine-focus sealed tube4168 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
CCD slices scansθmax = 27.4°, θmin = 2.8°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 2323
Tmin = 0.857, Tmax = 0.890k = 1820
10636 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0749P)2 + 7.3013P]
where P = (Fo2 + 2Fc2)/3
6329 reflections(Δ/σ)max = 0.001
455 parametersΔρmax = 0.32 e Å3
92 restraintsΔρmin = 0.42 e Å3
Crystal data top
C29H16F6N2S2·0.5CHCl3V = 5582.2 (3) Å3
Mr = 630.24Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.4237 (4) ŵ = 0.40 mm1
b = 15.7594 (6) ÅT = 150 K
c = 20.9299 (7) Å0.40 × 0.30 × 0.30 mm
β = 113.280 (2)°
Data collection top
Nonius KappaCCD
diffractometer
6329 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
4168 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 0.890Rint = 0.042
10636 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06992 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.04Δρmax = 0.32 e Å3
6329 reflectionsΔρmin = 0.42 e Å3
455 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.33279 (18)1.2412 (2)0.04232 (18)0.0504 (8)
C20.39449 (16)1.18251 (19)0.00118 (17)0.0445 (7)
C30.38411 (18)1.1334 (2)0.04903 (19)0.0572 (9)
H30.33721.13880.05730.069*
C40.44183 (18)1.0763 (2)0.0874 (2)0.0555 (9)
H40.43401.04220.12150.067*
C50.51131 (16)1.06837 (18)0.07655 (15)0.0395 (7)
C60.52104 (17)1.11841 (19)0.02572 (16)0.0440 (7)
H60.56791.11310.01740.053*
C70.46373 (17)1.1756 (2)0.01281 (17)0.0461 (7)
H70.47141.20990.04700.055*
C80.57310 (16)1.00838 (18)0.11772 (15)0.0375 (6)
C90.64811 (15)1.00024 (18)0.12016 (14)0.0356 (6)
H90.66761.03400.09280.043*
C100.69445 (15)0.93707 (17)0.16712 (15)0.0357 (6)
C110.77772 (17)0.9166 (2)0.17704 (17)0.0457 (7)
H11A0.81450.94970.21610.069*
H11B0.78550.93090.13460.069*
H11C0.78760.85600.18690.069*
C120.65256 (16)0.89691 (18)0.19993 (15)0.0379 (6)
C130.68037 (16)0.82944 (18)0.25213 (16)0.0405 (7)0.685 (3)
C140.6335 (5)0.7514 (7)0.2517 (3)0.0471 (18)0.685 (3)
C150.6940 (3)0.6865 (4)0.2969 (3)0.0438 (13)0.685 (3)
C160.7615 (4)0.7421 (5)0.3474 (3)0.0413 (15)0.685 (3)
C170.74912 (17)0.82530 (18)0.30905 (16)0.0418 (7)0.685 (3)
F10.5924 (3)0.7238 (2)0.1859 (2)0.0739 (14)0.685 (3)
F20.5788 (2)0.7682 (2)0.2782 (3)0.0744 (11)0.685 (3)
F30.71811 (19)0.6400 (2)0.25617 (17)0.0661 (10)0.685 (3)
F40.6623 (3)0.6336 (3)0.3290 (2)0.0727 (13)0.685 (3)
F50.83090 (19)0.7038 (2)0.3585 (2)0.0710 (11)0.685 (3)
F60.7555 (4)0.7454 (4)0.4099 (3)0.0715 (15)0.685 (3)
C13A0.68037 (16)0.82944 (18)0.25213 (16)0.0405 (7)0.315 (3)
C14A0.6303 (12)0.7494 (16)0.2320 (11)0.0471 (18)0.315 (3)
C15A0.6662 (8)0.6950 (10)0.2968 (9)0.0438 (13)0.315 (3)
C16A0.7502 (10)0.7307 (12)0.3286 (10)0.0413 (15)0.315 (3)
C17A0.74912 (17)0.82530 (18)0.30905 (16)0.0418 (7)0.315 (3)
F1A0.6337 (5)0.7071 (6)0.1786 (5)0.0739 (14)0.315 (3)
F2A0.5523 (4)0.7582 (5)0.2185 (7)0.079 (3)0.315 (3)
F3A0.6725 (7)0.6131 (6)0.2876 (7)0.107 (4)0.315 (3)
F4A0.6312 (5)0.7076 (7)0.3410 (4)0.099 (3)0.315 (3)
F5A0.8056 (5)0.6908 (5)0.3168 (5)0.0710 (11)0.315 (3)
F6A0.7809 (10)0.7365 (11)0.4001 (8)0.0715 (15)0.315 (3)
C180.80784 (17)0.89096 (19)0.33911 (15)0.0399 (7)
C190.79551 (17)0.97566 (19)0.34710 (14)0.0398 (7)
C200.71654 (17)1.0172 (2)0.33051 (16)0.0456 (7)
H20A0.69641.03950.28290.068*
H20B0.72251.06390.36320.068*
H20C0.67930.97540.33460.068*
C210.86700 (17)1.0205 (2)0.37701 (15)0.0427 (7)
H210.86921.07960.38640.051*
C220.93311 (18)0.9721 (2)0.39144 (15)0.0444 (7)
C231.01629 (18)0.9987 (2)0.42181 (15)0.0448 (7)
C241.0359 (2)1.0850 (2)0.43260 (18)0.0566 (9)
H240.99451.12570.41980.068*
C251.11288 (19)1.1127 (2)0.46109 (18)0.0548 (9)
H251.12441.17150.46790.066*
C261.17385 (19)1.0532 (2)0.47980 (16)0.0506 (8)
C271.15609 (19)0.9674 (3)0.46981 (17)0.0564 (9)
H271.19770.92700.48280.068*
C281.07840 (19)0.9403 (2)0.44115 (17)0.0529 (8)
H281.06710.88130.43460.063*
C291.2554 (2)1.0801 (2)0.50949 (19)0.0578 (9)
N10.28399 (17)1.28672 (19)0.07370 (17)0.0657 (9)
N21.32050 (18)1.1008 (2)0.53249 (18)0.0706 (9)
S10.55727 (4)0.93605 (5)0.17304 (4)0.0422 (2)
S20.90768 (5)0.86753 (5)0.36945 (4)0.0485 (2)
C300.4976 (5)1.2497 (5)0.2286 (6)0.057 (3)0.334 (3)
H300.48171.25080.17710.068*0.334 (3)
Cl10.4299 (2)1.1883 (3)0.2487 (3)0.0696 (8)0.334 (3)
Cl20.5063 (6)1.3539 (2)0.2602 (6)0.075 (3)0.334 (3)
Cl30.5920 (2)1.2059 (3)0.2688 (4)0.0696 (8)0.334 (3)
C30A0.5104 (14)1.2114 (16)0.2263 (15)0.057 (3)0.166 (3)
H30A0.52591.19250.18790.068*0.166 (3)
Cl1A0.4634 (6)1.1251 (7)0.2494 (4)0.116 (4)0.166 (3)
Cl2A0.4406 (6)1.2868 (9)0.1950 (5)0.121 (4)0.166 (3)
Cl3A0.5987 (5)1.2325 (6)0.3015 (6)0.0696 (8)0.166 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0403 (17)0.0414 (17)0.059 (2)0.0019 (13)0.0083 (15)0.0036 (16)
C20.0359 (15)0.0356 (15)0.0499 (18)0.0013 (12)0.0039 (13)0.0001 (14)
C30.0355 (16)0.057 (2)0.075 (2)0.0085 (14)0.0182 (16)0.0234 (19)
C40.0401 (17)0.058 (2)0.069 (2)0.0099 (14)0.0219 (16)0.0233 (18)
C50.0324 (14)0.0359 (15)0.0403 (16)0.0001 (11)0.0038 (12)0.0028 (13)
C60.0415 (16)0.0406 (16)0.0455 (18)0.0043 (12)0.0125 (13)0.0021 (14)
C70.0441 (16)0.0406 (16)0.0467 (18)0.0046 (13)0.0106 (14)0.0027 (14)
C80.0367 (14)0.0335 (14)0.0364 (15)0.0012 (11)0.0082 (12)0.0001 (12)
C90.0353 (14)0.0338 (14)0.0334 (15)0.0013 (11)0.0090 (11)0.0006 (12)
C100.0341 (14)0.0334 (14)0.0345 (15)0.0017 (11)0.0081 (11)0.0023 (12)
C110.0399 (16)0.0509 (18)0.0444 (18)0.0042 (13)0.0146 (13)0.0060 (15)
C120.0362 (14)0.0330 (14)0.0413 (16)0.0020 (11)0.0119 (12)0.0004 (13)
C130.0418 (15)0.0337 (15)0.0469 (17)0.0043 (12)0.0185 (13)0.0029 (13)
C140.0419 (19)0.0447 (19)0.048 (5)0.0011 (15)0.011 (3)0.005 (4)
C150.039 (4)0.037 (2)0.056 (2)0.006 (3)0.019 (3)0.0123 (19)
C160.050 (3)0.033 (3)0.027 (5)0.003 (2)0.000 (3)0.004 (3)
C170.0467 (16)0.0349 (15)0.0424 (17)0.0081 (12)0.0160 (13)0.0056 (13)
F10.067 (3)0.0438 (19)0.0713 (19)0.016 (2)0.014 (3)0.0090 (16)
F20.0487 (19)0.067 (2)0.115 (3)0.0030 (15)0.041 (2)0.021 (2)
F30.072 (2)0.0518 (19)0.062 (2)0.0090 (16)0.0134 (16)0.0098 (16)
F40.075 (2)0.061 (3)0.073 (3)0.0102 (19)0.021 (2)0.029 (2)
F50.050 (2)0.0415 (15)0.096 (3)0.0148 (14)0.0020 (18)0.016 (2)
F60.113 (5)0.063 (2)0.038 (2)0.009 (3)0.0298 (19)0.0121 (17)
C13A0.0418 (15)0.0337 (15)0.0469 (17)0.0043 (12)0.0185 (13)0.0029 (13)
C14A0.0419 (19)0.0447 (19)0.048 (5)0.0011 (15)0.011 (3)0.005 (4)
C15A0.039 (4)0.037 (2)0.056 (2)0.006 (3)0.019 (3)0.0123 (19)
C16A0.050 (3)0.033 (3)0.027 (5)0.003 (2)0.000 (3)0.004 (3)
C17A0.0467 (16)0.0349 (15)0.0424 (17)0.0081 (12)0.0160 (13)0.0056 (13)
F1A0.067 (3)0.0438 (19)0.0713 (19)0.016 (2)0.014 (3)0.0090 (16)
F2A0.054 (4)0.060 (5)0.122 (8)0.001 (4)0.033 (5)0.030 (5)
F3A0.111 (8)0.038 (5)0.130 (10)0.001 (4)0.003 (8)0.027 (6)
F4A0.102 (6)0.114 (8)0.089 (6)0.007 (5)0.044 (5)0.047 (6)
F5A0.050 (2)0.0415 (15)0.096 (3)0.0148 (14)0.0020 (18)0.016 (2)
F6A0.113 (5)0.063 (2)0.038 (2)0.009 (3)0.0298 (19)0.0121 (17)
C180.0443 (15)0.0399 (15)0.0312 (15)0.0080 (12)0.0103 (12)0.0057 (13)
C190.0456 (16)0.0416 (16)0.0285 (15)0.0059 (12)0.0107 (12)0.0039 (13)
C200.0492 (17)0.0432 (17)0.0415 (17)0.0076 (13)0.0149 (14)0.0022 (14)
C210.0492 (17)0.0408 (16)0.0345 (16)0.0019 (13)0.0127 (13)0.0022 (13)
C220.0482 (17)0.0474 (18)0.0333 (16)0.0030 (14)0.0115 (13)0.0001 (14)
C230.0472 (17)0.0513 (18)0.0320 (15)0.0049 (14)0.0115 (13)0.0020 (14)
C240.0515 (19)0.060 (2)0.050 (2)0.0063 (16)0.0107 (15)0.0051 (17)
C250.0503 (19)0.059 (2)0.049 (2)0.0030 (15)0.0135 (15)0.0018 (17)
C260.0487 (18)0.072 (2)0.0309 (16)0.0037 (16)0.0156 (13)0.0032 (16)
C270.0465 (18)0.078 (3)0.0416 (19)0.0094 (17)0.0141 (15)0.0068 (18)
C280.0550 (19)0.058 (2)0.0430 (19)0.0073 (15)0.0168 (15)0.0004 (16)
C290.054 (2)0.072 (2)0.050 (2)0.0061 (17)0.0234 (17)0.0149 (18)
N10.0491 (16)0.0540 (18)0.079 (2)0.0116 (14)0.0094 (15)0.0143 (17)
N20.0505 (18)0.092 (3)0.069 (2)0.0019 (17)0.0233 (15)0.0148 (19)
S10.0354 (4)0.0395 (4)0.0490 (5)0.0026 (3)0.0139 (3)0.0064 (3)
S20.0460 (4)0.0449 (4)0.0457 (5)0.0101 (3)0.0088 (3)0.0021 (4)
C300.036 (5)0.083 (10)0.055 (6)0.003 (7)0.020 (5)0.004 (7)
Cl10.0468 (17)0.075 (2)0.079 (3)0.0058 (11)0.016 (2)0.0163 (16)
Cl20.100 (4)0.0733 (19)0.081 (7)0.038 (4)0.067 (5)0.031 (4)
Cl30.0468 (17)0.075 (2)0.079 (3)0.0058 (11)0.016 (2)0.0163 (16)
C30A0.036 (5)0.083 (10)0.055 (6)0.003 (7)0.020 (5)0.004 (7)
Cl1A0.115 (6)0.125 (8)0.080 (5)0.071 (6)0.009 (5)0.016 (6)
Cl2A0.086 (6)0.175 (10)0.110 (6)0.069 (7)0.048 (5)0.042 (7)
Cl3A0.0468 (17)0.075 (2)0.079 (3)0.0058 (11)0.016 (2)0.0163 (16)
Geometric parameters (Å, º) top
C1—N11.135 (4)C14A—C15A1.52 (2)
C1—C21.454 (4)C15A—F3A1.316 (18)
C2—C31.378 (5)C15A—F4A1.335 (17)
C2—C71.394 (5)C15A—C16A1.53 (2)
C3—C41.382 (4)C16A—F5A1.303 (19)
C3—H30.9500C16A—F6A1.378 (18)
C4—C51.391 (4)C18—C191.375 (4)
C4—H40.9500C18—S21.732 (3)
C5—C61.392 (4)C19—C211.405 (4)
C5—C81.469 (4)C19—C201.506 (4)
C6—C71.380 (4)C20—H20A0.9800
C6—H60.9500C20—H20B0.9800
C7—H70.9500C20—H20C0.9800
C8—C91.369 (4)C21—C221.365 (4)
C8—S11.730 (3)C21—H210.9500
C9—C101.422 (4)C22—C231.469 (4)
C9—H90.9500C22—S21.726 (3)
C10—C121.374 (4)C23—C281.398 (4)
C10—C111.500 (4)C23—C241.402 (5)
C11—H11A0.9800C24—C251.375 (5)
C11—H11B0.9800C24—H240.9500
C11—H11C0.9800C25—C261.395 (5)
C12—C131.464 (4)C25—H250.9500
C12—S11.732 (3)C26—C271.387 (5)
C13—C171.355 (4)C26—C291.444 (5)
C13—C141.500 (10)C27—C281.383 (5)
C14—F21.355 (7)C27—H270.9500
C14—F11.356 (7)C28—H280.9500
C14—C151.534 (10)C29—N21.149 (4)
C15—F31.327 (6)C30—Cl31.748 (8)
C15—F41.341 (6)C30—Cl21.754 (8)
C15—C161.547 (8)C30—Cl11.755 (8)
C16—F51.349 (7)C30—H301.0000
C16—F61.355 (6)C30A—Cl2A1.68 (2)
C16—C171.507 (8)C30A—Cl1A1.78 (3)
C17—C181.449 (4)C30A—Cl3A1.79 (3)
C14A—F1A1.32 (2)C30A—H30A1.0000
C14A—F2A1.36 (2)
N1—C1—C2178.8 (4)F1A—C14A—C15A108.6 (18)
C3—C2—C7120.1 (3)F2A—C14A—C15A107.2 (16)
C3—C2—C1119.8 (3)F3A—C15A—F4A110.0 (14)
C7—C2—C1120.1 (3)F3A—C15A—C14A117.1 (17)
C2—C3—C4120.1 (3)F4A—C15A—C14A112.0 (13)
C2—C3—H3119.9F3A—C15A—C16A106.9 (12)
C4—C3—H3119.9F4A—C15A—C16A109.1 (14)
C3—C4—C5120.7 (3)C14A—C15A—C16A100.9 (14)
C3—C4—H4119.7F5A—C16A—F6A102.8 (14)
C5—C4—H4119.7F5A—C16A—C15A118.3 (13)
C4—C5—C6118.6 (3)F6A—C16A—C15A114.0 (18)
C4—C5—C8120.8 (3)C19—C18—C17128.0 (3)
C6—C5—C8120.6 (3)C19—C18—S2111.4 (2)
C7—C6—C5121.1 (3)C17—C18—S2120.6 (2)
C7—C6—H6119.4C18—C19—C21111.8 (3)
C5—C6—H6119.4C18—C19—C20125.8 (3)
C6—C7—C2119.4 (3)C21—C19—C20122.3 (3)
C6—C7—H7120.3C19—C20—H20A109.5
C2—C7—H7120.3C19—C20—H20B109.5
C9—C8—C5128.3 (3)H20A—C20—H20B109.5
C9—C8—S1110.4 (2)C19—C20—H20C109.5
C5—C8—S1121.4 (2)H20A—C20—H20C109.5
C8—C9—C10114.4 (3)H20B—C20—H20C109.5
C8—C9—H9122.8C22—C21—C19114.6 (3)
C10—C9—H9122.8C22—C21—H21122.7
C12—C10—C9111.4 (2)C19—C21—H21122.7
C12—C10—C11125.3 (3)C21—C22—C23128.6 (3)
C9—C10—C11123.2 (3)C21—C22—S2110.4 (2)
C10—C11—H11A109.5C23—C22—S2121.0 (2)
C10—C11—H11B109.5C28—C23—C24117.6 (3)
H11A—C11—H11B109.5C28—C23—C22122.2 (3)
C10—C11—H11C109.5C24—C23—C22120.3 (3)
H11A—C11—H11C109.5C25—C24—C23122.2 (3)
H11B—C11—H11C109.5C25—C24—H24118.9
C10—C12—C13127.4 (3)C23—C24—H24118.9
C10—C12—S1111.8 (2)C24—C25—C26119.1 (3)
C13—C12—S1120.8 (2)C24—C25—H25120.4
C17—C13—C12128.4 (3)C26—C25—H25120.4
C17—C13—C14107.5 (4)C27—C26—C25119.8 (3)
C12—C13—C14124.0 (4)C27—C26—C29119.7 (3)
F2—C14—F1105.7 (6)C25—C26—C29120.5 (3)
F2—C14—C13111.0 (7)C28—C27—C26120.6 (3)
F1—C14—C13111.0 (6)C28—C27—H27119.7
F2—C14—C15110.7 (6)C26—C27—H27119.7
F1—C14—C15113.0 (7)C27—C28—C23120.7 (3)
C13—C14—C15105.5 (5)C27—C28—H28119.7
F3—C15—F4107.5 (5)C23—C28—H28119.7
F3—C15—C14108.5 (5)N2—C29—C26179.0 (5)
F4—C15—C14111.7 (5)C8—S1—C1292.00 (14)
F3—C15—C16111.7 (4)C22—S2—C1891.79 (15)
F4—C15—C16113.7 (5)Cl3—C30—Cl2105.3 (6)
C14—C15—C16103.6 (5)Cl3—C30—Cl1109.4 (5)
F5—C16—F6106.5 (5)Cl2—C30—Cl1113.2 (6)
F5—C16—C17114.5 (6)Cl3—C30—H30109.6
F6—C16—C17115.4 (5)Cl2—C30—H30109.6
F5—C16—C15108.3 (5)Cl1—C30—H30109.6
F6—C16—C15109.3 (6)Cl2A—C30A—Cl1A105.5 (13)
C17—C16—C15102.6 (4)Cl2A—C30A—Cl3A120.0 (16)
C13—C17—C18128.7 (3)Cl1A—C30A—Cl3A105.9 (15)
C13—C17—C16113.7 (3)Cl2A—C30A—H30A108.3
C18—C17—C16117.4 (3)Cl1A—C30A—H30A108.3
F1A—C14A—F2A106.0 (15)Cl3A—C30A—H30A108.3

Experimental details

Crystal data
Chemical formulaC29H16F6N2S2·0.5CHCl3
Mr630.24
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)18.4237 (4), 15.7594 (6), 20.9299 (7)
β (°) 113.280 (2)
V3)5582.2 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.40 × 0.30 × 0.30
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.857, 0.890
No. of measured, independent and
observed [I > 2σ(I)] reflections
10636, 6329, 4168
Rint0.042
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.174, 1.04
No. of reflections6329
No. of parameters455
No. of restraints92
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.42

Computer programs: COLLECT (Nonius, 2000), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP99 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

 

Footnotes

Additional correspondence author, e-mail: kariukib@cardiff.ac.uk.

Acknowledgements

The authors would like to extend their appreciation to the Deanship of Scientific Research at King Saud University for its funding for this research through research group project RGP-VPP-239.

References

First citationCambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationDulic, D., Kudernac, T., Puzys, A., Feringa, B. L. & Wees, B. J. (2007). Adv. Mater. 19, 2898–2902.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIrie, M., Lifka, T., Kobatake, S. & Kato, N. (2000). J. Am. Chem. Soc. 122, 4871–4876.  Web of Science CSD CrossRef CAS Google Scholar
First citationIrie, M., Sakemura, K., Okinaka, M. & Uchida, K. (1995). J. Org. Chem. 1995, 60, 8305-8309.  Google Scholar
First citationMori, K., Ishibashi, Y., Mastsuda, H., Ito, S., Nagasawa, Y., Nakagawa, H., Uchida, K., Yokojima, S., Nakamura, S., Irie, M. & Miyasaka, H. (2011). J. Am. Chem. Soc. 133, 2621–2625.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMorimitsu, K., Shibata, K., Kobatake, S. & Irie, M. (2002). J. Org. Chem. 67, 4574–4578.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPu, S., Zhang, F., Xu, J., Shen, L., Xiao, Q. & Chen, B. (2006). Mater. Lett. 60, 485–489.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWaldeck, D. H. (1991). Chem. Rev. 91, 415–436.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds