organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Di­methyl-4-oxo-3-oxatri­cyclo­[5.2.1.02,6]decane-1-carboxamide

aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01033 Kyiv, Ukraine
*Correspondence e-mail: 417lab@gmail.com

(Received 19 April 2013; accepted 21 June 2013; online 29 June 2013)

In the title compound, C12H17NO3, which was synthesized by Wagner–Meerwein rearrangement of the N-nitro­imine, the ring-junction C—C bond length is comparatively long [1.573 (2) Å] due to a steric repulsion between the methyl groups at these atoms, which also leads to an increase in the C—C—C angles along this C4 chain [118.10 (13) and 115.04 (15) °, respectively]. In the crystal, N—H⋯O—C and N—H⋯O=C hydrogen bonds are formed between the amide group and the two O-atom acceptors of the lactone group, forming a chain along [001].

Related literature

For applications of nitro­imines and their derivatives in organic synthesis, see: Squire et al. (2002[Squire, M. D., Burwell, A., Ferrence, G. M. & Hitchcock, S. R. (2002). Tetrahedron Asymmetry, 17, 1849-1854.]); Bulman Page et al. (2000[Bulman Page, P. C., Murrell, V. L., Limousin, C., Laffan, D. D. P., Bethell, D., Slawin, A. M. Z. & Smith, T. A. D. (2000). J. Org. Chem. 65, 4204-4207.]); Lalk et al. (1999[Lalk, M., Peseke, K. & Reinke, H. (1999). J. Prakt. Chem. 341, 552-556.]), as organocatalysts, see: Parrott, et al. (2008[Parrott, R. W. & Hitchcock, S. R. II (2008). Tetrahedron Asymmetry, 19, 19-26.]) and in medicinal chemistry, see: Ranise et al. (1990[Ranise, A., Bondavalli, F., Bruno, O., Schenone, P., Faillace, G., Coluccino, A., Filippelli, W., Di Sarno, A. & Marmo, E. (1990). Il Farmaco, 45, 187-202.]); Bondavalli et al. (1987[Bondavalli, F., Bruno, O., Ranise, A., Schenone, P., Susanna, V., Lisa, M., Maione, S. & Marmo, E. (1987). Il Farmaco, 42, 947-953.]). For bond angles in related structures, see: Noe et al. (1996[Noe, C. R., Knollmuller, M., Gartner, P., Mereiter, K. & Steinbauer, G. (1996). Liebigs Ann. pp. 1015-1021.]); Knollmuller et al. (1998[Knollmuller, M., Gartner, P., Ferencic, M., Noe, C. R. & Mereiter, K. (1998). Eur. J. Org. Chem. pp. 2507-2511.]).

[Scheme 1]

Experimental

Crystal data
  • C12H17NO3

  • Mr = 223.27

  • Triclinic, [P \overline 1]

  • a = 7.0659 (3) Å

  • b = 7.8206 (3) Å

  • c = 10.4595 (3) Å

  • α = 79.667 (2)°

  • β = 80.471 (2)°

  • γ = 81.579 (2)°

  • V = 556.69 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.25 × 0.2 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.986

  • 8729 measured reflections

  • 2405 independent reflections

  • 1754 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.141

  • S = 0.92

  • 2405 reflections

  • 213 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H10⋯O3i 0.91 (2) 2.17 (2) 3.065 (2) 168.7 (18)
N1—H11⋯O2ii 0.89 (2) 2.02 (3) 2.912 (2) 177 (2)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nitroimines and their derivatives have found a numerous applications in organic synthesis (Squire et al., 2002; Bulman Page et al., 2000; Lalk et al., 1999), as organocatalysis (Parrott, R. W. et al., 2008) and in medicinal chemistry (Ranise et al., 1990; Bondavalli, et al., 1987). Herein, we report synthesis and crystal structure of the title compound (II), the novel 3,7-dimethyl-3-oxohexahydro-4,7-methano-2-benzofuran-4(1H)-carboxamide , C12H17NO3 (Fig. 1)obtained via selective Wagner-Meerwein type rearrangement of potassium cyanide adducts of 1,7-dimethyl-2-(nitroimino)bicyclo[2.2.1]hept-7-ylacetic acid (I) (see Fig. 2).

In the structure of (II) (Fig. 1), angle deviations at Csp3 atoms range from 94.22 to 118.10 (16) °. Thus the C1—C7—C4 angle as in other previously reported compounds has a reduced value of 94.22 (12) ° (Noe et al., 1996; Knollmuller et al., 1998). Most bond distances for compound (I) were in the expected range however, the C5-C6 bond length is 1.573 (2) Å, which is apparently due to steric repulsion between the methyl groups on these atoms, this also leads to an increase in the angles C5C6C10 and C6C5C9 to 118.10 (13) and 115.04 (15) °, respectively. It is interesting to note that the bond O4—C6 is slightly longer (1.4714 (16) Å) and O4—C12 shorter (1.335 (2) Å) compared with the values previously found (average 1.45 and 1.36 Å, respectively). Intermolecular hydrogen bonds are formed through N—H···O—C and N—H···OC between the amide and two O-atom acceptors of lactone group. (Table 1).

Related literature top

For applications of nitroimines and their derivatives in organic synthesis, see: Squire et al. (2002); Bulman Page et al. (2000); Lalk et al. (1999), as organocatalysts, see: Parrott, et al. (2008) and in medicinal chemistry, see: Ranise et al. (1990); Bondavalli et al. (1987). For bond angles in related structures, see: Noe et al. (1996); Knollmuller et al. (1998).

For related literature, see: Bondavalli et al. (1987).

Experimental top

The synthesis of the nitroimine (I) (Fig. 2) was carried out as follows. A solution of compound I (1.00 g, 4.16 mmol) in methanol (10 ml) was added to a mixture of acetone cyanohydrin 2 mmol (0.708 g) and potassium hydroxide 1.5 mmol (0.35 g) in distilled water. The resulting mixture was stirred and refluxed for 20 min. After cooling in ice an excess of 3 N aqueous hydrochloric acid was added over 5 min with vigorous stirring. Almost immediate precipitation of carboxamide was accompanied by gas (N2O) evolution. The amide was filtered off, washed with distilled water (2x10 mL), dried in a vacuum desiccator overnight and recrystallized from absolute 2-propanol. Yield: 0.86 g 93%; m.p.: 253 °C. 1H NMR (400 MHz, [D6]DMSO, TMS, δ): 1.201 (s, 3 H), 1.516 (s, 3 H), 1.531–1.577 (m, 1 H), 1.630–1.95 (d, J=11.1Hz, 1H), 1.693–1.794 (m, 3 H), 1.952 (d, J=11.1, 1 H), 2.065 (bs, 1 H), 2.601 (s, 2 H); 13C{1H} NMR (100.70 MHz, [D6]DMSO, TMS, δ): 16.55, 20.76, 24.99, 28.53, 37.35, 44.82, 48.14, 49.56, 62.19, 97.18, 177.35,178.65; (KBr plates, cm -1): 3421.23, 3157.94, 1755.23, 1678.33.

Refinement top

Amide H-atoms were located in a difference-Fourier synthesis and both positional and displacement parameters were allowed to refine. Other hydrogen atoms were positioned geometrically, with C—H = 0.96–0.98 Å and were allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(methine or methylene C) or 1.5Ueq(methyl C). In the absence of a suitable heavy atom, the absolute configuration of the title compound could not be determined (1146 Friedel pairs).

Structure description top

Nitroimines and their derivatives have found a numerous applications in organic synthesis (Squire et al., 2002; Bulman Page et al., 2000; Lalk et al., 1999), as organocatalysis (Parrott, R. W. et al., 2008) and in medicinal chemistry (Ranise et al., 1990; Bondavalli, et al., 1987). Herein, we report synthesis and crystal structure of the title compound (II), the novel 3,7-dimethyl-3-oxohexahydro-4,7-methano-2-benzofuran-4(1H)-carboxamide , C12H17NO3 (Fig. 1)obtained via selective Wagner-Meerwein type rearrangement of potassium cyanide adducts of 1,7-dimethyl-2-(nitroimino)bicyclo[2.2.1]hept-7-ylacetic acid (I) (see Fig. 2).

In the structure of (II) (Fig. 1), angle deviations at Csp3 atoms range from 94.22 to 118.10 (16) °. Thus the C1—C7—C4 angle as in other previously reported compounds has a reduced value of 94.22 (12) ° (Noe et al., 1996; Knollmuller et al., 1998). Most bond distances for compound (I) were in the expected range however, the C5-C6 bond length is 1.573 (2) Å, which is apparently due to steric repulsion between the methyl groups on these atoms, this also leads to an increase in the angles C5C6C10 and C6C5C9 to 118.10 (13) and 115.04 (15) °, respectively. It is interesting to note that the bond O4—C6 is slightly longer (1.4714 (16) Å) and O4—C12 shorter (1.335 (2) Å) compared with the values previously found (average 1.45 and 1.36 Å, respectively). Intermolecular hydrogen bonds are formed through N—H···O—C and N—H···OC between the amide and two O-atom acceptors of lactone group. (Table 1).

For applications of nitroimines and their derivatives in organic synthesis, see: Squire et al. (2002); Bulman Page et al. (2000); Lalk et al. (1999), as organocatalysts, see: Parrott, et al. (2008) and in medicinal chemistry, see: Ranise et al. (1990); Bondavalli et al. (1987). For bond angles in related structures, see: Noe et al. (1996); Knollmuller et al. (1998).

For related literature, see: Bondavalli et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom nunbering scheme for the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The synthetic route to the title compound (II).
2,6-Dimethyl-4-oxo-3-oxatricyclo[5.2.1.02,6]decane-1-carboxamide top
Crystal data top
C12H17NO3F(000) = 240
Mr = 223.27Dx = 1.332 Mg m3
Triclinic, P1Melting point: 531 K
a = 7.0659 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.8206 (3) ÅCell parameters from 8729 reflections
c = 10.4595 (3) Åθ = 2.0–27.0°
α = 79.667 (2)°µ = 0.10 mm1
β = 80.471 (2)°T = 296 K
γ = 81.579 (2)°Block, colourless
V = 556.69 (4) Å30.25 × 0.2 × 0.15 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2405 independent reflections
Radiation source: fine-focus sealed tube1754 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 96
Tmin = 0.977, Tmax = 0.986k = 99
8729 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
2405 reflections(Δ/σ)max = 0.001
213 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C12H17NO3γ = 81.579 (2)°
Mr = 223.27V = 556.69 (4) Å3
Triclinic, P1Z = 2
a = 7.0659 (3) ÅMo Kα radiation
b = 7.8206 (3) ŵ = 0.10 mm1
c = 10.4595 (3) ÅT = 296 K
α = 79.667 (2)°0.25 × 0.2 × 0.15 mm
β = 80.471 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2405 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1754 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.986Rint = 0.037
8729 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 0.92Δρmax = 0.17 e Å3
2405 reflectionsΔρmin = 0.21 e Å3
213 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3999 (2)0.54171 (18)0.34083 (15)0.0369 (4)
O20.33949 (19)0.33578 (16)0.51638 (12)0.0494 (4)
O30.5612 (2)0.31087 (19)0.04693 (13)0.0603 (4)
O40.45280 (15)0.25378 (14)0.16493 (10)0.0347 (3)
C10.1850 (2)0.32889 (19)0.33196 (14)0.0273 (4)
C20.0143 (2)0.2540 (2)0.42730 (17)0.0375 (4)
C30.1362 (3)0.2492 (3)0.3377 (2)0.0484 (5)
C40.0303 (2)0.3074 (2)0.20074 (19)0.0429 (4)
C50.1373 (2)0.1653 (2)0.16319 (15)0.0358 (4)
C60.2885 (2)0.18268 (18)0.25359 (14)0.0269 (3)
C70.0779 (3)0.4509 (2)0.22716 (19)0.0381 (4)
C80.3163 (2)0.4028 (2)0.40296 (15)0.0298 (4)
C90.0736 (4)0.0173 (3)0.1799 (2)0.0540 (5)
C100.3770 (3)0.0174 (2)0.33196 (19)0.0393 (4)
C110.2432 (3)0.2168 (3)0.02428 (19)0.0523 (5)
C120.4339 (3)0.2662 (2)0.03857 (16)0.0404 (4)
H40.113 (3)0.340 (3)0.133 (2)0.060 (6)*
H210.057 (2)0.134 (2)0.4786 (17)0.039 (5)*
H220.035 (3)0.332 (2)0.4956 (19)0.048 (5)*
H310.255 (3)0.336 (3)0.358 (2)0.064 (6)*
H320.182 (3)0.137 (3)0.347 (2)0.059 (6)*
H710.003 (3)0.545 (3)0.2658 (18)0.051 (5)*
H720.165 (2)0.501 (2)0.1515 (17)0.035 (5)*
H910.027 (3)0.063 (3)0.274 (2)0.063 (6)*
H920.029 (4)0.010 (4)0.128 (3)0.090 (8)*
H930.177 (3)0.102 (3)0.143 (2)0.068 (7)*
H1010.470 (4)0.049 (3)0.379 (2)0.070 (7)*
H1020.277 (3)0.046 (3)0.391 (2)0.055 (6)*
H1030.446 (3)0.060 (3)0.270 (2)0.063 (6)*
H1100.171 (4)0.314 (3)0.025 (2)0.082 (8)*
H1110.267 (3)0.131 (3)0.027 (3)0.078 (8)*
H100.397 (3)0.577 (3)0.253 (2)0.054 (6)*
H110.479 (3)0.583 (3)0.383 (2)0.059 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0469 (8)0.0356 (8)0.0328 (8)0.0195 (6)0.0102 (7)0.0014 (6)
O20.0690 (9)0.0520 (8)0.0344 (7)0.0301 (6)0.0203 (6)0.0048 (6)
O30.0725 (9)0.0650 (9)0.0380 (8)0.0219 (7)0.0160 (7)0.0052 (6)
O40.0331 (6)0.0417 (6)0.0298 (6)0.0112 (5)0.0009 (5)0.0062 (5)
C10.0274 (7)0.0269 (7)0.0283 (8)0.0067 (6)0.0041 (6)0.0032 (6)
C20.0325 (8)0.0410 (10)0.0392 (10)0.0121 (7)0.0039 (7)0.0087 (8)
C30.0284 (9)0.0539 (12)0.0643 (13)0.0113 (8)0.0026 (8)0.0118 (10)
C40.0378 (9)0.0455 (10)0.0491 (11)0.0073 (7)0.0221 (8)0.0013 (8)
C50.0419 (9)0.0398 (9)0.0309 (9)0.0144 (7)0.0121 (7)0.0051 (7)
C60.0284 (7)0.0282 (7)0.0244 (7)0.0103 (6)0.0010 (6)0.0019 (6)
C70.0376 (9)0.0300 (8)0.0464 (10)0.0018 (7)0.0136 (8)0.0005 (8)
C80.0334 (8)0.0284 (7)0.0291 (8)0.0060 (6)0.0049 (6)0.0066 (6)
C90.0637 (13)0.0500 (12)0.0584 (14)0.0241 (10)0.0141 (11)0.0167 (10)
C100.0441 (10)0.0319 (9)0.0406 (10)0.0016 (7)0.0089 (8)0.0016 (7)
C110.0651 (13)0.0670 (14)0.0298 (10)0.0192 (11)0.0124 (9)0.0069 (9)
C120.0536 (10)0.0378 (9)0.0277 (9)0.0099 (8)0.0020 (8)0.0034 (7)
Geometric parameters (Å, º) top
N1—C81.326 (2)C4—C51.552 (2)
N1—H100.91 (2)C4—H40.97 (2)
N1—H110.89 (2)C5—C91.531 (2)
O2—C81.2349 (19)C5—C111.533 (3)
O3—C121.202 (2)C5—C61.573 (2)
O4—C121.335 (2)C6—C101.513 (2)
O4—C61.4714 (16)C7—H710.97 (2)
C1—C81.512 (2)C7—H720.979 (16)
C1—C71.540 (2)C9—H911.00 (2)
C1—C21.546 (2)C9—H920.97 (3)
C1—C61.551 (2)C9—H930.99 (2)
C2—C31.538 (3)C10—H1010.97 (3)
C2—H211.027 (18)C10—H1020.99 (2)
C2—H221.01 (2)C10—H1030.98 (2)
C3—C41.526 (3)C11—C121.492 (3)
C3—H311.02 (2)C11—H1100.96 (3)
C3—H320.96 (2)C11—H1110.91 (3)
C4—C71.534 (2)
C8—N1—H10120.3 (13)O4—C6—C1107.26 (11)
C8—N1—H11117.4 (14)C10—C6—C1116.77 (13)
H10—N1—H11121.0 (19)O4—C6—C5106.01 (11)
C12—O4—C6112.40 (12)C10—C6—C5118.10 (13)
C8—C1—C7119.50 (13)C1—C6—C5103.22 (11)
C8—C1—C2111.80 (12)C4—C7—C194.22 (12)
C7—C1—C2101.23 (13)C4—C7—H71115.3 (12)
C8—C1—C6114.09 (12)C1—C7—H71109.9 (12)
C7—C1—C6101.17 (12)C4—C7—H72114.6 (10)
C2—C1—C6107.58 (12)C1—C7—H72113.0 (10)
C3—C2—C1103.89 (13)H71—C7—H72109.2 (15)
C3—C2—H21113.5 (10)O2—C8—N1122.17 (15)
C1—C2—H21111.5 (9)O2—C8—C1119.81 (13)
C3—C2—H22112.5 (11)N1—C8—C1118.00 (14)
C1—C2—H22109.8 (10)C5—C9—H91111.8 (13)
H21—C2—H22105.7 (14)C5—C9—H92108.2 (16)
C4—C3—C2102.89 (13)H91—C9—H92109.9 (18)
C4—C3—H31110.1 (12)C5—C9—H93112.0 (13)
C2—C3—H31110.3 (13)H91—C9—H93110.3 (18)
C4—C3—H32113.3 (13)H92—C9—H93104 (2)
C2—C3—H32114.1 (13)C6—C10—H101108.3 (13)
H31—C3—H32106.1 (17)C6—C10—H102111.6 (11)
C3—C4—C7101.05 (15)H101—C10—H102112.2 (18)
C3—C4—C5110.33 (14)C6—C10—H103108.2 (12)
C7—C4—C5102.39 (13)H101—C10—H103108.1 (18)
C3—C4—H4114.4 (11)H102—C10—H103108.2 (17)
C7—C4—H4117.0 (12)C12—C11—C5107.10 (15)
C5—C4—H4110.7 (12)C12—C11—H110109.9 (15)
C9—C5—C11110.84 (16)C5—C11—H110111.7 (14)
C9—C5—C4113.29 (15)C12—C11—H111107.6 (16)
C11—C5—C4111.81 (16)C5—C11—H111115.3 (16)
C9—C5—C6115.04 (15)H110—C11—H111105 (2)
C11—C5—C6103.15 (13)O3—C12—O4120.98 (17)
C4—C5—C6102.04 (12)O3—C12—C11127.97 (17)
O4—C6—C10104.66 (12)O4—C12—C11111.04 (14)
C8—C1—C2—C3160.01 (14)C4—C5—C6—O4111.46 (12)
C7—C1—C2—C331.68 (16)C9—C5—C6—C108.6 (2)
C6—C1—C2—C373.98 (16)C11—C5—C6—C10112.21 (17)
C1—C2—C3—C44.31 (18)C4—C5—C6—C10131.69 (15)
C2—C3—C4—C739.09 (17)C9—C5—C6—C1121.93 (16)
C2—C3—C4—C568.70 (18)C11—C5—C6—C1117.25 (14)
C3—C4—C5—C952.1 (2)C4—C5—C6—C11.15 (14)
C7—C4—C5—C9159.00 (16)C3—C4—C7—C157.55 (14)
C3—C4—C5—C11178.22 (15)C5—C4—C7—C156.36 (15)
C7—C4—C5—C1174.89 (17)C8—C1—C7—C4177.35 (13)
C3—C4—C5—C672.16 (15)C2—C1—C7—C454.16 (15)
C7—C4—C5—C634.74 (15)C6—C1—C7—C456.51 (14)
C12—O4—C6—C10119.82 (15)C7—C1—C8—O2150.48 (16)
C12—O4—C6—C1115.51 (14)C2—C1—C8—O232.62 (19)
C12—O4—C6—C55.73 (16)C6—C1—C8—O289.74 (17)
C8—C1—C6—O454.29 (15)C7—C1—C8—N128.0 (2)
C7—C1—C6—O475.35 (13)C2—C1—C8—N1145.89 (14)
C2—C1—C6—O4178.94 (11)C6—C1—C8—N191.76 (16)
C8—C1—C6—C1062.68 (18)C9—C5—C11—C12125.98 (18)
C7—C1—C6—C10167.67 (14)C4—C5—C11—C12106.57 (18)
C2—C1—C6—C1061.96 (18)C6—C5—C11—C122.3 (2)
C8—C1—C6—C5165.99 (12)C6—O4—C12—O3175.02 (14)
C7—C1—C6—C536.34 (13)C6—O4—C12—C114.3 (2)
C2—C1—C6—C569.37 (14)C5—C11—C12—O3178.28 (17)
C9—C5—C6—O4125.45 (15)C5—C11—C12—O41.0 (2)
C11—C5—C6—O44.64 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H10···O3i0.91 (2)2.17 (2)3.065 (2)168.7 (18)
N1—H11···O2ii0.89 (2)2.02 (3)2.912 (2)177 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H17NO3
Mr223.27
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.0659 (3), 7.8206 (3), 10.4595 (3)
α, β, γ (°)79.667 (2), 80.471 (2), 81.579 (2)
V3)556.69 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.2 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.977, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
8729, 2405, 1754
Rint0.037
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.141, 0.92
No. of reflections2405
No. of parameters213
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.21

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H10···O3i0.91 (2)2.17 (2)3.065 (2)168.7 (18)
N1—H11···O2ii0.89 (2)2.02 (3)2.912 (2)177 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1.
 

References

First citationBondavalli, F., Bruno, O., Ranise, A., Schenone, P., Susanna, V., Lisa, M., Maione, S. & Marmo, E. (1987). Il Farmaco, 42, 947–953.  CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBulman Page, P. C., Murrell, V. L., Limousin, C., Laffan, D. D. P., Bethell, D., Slawin, A. M. Z. & Smith, T. A. D. (2000). J. Org. Chem. 65, 4204–4207.  PubMed Google Scholar
First citationKnollmuller, M., Gartner, P., Ferencic, M., Noe, C. R. & Mereiter, K. (1998). Eur. J. Org. Chem. pp. 2507–2511.  Google Scholar
First citationLalk, M., Peseke, K. & Reinke, H. (1999). J. Prakt. Chem. 341, 552–556.  CrossRef CAS Google Scholar
First citationNoe, C. R., Knollmuller, M., Gartner, P., Mereiter, K. & Steinbauer, G. (1996). Liebigs Ann. pp. 1015–1021.  Google Scholar
First citationParrott, R. W. & Hitchcock, S. R. II (2008). Tetrahedron Asymmetry, 19, 19–26.  Web of Science CrossRef CAS Google Scholar
First citationRanise, A., Bondavalli, F., Bruno, O., Schenone, P., Faillace, G., Coluccino, A., Filippelli, W., Di Sarno, A. & Marmo, E. (1990). Il Farmaco, 45, 187–202.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSquire, M. D., Burwell, A., Ferrence, G. M. & Hitchcock, S. R. (2002). Tetrahedron Asymmetry, 17, 1849–1854.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds