organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1-Methyl-2-oxoindolin-3-yl­­idene)malono­nitrile

aState Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: dcwang@njut.edu.cn

(Received 20 May 2013; accepted 8 June 2013; online 15 June 2013)

The title mol­ecule, C12H7N3O, is almost planar, with an r.m.s. deviation of 0.026 Å. No directional interactions could be detected in the crystal.

Related literature

For background literature, see: Demchuk et al. (2011[Demchuk, D. V., Elinson, M. N. & Nikishin, G. I. (2011). Mendeleev Commun. 51, 224-225.]). For the crystal structure of a related compound, see: Spencer et al. (2010)[Spencer, J., Chowdhry, B. Z., Hamid, S., Mendham, A. P., Male, L., Coles, S. J. & Hursthouse, M. B. (2010). Acta Cryst. C66, o71-o78.].

[Scheme 1]

Experimental

Crystal data
  • C12H7N3O

  • Mr = 209.21

  • Monoclinic, P 21 /n

  • a = 6.9720 (14) Å

  • b = 9.929 (2) Å

  • c = 15.084 (3) Å

  • β = 100.25 (3)°

  • V = 1027.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.973, Tmax = 0.991

  • 2056 measured reflections

  • 1896 independent reflections

  • 1278 reflections with I > 2σ(I)

  • Rint = 0.081

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.176

  • S = 1.00

  • 1896 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound is an important intermediate in the synthesis of 2-(1-methyl-2-oxoindolin-3-yl)malononitrile, which in turn is a useful pharmaceutical intermediate (Demchuk et al., 2011). We report herein the crystal structure of the title compound.

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported in a closely related compound (Spencer et al., 2010). The crystal structure is devoid of any classic hydrogen bonds (Fig. 2).

Related literature top

For background literature, see: Demchuk et al. (2011). For the crystal structure of a related compound, see: Spencer et al. (2010). ).

Experimental top

A solution of 1-methylindoline-2,3-dione (8.1 g, 0.05 mol) in acetonitrile (20 ml) was added dropwise, while stirring, to malononitrile (6.6 g, 0.1 mol) dissolved in acetonitrile (10 ml), at room temperature. After stirring for 40 minutes, the precipitated 2-(1-methyl-2-oxoindolin-3-ylidene)malononitrile was filtered off and washed with 40 ml portions of acetonitrile, and the combined filtrates were concentrated under reduced pressure; yellow crytalline 2-(1-methyl-2-oxoindolin-3-ylidene)malononitrile, the title compound, was thus obtained (8.2 g; yield = 60%). The crystals suitable for X-ray diffraction were obtained by slow evaporation of EtOH solution.

Refinement top

All H atoms were placed geometrically at the distances of 0.93–0.97 Å for C—H and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Structure description top

The title compound is an important intermediate in the synthesis of 2-(1-methyl-2-oxoindolin-3-yl)malononitrile, which in turn is a useful pharmaceutical intermediate (Demchuk et al., 2011). We report herein the crystal structure of the title compound.

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported in a closely related compound (Spencer et al., 2010). The crystal structure is devoid of any classic hydrogen bonds (Fig. 2).

For background literature, see: Demchuk et al. (2011). For the crystal structure of a related compound, see: Spencer et al. (2010). ).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A unit cell packing diagram of the title compound.
2-(1-Methyl-2-oxoindolin-3-ylidene)malononitrile top
Crystal data top
C12H7N3OF(000) = 432
Mr = 209.21Dx = 1.352 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 6.9720 (14) Åθ = 9–13°
b = 9.929 (2) ŵ = 0.09 mm1
c = 15.084 (3) ÅT = 293 K
β = 100.25 (3)°Block, yellow
V = 1027.5 (4) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1278 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.081
Graphite monochromatorθmax = 25.4°, θmin = 2.5°
ω/2θ scansh = 08
Absorption correction: ψ scan
(North et al., 1968)
k = 011
Tmin = 0.973, Tmax = 0.991l = 1817
2056 measured reflections3 standard reflections every 200 reflections
1896 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.176 w = 1/[σ2(Fo2) + (0.1P)2 + 0.150P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1896 reflectionsΔρmax = 0.18 e Å3
146 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.082 (11)
Crystal data top
C12H7N3OV = 1027.5 (4) Å3
Mr = 209.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.9720 (14) ŵ = 0.09 mm1
b = 9.929 (2) ÅT = 293 K
c = 15.084 (3) Å0.30 × 0.20 × 0.10 mm
β = 100.25 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1278 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.081
Tmin = 0.973, Tmax = 0.9913 standard reflections every 200 reflections
2056 measured reflections intensity decay: 1%
1896 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.176H-atom parameters constrained
S = 1.00Δρmax = 0.18 e Å3
1896 reflectionsΔρmin = 0.19 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.0898 (3)0.2173 (2)0.80717 (13)0.0706 (7)
C10.0975 (4)0.0799 (3)0.83219 (16)0.0473 (7)
N10.1159 (4)0.3343 (3)0.86555 (18)0.0819 (9)
C20.1095 (4)0.2216 (3)0.85071 (18)0.0553 (7)
N20.0627 (5)0.0331 (3)0.66758 (18)0.0853 (9)
C30.0117 (4)0.0467 (3)0.74109 (18)0.0583 (8)
N30.2174 (3)0.2233 (2)0.95933 (14)0.0526 (6)
C40.1582 (3)0.0124 (2)0.89713 (16)0.0439 (6)
C50.1483 (4)0.1621 (3)0.87912 (17)0.0505 (7)
C60.2761 (3)0.1273 (2)1.02696 (16)0.0452 (6)
C70.3584 (4)0.1494 (3)1.11602 (17)0.0535 (7)
H7A0.38320.23611.13850.064*
C80.4027 (4)0.0373 (3)1.17050 (18)0.0560 (7)
H8A0.45730.04931.23090.067*
C90.3678 (4)0.0923 (3)1.13745 (17)0.0572 (7)
H9A0.39830.16541.17590.069*
C100.2876 (4)0.1141 (3)1.04742 (16)0.0492 (7)
H10A0.26490.20101.02500.059*
C110.2423 (3)0.0029 (2)0.99178 (15)0.0427 (6)
C120.2311 (5)0.3684 (3)0.9719 (2)0.0769 (10)
H12A0.18160.41260.91590.115*
H12B0.36490.39330.99170.115*
H12C0.15580.39511.01640.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.1073 (17)0.0532 (12)0.0506 (12)0.0063 (10)0.0123 (11)0.0123 (9)
C10.0525 (15)0.0477 (16)0.0421 (14)0.0037 (11)0.0098 (11)0.0010 (11)
N10.119 (2)0.0507 (17)0.0754 (19)0.0038 (15)0.0144 (16)0.0016 (14)
C20.0689 (18)0.0507 (17)0.0453 (15)0.0021 (13)0.0077 (12)0.0035 (13)
N20.116 (2)0.089 (2)0.0472 (15)0.0060 (17)0.0046 (14)0.0044 (14)
C30.077 (2)0.0517 (16)0.0466 (17)0.0008 (14)0.0122 (14)0.0018 (13)
N30.0735 (15)0.0372 (12)0.0488 (13)0.0004 (10)0.0155 (11)0.0023 (10)
C40.0474 (13)0.0426 (14)0.0429 (13)0.0025 (10)0.0112 (10)0.0025 (11)
C50.0622 (16)0.0464 (15)0.0452 (15)0.0013 (12)0.0155 (12)0.0052 (12)
C60.0472 (14)0.0453 (15)0.0451 (14)0.0006 (11)0.0135 (10)0.0006 (11)
C70.0581 (16)0.0550 (16)0.0482 (15)0.0048 (12)0.0118 (12)0.0078 (13)
C80.0581 (16)0.0666 (19)0.0415 (14)0.0021 (13)0.0042 (11)0.0007 (13)
C90.0619 (17)0.0606 (18)0.0477 (16)0.0066 (13)0.0060 (12)0.0107 (13)
C100.0545 (15)0.0454 (15)0.0475 (14)0.0045 (11)0.0089 (11)0.0044 (11)
C110.0436 (13)0.0444 (14)0.0408 (13)0.0025 (10)0.0095 (10)0.0011 (11)
C120.122 (3)0.0415 (17)0.072 (2)0.0048 (16)0.0294 (18)0.0016 (14)
Geometric parameters (Å, º) top
O—C51.220 (3)C6—C111.402 (3)
C1—C41.353 (4)C7—C81.386 (4)
C1—C21.434 (4)C7—H7A0.9300
C1—C31.436 (4)C8—C91.386 (4)
N1—C21.140 (4)C8—H8A0.9300
N2—C31.146 (3)C9—C101.390 (4)
N3—C51.363 (3)C9—H9A0.9300
N3—C61.403 (3)C10—C111.388 (3)
N3—C121.455 (4)C10—H10A0.9300
C4—C111.452 (3)C12—H12A0.9600
C4—C51.510 (4)C12—H12B0.9600
C6—C71.381 (3)C12—H12C0.9600
C4—C1—C2121.6 (2)C8—C7—H7A121.3
C4—C1—C3124.1 (2)C9—C8—C7121.8 (3)
C2—C1—C3114.3 (2)C9—C8—H8A119.1
N1—C2—C1178.9 (3)C7—C8—H8A119.1
N2—C3—C1173.3 (3)C8—C9—C10120.7 (3)
C5—N3—C6110.7 (2)C8—C9—H9A119.7
C5—N3—C12124.2 (2)C10—C9—H9A119.7
C6—N3—C12125.1 (2)C11—C10—C9118.4 (3)
C1—C4—C11131.3 (2)C11—C10—H10A120.8
C1—C4—C5122.5 (2)C9—C10—H10A120.8
C11—C4—C5106.1 (2)C10—C11—C6120.0 (2)
O—C5—N3126.8 (3)C10—C11—C4133.4 (2)
O—C5—C4126.9 (2)C6—C11—C4106.7 (2)
N3—C5—C4106.3 (2)N3—C12—H12A109.5
C7—C6—C11121.9 (2)N3—C12—H12B109.5
C7—C6—N3128.0 (2)H12A—C12—H12B109.5
C11—C6—N3110.1 (2)N3—C12—H12C109.5
C6—C7—C8117.3 (3)H12A—C12—H12C109.5
C6—C7—H7A121.3H12B—C12—H12C109.5
C2—C1—C4—C110.1 (4)C11—C6—C7—C81.5 (4)
C3—C1—C4—C11178.2 (2)N3—C6—C7—C8179.4 (2)
C2—C1—C4—C5179.6 (2)C6—C7—C8—C90.5 (4)
C3—C1—C4—C52.3 (4)C7—C8—C9—C100.4 (4)
C6—N3—C5—O178.5 (3)C8—C9—C10—C110.4 (4)
C12—N3—C5—O0.5 (4)C9—C10—C11—C60.5 (4)
C6—N3—C5—C41.6 (3)C9—C10—C11—C4179.6 (2)
C12—N3—C5—C4179.4 (2)C7—C6—C11—C101.6 (4)
C1—C4—C5—O1.0 (4)N3—C6—C11—C10179.3 (2)
C11—C4—C5—O178.6 (2)C7—C6—C11—C4179.1 (2)
C1—C4—C5—N3178.9 (2)N3—C6—C11—C40.0 (3)
C11—C4—C5—N31.5 (3)C1—C4—C11—C100.4 (5)
C5—N3—C6—C7178.0 (2)C5—C4—C11—C10179.9 (3)
C12—N3—C6—C70.9 (4)C1—C4—C11—C6179.6 (2)
C5—N3—C6—C111.1 (3)C5—C4—C11—C60.9 (3)
C12—N3—C6—C11179.9 (2)

Experimental details

Crystal data
Chemical formulaC12H7N3O
Mr209.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.9720 (14), 9.929 (2), 15.084 (3)
β (°) 100.25 (3)
V3)1027.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.973, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
2056, 1896, 1278
Rint0.081
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.176, 1.00
No. of reflections1896
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.19

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

 

References

First citationDemchuk, D. V., Elinson, M. N. & Nikishin, G. I. (2011). Mendeleev Commun. 51, 224–225.  Web of Science CrossRef Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpencer, J., Chowdhry, B. Z., Hamid, S., Mendham, A. P., Male, L., Coles, S. J. & Hursthouse, M. B. (2010). Acta Cryst. C66, o71–o78.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds