metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-6-meth­­oxy-2-{[(3-oxidoprop­yl)imino]­meth­yl}phenolato)nickel(II) methanol monosolvate

aDepartment of Chemistry and Chemical Engineering, Daqing Normal University, Daqing, Heilongjiang 1637121, People's Republic of China
*Correspondence e-mail: qmfk09@gmail.com

(Received 22 April 2013; accepted 21 June 2013; online 29 June 2013)

The mol­ecular structure of the title complex, [Ni2(C11H13NO3)2]·CH3OH, contains two NiII atoms and two doubly deprotonated 6-meth­oxy-2-{[(3-oxidoprop­yl)imino]­meth­yl}phenolate ligands. The NiII atoms are each four-coordinated in a distorted square-planar geometry by three O atoms and one N atom derived from the phenolate ligands. The solvent mol­ecule is linked to the complex mol­ecule by two O—H⋯O hydrogen bonds.

Related literature

For the structures and potential applications in magnetism and catalysis of metal clusters, see: Long et al. (2010[Long, J. L., Chamoreau, M. & Marvaud, V. (2010). Dalton Trans. 39, 2188-2190.]); Mondal et al. (2011[Mondal, K. C., Kostakis, G. E., Lan, Y. H., Wernsdorfer, W., Anson, C. E. & Powell, A. K. (2011). Inorg. Chem. 50, 11604-11611.]). Schiff bases have been widely investigated in this regard, see: Sarwar et al. (2011[Sarwar, M., Madalan, A. M., Lloret, F., Julve, M. & Andruh, M. (2011). Polyhedron, 30, 2414-2420.]). For cluster complexes based on Schiff bases, see: Costes et al. (1998[Costes, J. P., Dahan, F., Fernandez Fernandez, M. B., Fernandez Garcia, M. I., Garcia Deibe, A. M. & Sanmartin, J. (1998). Inorg. Chim. Acta, 274, 73-81.]); Mondal et al. (2011[Mondal, K. C., Kostakis, G. E., Lan, Y. H., Wernsdorfer, W., Anson, C. E. & Powell, A. K. (2011). Inorg. Chem. 50, 11604-11611.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(C11H13NO3)2]·CH4O

  • Mr = 563.87

  • Monoclinic, C 2/c

  • a = 23.673 (5) Å

  • b = 8.3124 (17) Å

  • c = 25.546 (5) Å

  • β = 113.25 (3)°

  • V = 4618.6 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.68 mm−1

  • T = 150 K

  • 0.26 × 0.24 × 0.22 mm

Data collection
  • Rigaku SCX-mini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.669, Tmax = 0.709

  • 19153 measured reflections

  • 5257 independent reflections

  • 4285 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.080

  • S = 1.01

  • 5257 reflections

  • 312 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O1 1.9107 (16)
Ni1—O5 1.9208 (16)
Ni1—O2 1.9224 (16)
Ni1—N1 1.9314 (19)
Ni2—O4 1.8936 (16)
Ni2—O2 1.9197 (16)
Ni2—O5 1.9208 (16)
Ni2—N2 1.9366 (19)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7⋯O1 0.86 (1) 2.05 (1) 2.893 (3) 170 (3)
O7—H7⋯O3 0.86 (1) 2.64 (3) 3.178 (3) 122 (3)

Data collection: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Interest in the rational design and synthesis of metal clusters has mushroomed recently, due to their fascinating structures and potential applications in magnetism and catalysis (Mondal et al. 2011; Long et al. 2010). Schiff bases are widely investigated in this regard (Sarwar et al. 2011). Previous reports of a series of 3d cluster complexes based on Schiff bases, have appeared (Mondal et al. 2011; Costes et al. 1998). Herein, we report a new NiII complex assembled from the flexible schiff base (2-(((3-hydroxypropyl)imino)methyl)-6-methoxyphenol).

As shown in Fig.1, The molecular structure consists of two NiII atoms and two doubly deprotonated 2-(((3-hydroxypropyl)imino)methyl)-6-methoxyphenols. The compound crystallized with one molecule of methanol per asymmetric unit. The methanol is hydrogen bonded to O1 and O3. The NiII atoms are four-coordinated. Four coordination arises from three O and one N atoms derived from two different ligands.The Ni—O distances range from 1.8936 (16)to 1.9208 (16) Å and the Ni—N distances range from 1.9314 (19) to 1.9366 (19) Å, while the O—Ni—O angles range from 76.22 (7) to 168.20 (6)° and the O—Ni—N angles range from 94.61 (8) to 170.39 (8)°.

Related literature top

For the structures and potential applications in magnetism and catalysis of metal clusters, see: Long et al. (2010); Mondal et al. (2011). Schiff bases have been widely investigated in this regard, see: Sarwar et al. (2011). For cluster complexes based on Schiff bases, see: Costes et al. (1998); Mondal et al. (2011). [The scheme should show the solvent molecule]

Experimental top

Treatment of 2-(((3-hydroxypropyl)imino)methyl)-6-methoxyphenol (0.1 mmol, 0.0209 g) with NiCl2(0.1 mmol, 0.0238 g) in MeOH (30 ml) gave a green solution. This reaction mixture was stirred for 30 min and then filtered. The solution then stood without perturbation for several days. Green crystals were collected by filtration and air-dried.

Refinement top

H atoms bonded to C were positioned with idealized geometry using a riding model with the aromatic, methylene and methine C—H = 0.948–0.991 Å and the methyl C—H = 0.979–0.981 Å. All H atoms were refined with isotropic displacement parameters set at 1.2Ueq(C-aromatic, methylene and methine) and 1.5Ueq (C-methyl).

Structure description top

Interest in the rational design and synthesis of metal clusters has mushroomed recently, due to their fascinating structures and potential applications in magnetism and catalysis (Mondal et al. 2011; Long et al. 2010). Schiff bases are widely investigated in this regard (Sarwar et al. 2011). Previous reports of a series of 3d cluster complexes based on Schiff bases, have appeared (Mondal et al. 2011; Costes et al. 1998). Herein, we report a new NiII complex assembled from the flexible schiff base (2-(((3-hydroxypropyl)imino)methyl)-6-methoxyphenol).

As shown in Fig.1, The molecular structure consists of two NiII atoms and two doubly deprotonated 2-(((3-hydroxypropyl)imino)methyl)-6-methoxyphenols. The compound crystallized with one molecule of methanol per asymmetric unit. The methanol is hydrogen bonded to O1 and O3. The NiII atoms are four-coordinated. Four coordination arises from three O and one N atoms derived from two different ligands.The Ni—O distances range from 1.8936 (16)to 1.9208 (16) Å and the Ni—N distances range from 1.9314 (19) to 1.9366 (19) Å, while the O—Ni—O angles range from 76.22 (7) to 168.20 (6)° and the O—Ni—N angles range from 94.61 (8) to 170.39 (8)°.

For the structures and potential applications in magnetism and catalysis of metal clusters, see: Long et al. (2010); Mondal et al. (2011). Schiff bases have been widely investigated in this regard, see: Sarwar et al. (2011). For cluster complexes based on Schiff bases, see: Costes et al. (1998); Mondal et al. (2011). [The scheme should show the solvent molecule]

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2002); cell refinement: CrystalClear (Rigaku/MSC, 2002); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
Bis(µ-6-methoxy-2-{[(3-oxidopropyl)imino]methyl}phenolato)nickel(II) methanol monosolvate top
Crystal data top
[Ni2(C11H13NO3)2]·CH4OF(000) = 2352
Mr = 563.87Dx = 1.622 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4060 reflections
a = 23.673 (5) Åθ = 3.0–25.0°
b = 8.3124 (17) ŵ = 1.68 mm1
c = 25.546 (5) ÅT = 150 K
β = 113.25 (3)°Strip, green
V = 4618.6 (19) Å30.26 × 0.24 × 0.22 mm
Z = 8
Data collection top
Rigaku SCX-mini
diffractometer
5257 independent reflections
Radiation source: fine-focus sealed tube4285 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scanh = 3030
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2002)
k = 1010
Tmin = 0.669, Tmax = 0.709l = 3329
19153 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.035P)2 + 2.8P]
where P = (Fo2 + 2Fc2)/3
5257 reflections(Δ/σ)max = 0.008
312 parametersΔρmax = 0.66 e Å3
1 restraintΔρmin = 0.48 e Å3
Crystal data top
[Ni2(C11H13NO3)2]·CH4OV = 4618.6 (19) Å3
Mr = 563.87Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.673 (5) ŵ = 1.68 mm1
b = 8.3124 (17) ÅT = 150 K
c = 25.546 (5) Å0.26 × 0.24 × 0.22 mm
β = 113.25 (3)°
Data collection top
Rigaku SCX-mini
diffractometer
5257 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2002)
4285 reflections with I > 2σ(I)
Tmin = 0.669, Tmax = 0.709Rint = 0.054
19153 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.66 e Å3
5257 reflectionsΔρmin = 0.48 e Å3
312 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.273493 (12)0.05940 (4)0.051281 (10)0.01554 (8)
Ni20.246815 (12)0.08519 (4)0.157085 (11)0.01621 (8)
O10.34489 (7)0.1069 (2)0.03665 (6)0.0228 (4)
O20.21543 (7)0.0084 (2)0.08231 (6)0.0250 (4)
O30.44965 (7)0.2040 (2)0.03304 (7)0.0304 (4)
O40.17478 (7)0.0344 (2)0.16894 (6)0.0228 (4)
O50.30896 (7)0.1335 (2)0.12876 (6)0.0243 (4)
O60.05845 (7)0.0169 (2)0.15204 (7)0.0312 (4)
N10.22146 (8)0.0105 (3)0.02692 (8)0.0226 (4)
N20.29151 (8)0.1639 (2)0.23379 (7)0.0216 (4)
C10.34845 (10)0.1070 (3)0.01367 (9)0.0200 (5)
C20.40454 (11)0.1544 (3)0.01745 (10)0.0233 (5)
C30.41158 (12)0.1499 (3)0.06854 (10)0.0274 (5)
H3A0.44970.18010.06990.033*
C40.36276 (12)0.1009 (3)0.11851 (10)0.0289 (6)
H4A0.36800.09630.15350.035*
C50.30789 (12)0.0601 (3)0.11677 (10)0.0265 (5)
H5A0.27460.03000.15090.032*
C60.29953 (11)0.0617 (3)0.06476 (9)0.0216 (5)
C70.23979 (11)0.0173 (3)0.06808 (9)0.0232 (5)
H7A0.21030.01040.10480.028*
C80.15658 (10)0.0337 (3)0.04174 (10)0.0274 (6)
H8A0.13900.07730.08100.033*
H8B0.13300.06380.04080.033*
C90.15020 (11)0.1576 (3)0.00104 (10)0.0271 (5)
H9A0.18170.24230.00540.033*
H9B0.10930.20900.01870.033*
C100.15745 (10)0.0860 (3)0.05594 (10)0.0260 (5)
H10A0.12410.00720.05010.031*
H10B0.15390.17230.08120.031*
C110.50708 (11)0.2516 (4)0.03119 (12)0.0367 (6)
H11A0.53560.28440.06940.055*
H11B0.50030.34200.00480.055*
H11C0.52460.16090.01820.055*
C120.15950 (10)0.1012 (3)0.20764 (9)0.0205 (5)
C130.09631 (11)0.0956 (3)0.20039 (10)0.0249 (5)
C140.07727 (12)0.1647 (3)0.23951 (10)0.0286 (5)
H14A0.03490.16360.23290.034*
C150.11962 (12)0.2371 (3)0.28913 (10)0.0299 (6)
H15A0.10620.28160.31650.036*
C160.18039 (12)0.2430 (3)0.29772 (10)0.0272 (5)
H16A0.20920.29050.33160.033*
C170.20091 (10)0.1796 (3)0.25705 (9)0.0214 (5)
C180.26536 (11)0.1982 (3)0.26820 (9)0.0224 (5)
H18A0.29100.23970.30450.027*
C190.35845 (10)0.1872 (3)0.25486 (9)0.0250 (5)
H19A0.37900.08100.26240.030*
H19B0.37280.24720.29130.030*
C200.37658 (10)0.2792 (3)0.21225 (9)0.0243 (5)
H20A0.35050.37630.19980.029*
H20B0.41980.31540.23160.029*
C210.37039 (10)0.1813 (3)0.16008 (9)0.0240 (5)
H21A0.38490.24640.13530.029*
H21B0.39680.08460.17220.029*
C220.00543 (12)0.0121 (4)0.14189 (13)0.0403 (7)
H22A0.02790.04870.10690.060*
H22B0.02160.12200.13770.060*
H22C0.01060.04030.17410.060*
O70.44563 (9)0.0862 (3)0.11244 (8)0.0405 (5)
H70.4192 (13)0.020 (3)0.0904 (12)0.061*
C230.49869 (12)0.0019 (4)0.14902 (11)0.0402 (7)
H23A0.51150.07470.12660.060*
H23B0.53200.07850.16780.060*
H23C0.48920.05640.17790.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01219 (14)0.02092 (16)0.01395 (13)0.00189 (11)0.00562 (10)0.00251 (11)
Ni20.01350 (14)0.02149 (17)0.01487 (13)0.00278 (11)0.00690 (10)0.00266 (11)
O10.0187 (8)0.0319 (10)0.0189 (7)0.0028 (7)0.0087 (6)0.0014 (7)
O20.0197 (8)0.0364 (10)0.0207 (7)0.0093 (7)0.0099 (6)0.0073 (7)
O30.0208 (8)0.0414 (12)0.0306 (9)0.0084 (8)0.0119 (7)0.0045 (8)
O40.0189 (8)0.0287 (10)0.0233 (8)0.0023 (7)0.0111 (6)0.0030 (7)
O50.0181 (8)0.0356 (10)0.0205 (8)0.0074 (7)0.0090 (6)0.0064 (7)
O60.0176 (8)0.0428 (12)0.0338 (9)0.0018 (8)0.0108 (7)0.0027 (9)
N10.0189 (9)0.0256 (11)0.0217 (9)0.0010 (8)0.0065 (7)0.0024 (9)
N20.0200 (9)0.0243 (11)0.0199 (9)0.0019 (8)0.0074 (7)0.0003 (8)
C10.0233 (11)0.0175 (12)0.0201 (10)0.0039 (9)0.0095 (9)0.0018 (9)
C20.0242 (12)0.0207 (13)0.0268 (11)0.0003 (10)0.0119 (9)0.0015 (10)
C30.0299 (13)0.0256 (14)0.0337 (13)0.0013 (11)0.0201 (10)0.0042 (11)
C40.0387 (14)0.0304 (15)0.0239 (11)0.0058 (11)0.0192 (10)0.0051 (11)
C50.0312 (13)0.0290 (14)0.0196 (11)0.0044 (11)0.0104 (9)0.0011 (10)
C60.0232 (11)0.0219 (13)0.0214 (11)0.0033 (9)0.0108 (9)0.0014 (9)
C70.0234 (11)0.0237 (13)0.0203 (10)0.0024 (10)0.0064 (9)0.0014 (10)
C80.0186 (11)0.0362 (16)0.0238 (11)0.0024 (10)0.0046 (9)0.0028 (11)
C90.0217 (11)0.0296 (14)0.0283 (12)0.0066 (10)0.0079 (9)0.0047 (11)
C100.0181 (11)0.0352 (15)0.0255 (11)0.0078 (10)0.0096 (9)0.0037 (11)
C110.0248 (13)0.0405 (17)0.0486 (15)0.0074 (12)0.0186 (11)0.0023 (13)
C120.0243 (11)0.0182 (12)0.0221 (11)0.0034 (9)0.0126 (9)0.0049 (9)
C130.0243 (12)0.0268 (14)0.0258 (11)0.0012 (10)0.0122 (9)0.0047 (10)
C140.0276 (12)0.0270 (14)0.0379 (13)0.0050 (11)0.0202 (10)0.0066 (12)
C150.0408 (15)0.0255 (14)0.0339 (13)0.0048 (12)0.0258 (11)0.0008 (11)
C160.0393 (14)0.0220 (13)0.0263 (12)0.0005 (11)0.0193 (10)0.0011 (10)
C170.0268 (12)0.0186 (12)0.0218 (10)0.0008 (10)0.0128 (9)0.0019 (10)
C180.0277 (12)0.0205 (13)0.0185 (10)0.0030 (10)0.0087 (8)0.0003 (9)
C190.0198 (11)0.0324 (14)0.0201 (10)0.0034 (10)0.0051 (8)0.0005 (10)
C200.0190 (11)0.0282 (14)0.0247 (11)0.0065 (10)0.0076 (9)0.0033 (10)
C210.0180 (11)0.0310 (14)0.0237 (11)0.0059 (10)0.0087 (8)0.0043 (11)
C220.0203 (13)0.0457 (18)0.0537 (17)0.0018 (12)0.0132 (12)0.0038 (15)
O70.0350 (11)0.0377 (12)0.0408 (11)0.0060 (9)0.0065 (8)0.0008 (9)
C230.0272 (14)0.0532 (19)0.0359 (14)0.0087 (13)0.0081 (11)0.0026 (14)
Geometric parameters (Å, º) top
Ni1—O11.9107 (16)C9—H9A0.9900
Ni1—O51.9208 (16)C9—H9B0.9900
Ni1—O21.9224 (16)C10—H10A0.9900
Ni1—N11.9314 (19)C10—H10B0.9900
Ni2—O41.8936 (16)C11—H11A0.9800
Ni2—O21.9197 (16)C11—H11B0.9800
Ni2—O51.9208 (16)C11—H11C0.9800
Ni2—N21.9366 (19)C12—C171.415 (3)
O1—C11.321 (2)C12—C131.434 (3)
O2—C101.422 (3)C13—C141.374 (3)
O3—C21.373 (3)C14—C151.404 (4)
O3—C111.434 (3)C14—H14A0.9500
O4—C121.304 (3)C15—C161.368 (3)
O5—C211.412 (3)C15—H15A0.9500
O6—C131.372 (3)C16—C171.411 (3)
O6—C221.430 (3)C16—H16A0.9500
N1—C71.288 (3)C17—C181.445 (3)
N1—C81.476 (3)C18—H18A0.9500
N2—C181.291 (3)C19—C201.524 (3)
N2—C191.471 (3)C19—H19A0.9900
C1—C61.412 (3)C19—H19B0.9900
C1—C21.425 (3)C20—C211.518 (3)
C2—C31.380 (3)C20—H20A0.9900
C3—C41.402 (4)C20—H20B0.9900
C3—H3A0.9500C21—H21A0.9900
C4—C51.360 (4)C21—H21B0.9900
C4—H4A0.9500C22—H22A0.9800
C5—C61.419 (3)C22—H22B0.9800
C5—H5A0.9500C22—H22C0.9800
C6—C71.431 (3)O7—C231.420 (3)
C7—H7A0.9500O7—H70.855 (10)
C8—C91.513 (3)C23—H23A0.9800
C8—H8A0.9900C23—H23B0.9800
C8—H8B0.9900C23—H23C0.9800
C9—C101.519 (3)
O1—Ni1—O594.29 (7)C9—C10—H10A109.5
O1—Ni1—O2166.63 (7)O2—C10—H10B109.5
O5—Ni1—O276.22 (7)C9—C10—H10B109.5
O1—Ni1—N195.36 (8)H10A—C10—H10B108.1
O5—Ni1—N1166.94 (8)O3—C11—H11A109.5
O2—Ni1—N195.57 (8)O3—C11—H11B109.5
O4—Ni2—O292.84 (7)H11A—C11—H11B109.5
O4—Ni2—O5168.20 (6)O3—C11—H11C109.5
O2—Ni2—O576.29 (7)H11A—C11—H11C109.5
O4—Ni2—N294.61 (8)H11B—C11—H11C109.5
O2—Ni2—N2170.39 (8)O4—C12—C17124.8 (2)
O5—Ni2—N296.71 (7)O4—C12—C13118.4 (2)
C1—O1—Ni1126.27 (14)C17—C12—C13116.8 (2)
C10—O2—Ni2125.24 (14)O6—C13—C14124.7 (2)
C10—O2—Ni1130.61 (13)O6—C13—C12114.2 (2)
Ni2—O2—Ni1103.45 (8)C14—C13—C12121.2 (2)
C2—O3—C11116.59 (19)C13—C14—C15120.9 (2)
C12—O4—Ni2124.27 (15)C13—C14—H14A119.5
C21—O5—Ni2128.02 (13)C15—C14—H14A119.5
C21—O5—Ni1127.41 (13)C16—C15—C14119.4 (2)
Ni2—O5—Ni1103.47 (7)C16—C15—H15A120.3
C13—O6—C22116.4 (2)C14—C15—H15A120.3
C7—N1—C8116.96 (19)C15—C16—C17121.0 (2)
C7—N1—Ni1123.55 (16)C15—C16—H16A119.5
C8—N1—Ni1119.47 (15)C17—C16—H16A119.5
C18—N2—C19117.29 (19)C16—C17—C12120.7 (2)
C18—N2—Ni2123.11 (16)C16—C17—C18117.3 (2)
C19—N2—Ni2119.60 (14)C12—C17—C18122.0 (2)
O1—C1—C6123.7 (2)N2—C18—C17126.5 (2)
O1—C1—C2119.0 (2)N2—C18—H18A116.8
C6—C1—C2117.2 (2)C17—C18—H18A116.8
O3—C2—C3123.8 (2)N2—C19—C20111.77 (18)
O3—C2—C1114.80 (19)N2—C19—H19A109.3
C3—C2—C1121.4 (2)C20—C19—H19A109.3
C2—C3—C4120.3 (2)N2—C19—H19B109.3
C2—C3—H3A119.8C20—C19—H19B109.3
C4—C3—H3A119.8H19A—C19—H19B107.9
C5—C4—C3119.8 (2)C21—C20—C19113.7 (2)
C5—C4—H4A120.1C21—C20—H20A108.8
C3—C4—H4A120.1C19—C20—H20A108.8
C4—C5—C6121.1 (2)C21—C20—H20B108.8
C4—C5—H5A119.5C19—C20—H20B108.8
C6—C5—H5A119.5H20A—C20—H20B107.7
C1—C6—C5120.1 (2)O5—C21—C20111.67 (18)
C1—C6—C7123.7 (2)O5—C21—H21A109.3
C5—C6—C7116.2 (2)C20—C21—H21A109.3
N1—C7—C6127.3 (2)O5—C21—H21B109.3
N1—C7—H7A116.3C20—C21—H21B109.3
C6—C7—H7A116.3H21A—C21—H21B107.9
N1—C8—C9111.67 (19)O6—C22—H22A109.5
N1—C8—H8A109.3O6—C22—H22B109.5
C9—C8—H8A109.3H22A—C22—H22B109.5
N1—C8—H8B109.3O6—C22—H22C109.5
C9—C8—H8B109.3H22A—C22—H22C109.5
H8A—C8—H8B107.9H22B—C22—H22C109.5
C8—C9—C10112.8 (2)C23—O7—H7110 (2)
C8—C9—H9A109.0O7—C23—H23A109.5
C10—C9—H9A109.0O7—C23—H23B109.5
C8—C9—H9B109.0H23A—C23—H23B109.5
C10—C9—H9B109.0O7—C23—H23C109.5
H9A—C9—H9B107.8H23A—C23—H23C109.5
O2—C10—C9110.77 (18)H23B—C23—H23C109.5
O2—C10—H10A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O10.86 (1)2.05 (1)2.893 (3)170 (3)
O7—H7···O30.86 (1)2.64 (3)3.178 (3)122 (3)

Experimental details

Crystal data
Chemical formula[Ni2(C11H13NO3)2]·CH4O
Mr563.87
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)23.673 (5), 8.3124 (17), 25.546 (5)
β (°) 113.25 (3)
V3)4618.6 (19)
Z8
Radiation typeMo Kα
µ (mm1)1.68
Crystal size (mm)0.26 × 0.24 × 0.22
Data collection
DiffractometerRigaku SCX-mini
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2002)
Tmin, Tmax0.669, 0.709
No. of measured, independent and
observed [I > 2σ(I)] reflections
19153, 5257, 4285
Rint0.054
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.080, 1.01
No. of reflections5257
No. of parameters312
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.66, 0.48

Computer programs: CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Ni1—O11.9107 (16)Ni2—O41.8936 (16)
Ni1—O51.9208 (16)Ni2—O21.9197 (16)
Ni1—O21.9224 (16)Ni2—O51.9208 (16)
Ni1—N11.9314 (19)Ni2—N21.9366 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O10.855 (10)2.046 (12)2.893 (3)170 (3)
O7—H7···O30.855 (10)2.64 (3)3.178 (3)122 (3)
 

Acknowledgements

This work was supported by the Foundation of Daqing Normal University (grant No. 11ZR01).

References

First citationCostes, J. P., Dahan, F., Fernandez Fernandez, M. B., Fernandez Garcia, M. I., Garcia Deibe, A. M. & Sanmartin, J. (1998). Inorg. Chim. Acta, 274, 73–81.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLong, J. L., Chamoreau, M. & Marvaud, V. (2010). Dalton Trans. 39, 2188–2190.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMondal, K. C., Kostakis, G. E., Lan, Y. H., Wernsdorfer, W., Anson, C. E. & Powell, A. K. (2011). Inorg. Chem. 50, 11604–11611.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSarwar, M., Madalan, A. M., Lloret, F., Julve, M. & Andruh, M. (2011). Polyhedron, 30, 2414–2420.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds