organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-[(3-Phenyl-1,2,4-oxa­diazol-5-yl)meth­­oxy]quinoline monohydrate

aCollege of Food Science and Light Industry, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wanghaibo@njut.edu.cn

(Received 17 May 2013; accepted 27 May 2013; online 8 June 2013)

In the title compound, C18H13N3O2·H2O, the oxa­diazole ring forms dihedral angles 7.21 (10) and 21.25 (11)° with the quinoline and benzene rings, respectively. The crystal structure features O—H⋯N hydrogen bonds and is further consolidated by C—H⋯O hydrogen-bonding inter­actions involving the water molecule of hydration.

Related literature

For general background, see: Katritzky et al. (1992[Katritzky, A. R., Ji, F. B. & Fan, W. Q. (1992). Heterocycl. Chem. 29, 1519-1523.]). For preparation of the title compound, see: Shishue & Henry (1989[Shishue, C. & Henry, J. S. (1989). J Heterocycl. Chem. 26, 125-128.]). For crystal structure of a related compound, see: Liu et al. (2006[Liu, Z.-Q., Wang, H.-B., Pu, Y.-Q. & Yan, X.-C. (2006). Acta Cryst. E62, o1131-o1132.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13N3O2·H2O

  • Mr = 321.33

  • Monoclinic, P 21 /n

  • a = 7.0430 (14) Å

  • b = 7.5800 (15) Å

  • c = 29.114 (6) Å

  • β = 95.33 (3)°

  • V = 1547.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.972, Tmax = 0.990

  • 3101 measured reflections

  • 2853 independent reflections

  • 1608 reflections with I > 2σ(I)

  • Rint = 0.025

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.144

  • S = 0.95

  • 2853 reflections

  • 223 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯N2 0.79 (4) 2.20 (4) 2.988 (3) 171 (4)
O1W—H2W⋯N3 0.81 (4) 2.00 (4) 2.810 (3) 174 (4)
C9—H9A⋯O1Wi 0.97 2.54 3.437 (3) 154
C12—H12A⋯O1Wii 0.93 2.51 3.268 (4) 139
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+2, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Due to unique biological activity in medicine and pesticide, 1,2,4-oxadiazole derivatives have received an increased attention. It plays an increasingly important role in pharmaceutical synthesis, if different heterocyclics were introduced into 1,2,4-oxadiazole ring (Katritzky et al., 1992). We have synthesized the title compound which is a novel derivative of 1,2,4-oxadiazole. In this article, we describe the synthesis and crystal structure of the title compound.

In the title molecule (Fig. 1) the bond distances and bond angles agree very well with the corresponding bond distances and angles reported in a closely related compound (Liu et al., 2006). The quinoline ring is essentially planar (rmsd = 0.0118 Å). The oxadiazole ring forms dihedral angles 7.21 (10) and 21.25 (11)° with the quinoline and benzene rings, respectively. The crystal structure is stabilized by O—H···N hydrogen bonds and further consolidated by C—H···O hydrogen bonding interactions involving the water of hydration (Fig. 2 & Tab. 1).

Related literature top

For general background, see: Katritzky et al. (1992). For preparation of the title compound, see: Shishue & Henry (1989). For crystal structure of a related compound, see: Liu et al. (2006).

Experimental top

To a flask charged with 30 mL of acetone were added 3-phenyl-5-chloromethyl-1,2,4-oxadiazole (1.95 g, 10 mmol), 8-hydroxy quinoline (1.45 g, 10 mmol), potassium carbonate (2.0 g, 15 mmol), and a catalytic amount of potassium iodide. The reaction mixture was stirred at refluxing condition for about 5 h. After being cooled to room temperature, the mixture was filtered and evaporated in vacuo. The crude product was further recrystallized from ethyl acetate to give white solid (yield = 2.26 g; 75%). Crystals suitable for X-ray crystallographic studies were grown by slow evaporation of ethyl acetate solution.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms. The H-atoms of the water of hydration were located from a difference map and were allowed to refine with Uiso(H) = 1.5Ueq(O).

Structure description top

Due to unique biological activity in medicine and pesticide, 1,2,4-oxadiazole derivatives have received an increased attention. It plays an increasingly important role in pharmaceutical synthesis, if different heterocyclics were introduced into 1,2,4-oxadiazole ring (Katritzky et al., 1992). We have synthesized the title compound which is a novel derivative of 1,2,4-oxadiazole. In this article, we describe the synthesis and crystal structure of the title compound.

In the title molecule (Fig. 1) the bond distances and bond angles agree very well with the corresponding bond distances and angles reported in a closely related compound (Liu et al., 2006). The quinoline ring is essentially planar (rmsd = 0.0118 Å). The oxadiazole ring forms dihedral angles 7.21 (10) and 21.25 (11)° with the quinoline and benzene rings, respectively. The crystal structure is stabilized by O—H···N hydrogen bonds and further consolidated by C—H···O hydrogen bonding interactions involving the water of hydration (Fig. 2 & Tab. 1).

For general background, see: Katritzky et al. (1992). For preparation of the title compound, see: Shishue & Henry (1989). For crystal structure of a related compound, see: Liu et al. (2006).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound viewed down the c axis. Dashed lines indicate intermolecular O—H···N and C—H···O interactions.
8-[(3-Phenyl-1,2,4-oxadiazol-5-yl)methoxy]quinoline monohydrate top
Crystal data top
C18H13N3O2·H2OF(000) = 672
Mr = 321.33Dx = 1.379 Mg m3
Monoclinic, P21/nMelting point: 438 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.0430 (14) ÅCell parameters from 25 reflections
b = 7.5800 (15) Åθ = 9–13°
c = 29.114 (6) ŵ = 0.10 mm1
β = 95.33 (3)°T = 293 K
V = 1547.6 (5) Å3Block, colourless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1608 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 25.4°, θmin = 1.4°
ω/2θ scansh = 08
Absorption correction: ψ scan
(North et al., 1968)
k = 09
Tmin = 0.972, Tmax = 0.990l = 3534
3101 measured reflections3 standard reflections every 200 reflections
2853 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.070P)2]
where P = (Fo2 + 2Fc2)/3
2853 reflections(Δ/σ)max < 0.001
223 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C18H13N3O2·H2OV = 1547.6 (5) Å3
Mr = 321.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.0430 (14) ŵ = 0.10 mm1
b = 7.5800 (15) ÅT = 293 K
c = 29.114 (6) Å0.30 × 0.20 × 0.10 mm
β = 95.33 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1608 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.025
Tmin = 0.972, Tmax = 0.9903 standard reflections every 200 reflections
3101 measured reflections intensity decay: 1%
2853 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.15 e Å3
2853 reflectionsΔρmin = 0.15 e Å3
223 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1455 (2)0.5455 (3)0.39671 (7)0.0669 (6)
O20.4113 (2)0.7022 (2)0.49830 (6)0.0521 (5)
N10.2012 (3)0.5612 (3)0.35162 (8)0.0684 (7)
N20.4312 (3)0.6622 (3)0.40388 (7)0.0484 (6)
N30.7080 (3)0.8663 (3)0.54211 (7)0.0501 (6)
C10.3907 (5)0.7139 (5)0.27655 (11)0.0791 (10)
H1B0.26250.68550.27020.095*
C20.4931 (7)0.7816 (5)0.24221 (11)0.0948 (12)
H2B0.43250.80060.21290.114*
C30.6821 (6)0.8209 (5)0.25099 (12)0.0874 (11)
H3B0.74910.86870.22790.105*
C40.7724 (5)0.7900 (5)0.29354 (11)0.0843 (11)
H4A0.90220.81280.29910.101*
C50.6733 (4)0.7253 (4)0.32851 (10)0.0694 (9)
H5A0.73600.70610.35760.083*
C60.4811 (4)0.6888 (3)0.32043 (9)0.0550 (7)
C70.3704 (4)0.6317 (4)0.35832 (9)0.0518 (7)
C80.2890 (3)0.6098 (3)0.42497 (9)0.0478 (7)
C90.2552 (3)0.6131 (4)0.47439 (9)0.0507 (7)
H9A0.13710.67430.47850.061*
H9B0.24620.49370.48600.061*
C100.4014 (3)0.7312 (3)0.54418 (9)0.0446 (6)
C110.5607 (3)0.8199 (3)0.56692 (9)0.0436 (6)
C120.8557 (4)0.9462 (4)0.56418 (10)0.0587 (8)
H12A0.95590.97940.54740.070*
C130.8705 (4)0.9839 (4)0.61116 (11)0.0652 (8)
H13A0.97821.04020.62510.078*
C140.7261 (4)0.9374 (4)0.63636 (10)0.0639 (8)
H14A0.73400.96100.66780.077*
C150.5641 (4)0.8531 (3)0.61456 (9)0.0496 (7)
C160.4096 (4)0.7993 (4)0.63873 (10)0.0627 (8)
H16A0.41030.82210.67010.075*
C170.2598 (4)0.7139 (4)0.61586 (10)0.0627 (8)
H17A0.15850.67810.63200.075*
C180.2546 (4)0.6787 (3)0.56860 (10)0.0527 (7)
H18A0.15080.61940.55370.063*
O1W0.8011 (3)0.7785 (4)0.45314 (8)0.0770 (7)
H1W0.709 (6)0.747 (5)0.4376 (13)0.116*
H2W0.770 (5)0.810 (5)0.4781 (14)0.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0498 (11)0.0858 (15)0.0641 (13)0.0154 (11)0.0007 (10)0.0105 (11)
O20.0398 (9)0.0638 (12)0.0531 (11)0.0111 (9)0.0062 (8)0.0030 (9)
N10.0558 (15)0.0858 (19)0.0621 (17)0.0069 (14)0.0027 (12)0.0117 (14)
N20.0456 (12)0.0520 (14)0.0465 (13)0.0002 (11)0.0010 (10)0.0055 (10)
N30.0407 (12)0.0477 (13)0.0628 (15)0.0052 (11)0.0094 (11)0.0013 (11)
C10.084 (2)0.095 (3)0.055 (2)0.007 (2)0.0086 (18)0.0022 (18)
C20.136 (4)0.100 (3)0.047 (2)0.013 (3)0.000 (2)0.0069 (19)
C30.125 (3)0.083 (3)0.058 (2)0.009 (2)0.025 (2)0.0040 (19)
C40.093 (2)0.103 (3)0.060 (2)0.021 (2)0.0226 (19)0.008 (2)
C50.072 (2)0.086 (2)0.0511 (18)0.0084 (18)0.0096 (15)0.0025 (16)
C60.0674 (18)0.0506 (17)0.0458 (16)0.0046 (15)0.0015 (14)0.0047 (13)
C70.0496 (16)0.0559 (17)0.0480 (17)0.0047 (14)0.0057 (13)0.0052 (13)
C80.0388 (14)0.0489 (16)0.0543 (17)0.0007 (13)0.0035 (13)0.0024 (13)
C90.0319 (13)0.0548 (17)0.0644 (18)0.0057 (13)0.0010 (12)0.0031 (14)
C100.0417 (14)0.0441 (15)0.0484 (15)0.0021 (12)0.0070 (12)0.0027 (12)
C110.0392 (14)0.0393 (14)0.0530 (16)0.0044 (12)0.0075 (12)0.0026 (12)
C120.0444 (16)0.0544 (18)0.077 (2)0.0062 (14)0.0029 (14)0.0024 (16)
C130.0529 (17)0.064 (2)0.075 (2)0.0011 (16)0.0135 (16)0.0144 (17)
C140.0683 (19)0.063 (2)0.0590 (18)0.0127 (17)0.0046 (16)0.0103 (16)
C150.0479 (15)0.0474 (16)0.0530 (17)0.0067 (13)0.0016 (13)0.0006 (13)
C160.071 (2)0.070 (2)0.0493 (16)0.0152 (17)0.0170 (15)0.0014 (15)
C170.0569 (18)0.071 (2)0.063 (2)0.0039 (16)0.0227 (15)0.0065 (16)
C180.0430 (14)0.0549 (17)0.0615 (18)0.0011 (13)0.0124 (13)0.0059 (14)
O1W0.0487 (12)0.1114 (19)0.0729 (16)0.0250 (13)0.0159 (11)0.0162 (14)
Geometric parameters (Å, º) top
O1—C81.335 (3)C8—C91.480 (3)
O1—N11.410 (3)C9—H9A0.9700
O2—C101.362 (3)C9—H9B0.9700
O2—C91.417 (3)C10—C181.367 (3)
N1—C71.304 (3)C10—C111.418 (3)
N2—C81.285 (3)C11—C151.408 (3)
N2—C71.375 (3)C12—C131.392 (4)
N3—C121.318 (3)C12—H12A0.9300
N3—C111.364 (3)C13—C141.355 (4)
C1—C21.385 (5)C13—H13A0.9300
C1—C61.387 (4)C14—C151.406 (4)
C1—H1B0.9300C14—H14A0.9300
C2—C31.365 (5)C15—C161.410 (4)
C2—H2B0.9300C16—C171.358 (4)
C3—C41.359 (5)C16—H16A0.9300
C3—H3B0.9300C17—C181.399 (4)
C4—C51.377 (4)C17—H17A0.9300
C4—H4A0.9300C18—H18A0.9300
C5—C61.380 (4)O1W—H1W0.79 (4)
C5—H5A0.9300O1W—H2W0.81 (4)
C6—C71.473 (4)
C8—O1—N1106.44 (19)O2—C9—H9B110.2
C10—O2—C9116.82 (19)C8—C9—H9B110.2
C7—N1—O1103.0 (2)H9A—C9—H9B108.5
C8—N2—C7102.9 (2)O2—C10—C18125.0 (2)
C12—N3—C11117.7 (2)O2—C10—C11115.1 (2)
C2—C1—C6119.4 (3)C18—C10—C11119.9 (3)
C2—C1—H1B120.3N3—C11—C15122.1 (2)
C6—C1—H1B120.3N3—C11—C10118.9 (2)
C3—C2—C1120.7 (3)C15—C11—C10119.0 (2)
C3—C2—H2B119.7N3—C12—C13123.8 (3)
C1—C2—H2B119.7N3—C12—H12A118.1
C4—C3—C2119.9 (4)C13—C12—H12A118.1
C4—C3—H3B120.0C14—C13—C12119.2 (3)
C2—C3—H3B120.0C14—C13—H13A120.4
C3—C4—C5120.6 (4)C12—C13—H13A120.4
C3—C4—H4A119.7C13—C14—C15119.5 (3)
C5—C4—H4A119.7C13—C14—H14A120.3
C4—C5—C6120.1 (3)C15—C14—H14A120.3
C4—C5—H5A119.9C14—C15—C11117.7 (3)
C6—C5—H5A119.9C14—C15—C16122.5 (3)
C5—C6—C1119.2 (3)C11—C15—C16119.8 (3)
C5—C6—C7120.7 (2)C17—C16—C15119.6 (3)
C1—C6—C7120.0 (3)C17—C16—H16A120.2
N1—C7—N2114.3 (3)C15—C16—H16A120.2
N1—C7—C6123.2 (2)C16—C17—C18121.4 (3)
N2—C7—C6122.3 (2)C16—C17—H17A119.3
N2—C8—O1113.4 (2)C18—C17—H17A119.3
N2—C8—C9131.5 (2)C10—C18—C17120.3 (3)
O1—C8—C9115.1 (2)C10—C18—H18A119.9
O2—C9—C8107.3 (2)C17—C18—H18A119.9
O2—C9—H9A110.2H1W—O1W—H2W109 (4)
C8—C9—H9A110.2
C8—O1—N1—C70.3 (3)C9—O2—C10—C181.0 (4)
C6—C1—C2—C31.1 (6)C9—O2—C10—C11179.7 (2)
C1—C2—C3—C41.4 (6)C12—N3—C11—C150.6 (4)
C2—C3—C4—C52.4 (6)C12—N3—C11—C10179.0 (2)
C3—C4—C5—C60.9 (5)O2—C10—C11—N30.7 (3)
C4—C5—C6—C11.6 (5)C18—C10—C11—N3178.1 (2)
C4—C5—C6—C7175.6 (3)O2—C10—C11—C15179.1 (2)
C2—C1—C6—C52.6 (5)C18—C10—C11—C150.3 (4)
C2—C1—C6—C7174.6 (3)C11—N3—C12—C130.7 (4)
O1—N1—C7—N20.6 (3)N3—C12—C13—C140.2 (4)
O1—N1—C7—C6174.3 (2)C12—C13—C14—C150.3 (4)
C8—N2—C7—N11.2 (3)C13—C14—C15—C110.4 (4)
C8—N2—C7—C6173.7 (2)C13—C14—C15—C16179.2 (3)
C5—C6—C7—N1165.4 (3)N3—C11—C15—C140.1 (4)
C1—C6—C7—N117.5 (4)C10—C11—C15—C14178.4 (2)
C5—C6—C7—N220.2 (4)N3—C11—C15—C16178.8 (2)
C1—C6—C7—N2157.0 (3)C10—C11—C15—C160.4 (4)
C7—N2—C8—O11.4 (3)C14—C15—C16—C17178.1 (3)
C7—N2—C8—C9176.7 (3)C11—C15—C16—C170.8 (4)
N1—O1—C8—N21.1 (3)C15—C16—C17—C180.3 (4)
N1—O1—C8—C9177.3 (2)O2—C10—C18—C17179.4 (2)
C10—O2—C9—C8175.3 (2)C11—C10—C18—C170.7 (4)
N2—C8—C9—O24.4 (4)C16—C17—C18—C100.4 (4)
O1—C8—C9—O2173.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N20.79 (4)2.20 (4)2.988 (3)171 (4)
O1W—H2W···N30.81 (4)2.00 (4)2.810 (3)174 (4)
C9—H9A···O1Wi0.972.543.437 (3)154
C12—H12A···O1Wii0.932.513.268 (4)139
Symmetry codes: (i) x1, y, z; (ii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC18H13N3O2·H2O
Mr321.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.0430 (14), 7.5800 (15), 29.114 (6)
β (°) 95.33 (3)
V3)1547.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.972, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
3101, 2853, 1608
Rint0.025
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.144, 0.95
No. of reflections2853
No. of parameters223
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.15

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N20.79 (4)2.20 (4)2.988 (3)171 (4)
O1W—H2W···N30.81 (4)2.00 (4)2.810 (3)174 (4)
C9—H9A···O1Wi0.972.543.437 (3)154
C12—H12A···O1Wii0.932.513.268 (4)139
Symmetry codes: (i) x1, y, z; (ii) x+2, y+2, z+1.
 

References

First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKatritzky, A. R., Ji, F. B. & Fan, W. Q. (1992). Heterocycl. Chem. 29, 1519–1523.  CrossRef CAS Google Scholar
First citationLiu, Z.-Q., Wang, H.-B., Pu, Y.-Q. & Yan, X.-C. (2006). Acta Cryst. E62, o1131–o1132.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShishue, C. & Henry, J. S. (1989). J Heterocycl. Chem. 26, 125–128.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds