metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(3-chloro­benzoato-κ2O,O′)bis­­(nicotinamide-κN)copper(II)

aKafkas University, Department of Chemistry, 63100 Kars, Turkey, bAksaray University, Department of Physics, 68100, Aksaray, Turkey, cDepartment of Physics, Sakarya University, 54187 Esentepe, Sakarya, Turkey, and dHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 9 May 2013; accepted 28 May 2013; online 8 June 2013)

The mol­ecule of the title CuII complex, [Cu(C7H4ClO2)2(C6H6N2O)2], contains two 3-chloro­benzoate (CB) and two nicotinamide (NA) ligands; the CB act as bidentate ligands, while the NA are monodentate ligands. The resulting CuN2O4 coordination polyhedron is a considerably distorted octahedron. The dihedral angles between the carboxyl­ate groups and the adjacent benzene rings are 17.92 (12) and 24.69 (16)°, while the two benzene rings and the two pyridine rings are oriented at dihedral angles of 52.20 (8) and 1.56 (6)°. In the crystal, N—H⋯N and C—H⋯O hydrogen bonds link the mol­ecules into a three–dimensional network. The ππ contact between the benzene rings [centroid–centroid distance = 3.982 (2) Å] may further stabilize the crystal structure.

Related literature

For niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). For the nicotinic acid derivative N,N-di­ethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Greenaway et al. (1984[Greenaway, F. T., Pazeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67-71.]); Hökelek & Necefoğlu (1996[Hökelek, T. & Necefouglu, H. (1996). Acta Cryst. C52, 1128-1131.]); Hökelek et al. (1996[Hökelek, T., Gündüz, H. & Necefouglu, H. (1996). Acta Cryst. C52, 2470-2473.]); Hökelek, Dal et al. (2009[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009). Acta Cryst. E65, m651-m652.]); Hökelek, Yılmaz et al. (2009[Hökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009). Acta Cryst. E65, m1416-m1417.]); Necefoğlu et al. (2011[Necefoğlu, H., Özbek, F. E., Öztürk, V., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, m887-m888.]); Sertçelik et al. (2013[Sertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2013). Acta Cryst. E69, m290-m291.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H4ClO2)2(C6H6N2O)2]

  • Mr = 618.91

  • Triclinic, [P \overline 1]

  • a = 9.6614 (2) Å

  • b = 12.5429 (3) Å

  • c = 12.8728 (3) Å

  • α = 61.598 (2)°

  • β = 87.386 (3)°

  • γ = 77.115 (3)°

  • V = 1334.30 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 296 K

  • 0.35 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART BREEZE CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.774, Tmax = 0.852

  • 19053 measured reflections

  • 5434 independent reflections

  • 4970 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.083

  • S = 1.06

  • 5434 reflections

  • 368 parameters

  • 117 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.80 (2) 2.12 (2) 2.896 (2) 164 (2)
N2—H2B⋯O6ii 0.84 (3) 2.02 (3) 2.790 (2) 153 (2)
N4—H4A⋯O5i 0.83 (3) 2.01 (3) 2.817 (2) 164 (2)
N4—H4B⋯O4ii 0.81 (2) 2.05 (2) 2.836 (2) 162 (3)
C19—H19⋯O1iii 0.93 2.45 3.100 (2) 127
C21—H21⋯O5i 0.93 2.56 3.416 (2) 154
C24—H24⋯O3iv 0.93 2.59 3.475 (3) 158
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+2, -z+1; (iii) -x+1, -y+2, -z; (iv) -x, -y+2, -z.

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N–diethylnicotinamide, an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

In the monomeric title complex, I, the CuII ion is surrounded by two 3–chlorobenzoate (CB) and two (NA) ligands. The CB act as bidentate ligands, while the NA are monodentate ligands. The structures of similar complexes of Zn(II) and Cd(II) ions, [Zn2(C10H14N2O)2(C7H5O3)4].2H2O, II, (Hökelek & Necefoğlu, 1996), [Zn(C9H10NO2)2(C6H6N2O).2H2O], III, (Hökelek, Dal et al., 2009) and [Cd(C8H5O3)2(C6H6N2O)2].H2O, IV, (Hökelek, Yılmaz et al., 2009) have also been determined.

In the title compound (Fig. 1), the Cu atom is displaced out of the least–squares planes of the carboxylate groups (O1/C1/O2) and (O3/C8/O4) by 0.1556 (2)Å and -0.0577 (2)Å, respectively. The dihedral angle between the planar carboxylate groups and the adjacent benzene rings A (C2—C7) and B (C9—C14) are 17.92 (12)° and 24.69 (16)°, respectively, while those between rings A, B, C (N1/C15—C19) and D (N3/C21—C25) are A/B = 52.20 (8)°, A/C = 85.61 (7)°, A/D = 84.86 (7)°, B/C = 71.49 (7)°, B/D = 69.95 (6)° and C/D = 1.56 (6)°. The two four–membered rings, (Cu1/O1/O2/C1) and (Cu1/O3/O4/C8), are oriented at a dihedral angle of 12.07 (7)°.

In I, the O1–Cu1–O2 and O3–Cu1–O4 angles are 59.76 (5)° and 55.08 (5)°, respectively. The corresponding O–M–O (where M is a metal) angles are 58.3 (3)° in II, 60.03 (6)° in III, 52.91 (4) and 53.96 (4)° in IV, 53.50 (14)° in [Cu2(C8H5O3)4(C6H6N2O)4], V, (Sertçelik et al., 2013), 57.75 (2)° in [Cu(C7H4FO2)2(C7H5FO2)(C6H6N2O)2], VI, (Necefoğlu et al., 2011), 58.3 (3)° in [Cu(C7H5O2)2(C10H14N2O)2], VII, (Hökelek et al., 1996) and 55.2 (1)° in [Cu(Asp)2(Py)2], where Asp is acetylsalicylate and Py is pyridine, VIII, (Greenaway et al., 1984).

In the crystal structure, intermolecular N—H···O and C—H···O hydrogen bonds (Table 1) link the molecules into a three–dimensional network, in which they may be effective in the stabilization of the structure. The ππ contact between the benzene rings, Cg2···Cg2i, where Cg2 is the centroid of the ring B (C9–C14) may further stabilize the structure, with Cg···Cg distance of 3.982 (2)Å. Symmetry code: (i) -x, 1-y, -z.

Related literature top

For niacin, see: Krishnamachari (1974). For the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Greenaway et al. (1984); Hökelek & Necefoğlu (1996); Hökelek et al. (1996); Hökelek, Dal et al. (2009); Hökelek, Yılmaz et al. (2009); Necefoğlu et al. (2011); Sertçelik et al. (2013).

Experimental top

The title compound was prepared by the reaction of CuSO4.5H2O (1.25 g, 5 mmol) in H2O (50 ml) and NA (1.22 g, 10 mmol) in H2O (50 ml) with sodium 3–chlorobenzoate (1.79 g, 10 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving blue single crystals.

Refinement top

Atoms H2A, H2B, H4A and H4B (NH2 groups) were located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically with C—H = 0.93Å for aromatic H atoms, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N–diethylnicotinamide, an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

In the monomeric title complex, I, the CuII ion is surrounded by two 3–chlorobenzoate (CB) and two (NA) ligands. The CB act as bidentate ligands, while the NA are monodentate ligands. The structures of similar complexes of Zn(II) and Cd(II) ions, [Zn2(C10H14N2O)2(C7H5O3)4].2H2O, II, (Hökelek & Necefoğlu, 1996), [Zn(C9H10NO2)2(C6H6N2O).2H2O], III, (Hökelek, Dal et al., 2009) and [Cd(C8H5O3)2(C6H6N2O)2].H2O, IV, (Hökelek, Yılmaz et al., 2009) have also been determined.

In the title compound (Fig. 1), the Cu atom is displaced out of the least–squares planes of the carboxylate groups (O1/C1/O2) and (O3/C8/O4) by 0.1556 (2)Å and -0.0577 (2)Å, respectively. The dihedral angle between the planar carboxylate groups and the adjacent benzene rings A (C2—C7) and B (C9—C14) are 17.92 (12)° and 24.69 (16)°, respectively, while those between rings A, B, C (N1/C15—C19) and D (N3/C21—C25) are A/B = 52.20 (8)°, A/C = 85.61 (7)°, A/D = 84.86 (7)°, B/C = 71.49 (7)°, B/D = 69.95 (6)° and C/D = 1.56 (6)°. The two four–membered rings, (Cu1/O1/O2/C1) and (Cu1/O3/O4/C8), are oriented at a dihedral angle of 12.07 (7)°.

In I, the O1–Cu1–O2 and O3–Cu1–O4 angles are 59.76 (5)° and 55.08 (5)°, respectively. The corresponding O–M–O (where M is a metal) angles are 58.3 (3)° in II, 60.03 (6)° in III, 52.91 (4) and 53.96 (4)° in IV, 53.50 (14)° in [Cu2(C8H5O3)4(C6H6N2O)4], V, (Sertçelik et al., 2013), 57.75 (2)° in [Cu(C7H4FO2)2(C7H5FO2)(C6H6N2O)2], VI, (Necefoğlu et al., 2011), 58.3 (3)° in [Cu(C7H5O2)2(C10H14N2O)2], VII, (Hökelek et al., 1996) and 55.2 (1)° in [Cu(Asp)2(Py)2], where Asp is acetylsalicylate and Py is pyridine, VIII, (Greenaway et al., 1984).

In the crystal structure, intermolecular N—H···O and C—H···O hydrogen bonds (Table 1) link the molecules into a three–dimensional network, in which they may be effective in the stabilization of the structure. The ππ contact between the benzene rings, Cg2···Cg2i, where Cg2 is the centroid of the ring B (C9–C14) may further stabilize the structure, with Cg···Cg distance of 3.982 (2)Å. Symmetry code: (i) -x, 1-y, -z.

For niacin, see: Krishnamachari (1974). For the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Greenaway et al. (1984); Hökelek & Necefoğlu (1996); Hökelek et al. (1996); Hökelek, Dal et al. (2009); Hökelek, Yılmaz et al. (2009); Necefoğlu et al. (2011); Sertçelik et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom–numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
Bis(3-chlorobenzoato-κ2O,O')bis(nicotinamide-κN)copper(II) top
Crystal data top
[Cu(C7H4ClO2)2(C6H6N2O)2]Z = 2
Mr = 618.91F(000) = 630
Triclinic, P1Dx = 1.541 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6614 (2) ÅCell parameters from 9977 reflections
b = 12.5429 (3) Åθ = 2.2–28.3°
c = 12.8728 (3) ŵ = 1.07 mm1
α = 61.598 (2)°T = 296 K
β = 87.386 (3)°Block, blue
γ = 77.115 (3)°0.35 × 0.20 × 0.15 mm
V = 1334.30 (6) Å3
Data collection top
Bruker SMART BREEZE CCD
diffractometer
5434 independent reflections
Radiation source: fine–focus sealed tube4970 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 26.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1212
Tmin = 0.774, Tmax = 0.852k = 1515
19053 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.6228P]
where P = (Fo2 + 2Fc2)/3
5434 reflections(Δ/σ)max = 0.001
368 parametersΔρmax = 0.43 e Å3
117 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Cu(C7H4ClO2)2(C6H6N2O)2]γ = 77.115 (3)°
Mr = 618.91V = 1334.30 (6) Å3
Triclinic, P1Z = 2
a = 9.6614 (2) ÅMo Kα radiation
b = 12.5429 (3) ŵ = 1.07 mm1
c = 12.8728 (3) ÅT = 296 K
α = 61.598 (2)°0.35 × 0.20 × 0.15 mm
β = 87.386 (3)°
Data collection top
Bruker SMART BREEZE CCD
diffractometer
5434 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
4970 reflections with I > 2σ(I)
Tmin = 0.774, Tmax = 0.852Rint = 0.022
19053 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030117 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.43 e Å3
5434 reflectionsΔρmin = 0.43 e Å3
368 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.27888 (2)1.000999 (18)0.199774 (17)0.02922 (8)
Cl10.80542 (9)0.43210 (7)0.58781 (9)0.0953 (3)
Cl20.34732 (8)1.57612 (7)0.04862 (10)0.1008 (3)
O10.38881 (17)0.84400 (13)0.15270 (12)0.0491 (4)
O20.39807 (13)0.83886 (11)0.32503 (11)0.0345 (3)
O30.18430 (14)1.14369 (12)0.05257 (11)0.0375 (3)
O40.0977 (2)1.19856 (14)0.18577 (12)0.0570 (4)
O50.76794 (14)1.14536 (16)0.40191 (15)0.0545 (4)
O60.25440 (15)0.82581 (19)0.51564 (15)0.0641 (5)
N10.43976 (16)1.08071 (13)0.18924 (12)0.0318 (3)
N20.54419 (18)1.16359 (17)0.45497 (15)0.0398 (4)
H2A0.565 (2)1.176 (2)0.507 (2)0.040 (6)*
H2B0.458 (3)1.172 (2)0.440 (2)0.050 (6)*
N30.10420 (15)0.93169 (13)0.24499 (12)0.0315 (3)
N40.04948 (19)0.83277 (19)0.58345 (16)0.0435 (4)
H4A0.034 (3)0.841 (2)0.574 (2)0.048 (6)*
H4B0.079 (3)0.818 (2)0.648 (2)0.058 (7)*
C10.4330 (2)0.78886 (17)0.25815 (16)0.0354 (4)
C20.5297 (2)0.66138 (17)0.31005 (18)0.0411 (4)
C30.6115 (2)0.61181 (18)0.4143 (2)0.0448 (5)
H30.60670.65660.45530.054*
C40.7010 (2)0.4944 (2)0.4575 (2)0.0551 (6)
C50.7073 (3)0.4258 (2)0.3993 (3)0.0701 (7)
H50.76640.34650.42980.084*
C60.6252 (4)0.4758 (2)0.2957 (3)0.0791 (9)
H60.62830.42980.25600.095*
C70.5381 (3)0.5933 (2)0.2499 (2)0.0640 (7)
H70.48480.62720.17850.077*
C80.1053 (2)1.21991 (17)0.08210 (16)0.0377 (4)
C90.0182 (2)1.33707 (17)0.01605 (17)0.0391 (4)
C100.1053 (2)1.39805 (18)0.0098 (2)0.0487 (5)
H100.13091.36910.08750.058*
C110.1900 (2)1.5022 (2)0.0812 (2)0.0582 (6)
C120.1515 (3)1.5492 (2)0.1967 (2)0.0668 (7)
H120.20981.61920.25730.080*
C130.0263 (3)1.4911 (2)0.2205 (2)0.0640 (6)
H130.00211.52360.29750.077*
C140.0587 (3)1.3845 (2)0.13122 (18)0.0498 (5)
H140.14261.34480.14860.060*
C150.47759 (18)1.09464 (16)0.28005 (14)0.0307 (3)
H150.42111.07490.34420.037*
C160.59731 (17)1.13714 (15)0.28251 (15)0.0297 (3)
C170.6804 (2)1.16596 (19)0.18655 (18)0.0412 (4)
H170.76371.19140.18660.049*
C180.6388 (2)1.1566 (2)0.09122 (18)0.0474 (5)
H180.69151.17890.02480.057*
C190.5179 (2)1.11393 (19)0.09505 (16)0.0405 (4)
H190.48991.10800.03020.049*
C200.64242 (18)1.14888 (16)0.38547 (16)0.0334 (4)
C210.05121 (18)0.90891 (16)0.34942 (15)0.0308 (3)
H210.09930.92250.40140.037*
C220.07235 (18)0.86597 (16)0.38352 (15)0.0319 (4)
C230.1438 (2)0.8479 (2)0.30439 (18)0.0444 (5)
H230.22820.82100.32340.053*
C240.0884 (2)0.8701 (2)0.19695 (19)0.0494 (5)
H240.13440.85740.14320.059*
C250.0353 (2)0.91112 (19)0.17077 (17)0.0408 (4)
H250.07280.92520.09870.049*
C260.13259 (19)0.84043 (18)0.50037 (17)0.0380 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03384 (13)0.03311 (12)0.02251 (11)0.01037 (9)0.00167 (8)0.01354 (9)
Cl10.0746 (5)0.0701 (4)0.1137 (7)0.0100 (4)0.0438 (5)0.0290 (4)
Cl20.0536 (4)0.0683 (4)0.1427 (8)0.0039 (3)0.0142 (4)0.0287 (5)
O10.0689 (10)0.0471 (8)0.0279 (7)0.0023 (7)0.0038 (6)0.0200 (6)
O20.0412 (7)0.0358 (6)0.0285 (6)0.0055 (5)0.0001 (5)0.0180 (5)
O30.0451 (7)0.0373 (6)0.0279 (6)0.0085 (6)0.0017 (5)0.0138 (5)
O40.0919 (12)0.0461 (8)0.0290 (7)0.0090 (8)0.0040 (7)0.0175 (6)
O50.0295 (7)0.0882 (11)0.0697 (10)0.0180 (7)0.0031 (7)0.0548 (9)
O60.0336 (8)0.1099 (14)0.0543 (10)0.0324 (8)0.0127 (7)0.0376 (10)
N10.0362 (7)0.0352 (7)0.0256 (7)0.0118 (6)0.0024 (6)0.0144 (6)
N20.0334 (9)0.0622 (11)0.0368 (9)0.0152 (7)0.0031 (7)0.0322 (8)
N30.0344 (7)0.0346 (7)0.0266 (7)0.0093 (6)0.0006 (6)0.0148 (6)
N40.0315 (9)0.0711 (12)0.0331 (9)0.0195 (8)0.0094 (7)0.0262 (8)
C10.0398 (9)0.0360 (9)0.0327 (9)0.0111 (7)0.0080 (7)0.0177 (7)
C20.0451 (11)0.0366 (9)0.0419 (10)0.0110 (8)0.0123 (8)0.0192 (8)
C30.0408 (10)0.0402 (10)0.0536 (12)0.0091 (8)0.0040 (9)0.0226 (9)
C40.0400 (11)0.0442 (11)0.0685 (15)0.0062 (9)0.0014 (10)0.0181 (11)
C50.0697 (16)0.0405 (12)0.088 (2)0.0011 (11)0.0127 (14)0.0276 (13)
C60.114 (2)0.0505 (14)0.0786 (19)0.0030 (15)0.0115 (17)0.0426 (14)
C70.0931 (19)0.0480 (12)0.0525 (14)0.0053 (12)0.0044 (13)0.0300 (11)
C80.0476 (10)0.0350 (9)0.0313 (9)0.0130 (8)0.0014 (8)0.0148 (7)
C90.0482 (11)0.0327 (9)0.0353 (10)0.0133 (8)0.0000 (8)0.0134 (8)
C100.0497 (12)0.0373 (10)0.0529 (12)0.0149 (9)0.0078 (9)0.0148 (9)
C110.0430 (12)0.0389 (11)0.0801 (17)0.0089 (9)0.0009 (11)0.0183 (11)
C120.0701 (16)0.0426 (12)0.0636 (16)0.0101 (11)0.0198 (13)0.0054 (11)
C130.0832 (18)0.0534 (13)0.0370 (12)0.0156 (12)0.0041 (11)0.0065 (10)
C140.0611 (13)0.0457 (11)0.0361 (10)0.0123 (10)0.0024 (9)0.0144 (9)
C150.0330 (8)0.0365 (8)0.0243 (8)0.0123 (7)0.0053 (6)0.0143 (7)
C160.0282 (8)0.0321 (8)0.0296 (8)0.0081 (6)0.0031 (6)0.0150 (7)
C170.0364 (10)0.0513 (11)0.0419 (10)0.0188 (8)0.0117 (8)0.0239 (9)
C180.0488 (11)0.0652 (13)0.0333 (10)0.0234 (10)0.0183 (8)0.0245 (10)
C190.0464 (11)0.0525 (11)0.0277 (9)0.0152 (9)0.0073 (8)0.0219 (8)
C200.0296 (8)0.0374 (9)0.0374 (9)0.0096 (7)0.0001 (7)0.0203 (8)
C210.0312 (8)0.0375 (9)0.0276 (8)0.0104 (7)0.0000 (6)0.0174 (7)
C220.0286 (8)0.0351 (8)0.0315 (9)0.0074 (7)0.0009 (7)0.0151 (7)
C230.0392 (10)0.0553 (12)0.0450 (11)0.0207 (9)0.0010 (8)0.0244 (10)
C240.0547 (12)0.0657 (13)0.0436 (11)0.0237 (11)0.0028 (9)0.0339 (10)
C250.0492 (11)0.0500 (11)0.0302 (9)0.0150 (9)0.0018 (8)0.0231 (8)
C260.0279 (9)0.0484 (10)0.0370 (10)0.0114 (8)0.0050 (7)0.0188 (8)
Geometric parameters (Å, º) top
Cu1—O12.3487 (14)C6—H60.9300
Cu1—O22.0168 (12)C7—C61.376 (4)
Cu1—O31.9574 (12)C7—H70.9300
Cu1—O42.6280 (12)C8—C91.498 (3)
Cu1—N11.9947 (14)C9—C101.385 (3)
Cu1—N32.0065 (14)C9—C141.384 (3)
Cu1—C12.5090 (18)C10—C111.379 (3)
Cl1—C41.731 (3)C10—H100.9300
Cl2—C111.740 (3)C11—C121.382 (4)
O1—C11.237 (2)C12—H120.9300
O2—C11.281 (2)C13—C121.369 (4)
O3—C81.279 (2)C13—H130.9300
O4—C81.232 (2)C14—C131.385 (3)
O5—C201.228 (2)C14—H140.9300
O6—C261.224 (2)C15—H150.9300
N1—C151.339 (2)C16—C151.385 (2)
N1—C191.338 (2)C16—C171.384 (2)
N2—C201.318 (2)C16—C201.495 (2)
N2—H2A0.79 (2)C17—C181.373 (3)
N2—H2B0.84 (3)C17—H170.9300
N3—C211.337 (2)C18—H180.9300
N3—C251.338 (2)C19—C181.379 (3)
N4—C261.321 (2)C19—H190.9300
N4—H4A0.83 (3)C21—C221.386 (2)
N4—H4B0.81 (3)C21—H210.9300
C1—C21.500 (3)C22—C231.385 (3)
C2—C31.377 (3)C22—C261.500 (3)
C2—C71.388 (3)C23—C241.382 (3)
C3—C41.387 (3)C23—H230.9300
C3—H30.9300C24—H240.9300
C4—C51.376 (4)C25—C241.371 (3)
C5—C61.371 (4)C25—H250.9300
C5—H50.9300
O1—Cu1—C129.28 (5)O4—C8—O3122.57 (17)
O2—Cu1—O159.76 (5)O4—C8—C9120.80 (18)
O2—Cu1—C130.48 (5)C10—C9—C8118.89 (18)
O3—Cu1—O1106.81 (5)C14—C9—C8121.26 (19)
O3—Cu1—O2166.26 (5)C14—C9—C10119.85 (19)
O3—Cu1—O455.08 (5)C9—C10—H10120.4
O3—Cu1—N191.50 (6)C11—C10—C9119.2 (2)
O3—Cu1—N393.10 (6)C11—C10—H10120.4
O3—Cu1—C1136.00 (6)C10—C11—Cl2119.0 (2)
N1—Cu1—O1100.98 (6)C10—C11—C12121.3 (2)
N1—Cu1—O288.65 (5)C12—C11—Cl2119.71 (19)
N1—Cu1—N3164.90 (6)C11—C12—H12120.5
N1—Cu1—C195.33 (6)C13—C12—C11119.0 (2)
N3—Cu1—O191.43 (6)C13—C12—H12120.5
N3—Cu1—O290.26 (5)C12—C13—C14120.7 (2)
N3—Cu1—C191.32 (6)C12—C13—H13119.6
C1—O1—Cu182.56 (11)C14—C13—H13119.6
C1—O2—Cu196.52 (11)C9—C14—C13119.8 (2)
C8—O3—Cu1106.27 (11)C9—C14—H14120.1
C15—N1—Cu1120.40 (11)C13—C14—H14120.1
C19—N1—Cu1120.98 (12)N1—C15—C16122.74 (16)
C19—N1—C15118.47 (15)N1—C15—H15118.6
C20—N2—H2A119.4 (16)C16—C15—H15118.6
C20—N2—H2B121.7 (17)C15—C16—C20122.86 (15)
H2A—N2—H2B118 (2)C17—C16—C15117.97 (16)
C21—N3—Cu1120.20 (11)C17—C16—C20119.14 (16)
C21—N3—C25118.42 (15)C16—C17—H17120.3
C25—N3—Cu1121.34 (13)C18—C17—C16119.43 (17)
C26—N4—H4A122.8 (16)C18—C17—H17120.3
C26—N4—H4B119.5 (18)C17—C18—C19119.23 (17)
H4A—N4—H4B118 (2)C17—C18—H18120.4
O1—C1—Cu168.16 (10)C19—C18—H18120.4
O1—C1—O2121.15 (17)N1—C19—C18122.04 (17)
O1—C1—C2120.21 (17)N1—C19—H19119.0
O2—C1—Cu153.00 (9)C18—C19—H19119.0
O2—C1—C2118.64 (16)O5—C20—N2122.54 (17)
C2—C1—Cu1171.55 (14)O5—C20—C16119.44 (16)
C3—C2—C1121.54 (18)N2—C20—C16118.02 (15)
C3—C2—C7119.6 (2)N3—C21—C22122.83 (15)
C7—C2—C1118.8 (2)N3—C21—H21118.6
C2—C3—C4119.3 (2)C22—C21—H21118.6
C2—C3—H3120.4C21—C22—C26123.15 (15)
C4—C3—H3120.4C23—C22—C21117.85 (17)
C3—C4—Cl1119.5 (2)C23—C22—C26118.99 (16)
C5—C4—Cl1119.32 (19)C22—C23—H23120.3
C5—C4—C3121.1 (2)C24—C23—C22119.42 (18)
C4—C5—H5120.4C24—C23—H23120.3
C6—C5—C4119.1 (2)C23—C24—H24120.5
C6—C5—H5120.4C25—C24—C23118.95 (17)
C5—C6—C7120.6 (3)C25—C24—H24120.5
C5—C6—H6119.7N3—C25—C24122.50 (18)
C7—C6—H6119.7N3—C25—H25118.8
C2—C7—H7119.9C24—C25—H25118.8
C6—C7—C2120.2 (3)O6—C26—N4122.87 (19)
C6—C7—H7119.9O6—C26—C22119.36 (17)
O3—C8—C9116.61 (16)N4—C26—C22117.76 (16)
O2—Cu1—O1—C10.68 (11)Cu1—N3—C21—C22177.25 (13)
O3—Cu1—O1—C1176.18 (11)C25—N3—C21—C220.5 (3)
N1—Cu1—O1—C181.22 (12)Cu1—N3—C25—C24176.47 (16)
N3—Cu1—O1—C190.14 (12)C21—N3—C25—C241.3 (3)
O1—Cu1—O2—C10.66 (10)O1—C1—C2—C3161.79 (19)
O3—Cu1—O2—C112.1 (3)O1—C1—C2—C717.1 (3)
N1—Cu1—O2—C1102.89 (11)O2—C1—C2—C318.0 (3)
N3—Cu1—O2—C192.17 (11)O2—C1—C2—C7163.1 (2)
O1—Cu1—O3—C8169.20 (11)C1—C2—C3—C4178.91 (18)
O2—Cu1—O3—C8179.33 (19)C7—C2—C3—C40.0 (3)
N1—Cu1—O3—C888.86 (12)C1—C2—C7—C6179.5 (2)
N3—Cu1—O3—C876.76 (12)C3—C2—C7—C61.5 (4)
C1—Cu1—O3—C8171.88 (11)C2—C3—C4—Cl1179.33 (16)
O1—Cu1—N1—C15126.37 (13)C2—C3—C4—C51.3 (3)
O1—Cu1—N1—C1949.23 (15)Cl1—C4—C5—C6179.5 (2)
O2—Cu1—N1—C1567.55 (14)C3—C4—C5—C61.1 (4)
O2—Cu1—N1—C19108.05 (15)C4—C5—C6—C70.4 (5)
O3—Cu1—N1—C15126.19 (14)C2—C7—C6—C51.7 (5)
O3—Cu1—N1—C1958.21 (15)O3—C8—C9—C10155.12 (18)
N3—Cu1—N1—C1518.4 (3)O3—C8—C9—C1424.5 (3)
N3—Cu1—N1—C19165.97 (19)O4—C8—C9—C1023.5 (3)
C1—Cu1—N1—C1597.33 (14)O4—C8—C9—C14156.8 (2)
C1—Cu1—N1—C1978.27 (15)C8—C9—C10—C11176.52 (18)
O1—Cu1—N3—C21128.70 (13)C14—C9—C10—C113.1 (3)
O1—Cu1—N3—C2553.57 (15)C8—C9—C14—C13178.2 (2)
O2—Cu1—N3—C2168.94 (13)C10—C9—C14—C131.4 (3)
O2—Cu1—N3—C25113.33 (15)C9—C10—C11—Cl2178.44 (17)
O3—Cu1—N3—C21124.39 (13)C9—C10—C11—C122.3 (3)
O3—Cu1—N3—C2553.34 (15)Cl2—C11—C12—C13178.9 (2)
N1—Cu1—N3—C2116.8 (3)C10—C11—C12—C130.4 (4)
N1—Cu1—N3—C25160.9 (2)C14—C13—C12—C112.1 (4)
C1—Cu1—N3—C2199.41 (13)C9—C14—C13—C121.2 (4)
C1—Cu1—N3—C2582.86 (15)C17—C16—C15—N10.1 (3)
O1—Cu1—C1—O2178.84 (18)C20—C16—C15—N1177.97 (16)
O2—Cu1—C1—O1178.84 (18)C15—C16—C17—C182.7 (3)
O3—Cu1—C1—O15.26 (15)C20—C16—C17—C18179.32 (18)
O3—Cu1—C1—O2175.90 (9)C15—C16—C20—O5155.40 (18)
N1—Cu1—C1—O1102.99 (12)C15—C16—C20—N225.1 (3)
N1—Cu1—C1—O278.17 (11)C17—C16—C20—O522.5 (3)
N3—Cu1—C1—O190.58 (12)C17—C16—C20—N2157.06 (18)
N3—Cu1—C1—O288.26 (11)C16—C17—C18—C192.6 (3)
Cu1—O1—C1—O21.09 (17)N1—C19—C18—C170.2 (3)
Cu1—O1—C1—C2178.70 (16)N3—C21—C22—C230.8 (3)
Cu1—O2—C1—O11.3 (2)N3—C21—C22—C26179.89 (16)
Cu1—O2—C1—C2178.53 (14)C21—C22—C23—C241.5 (3)
Cu1—O3—C8—O40.1 (2)C26—C22—C23—C24179.42 (19)
Cu1—O3—C8—C9178.74 (13)C21—C22—C26—O6166.2 (2)
Cu1—N1—C15—C16173.02 (13)C21—C22—C26—N414.9 (3)
C19—N1—C15—C162.7 (3)C23—C22—C26—O612.9 (3)
Cu1—N1—C19—C18172.84 (16)C23—C22—C26—N4166.07 (19)
C15—N1—C19—C182.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.80 (2)2.12 (2)2.896 (2)164 (2)
N2—H2B···O6ii0.84 (3)2.02 (3)2.790 (2)153 (2)
N4—H4A···O5i0.83 (3)2.01 (3)2.817 (2)164 (2)
N4—H4B···O4ii0.81 (2)2.05 (2)2.836 (2)162 (3)
C19—H19···O1iii0.932.453.100 (2)127
C21—H21···O5i0.932.563.416 (2)154
C24—H24···O3iv0.932.593.475 (3)158
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z+1; (iii) x+1, y+2, z; (iv) x, y+2, z.

Experimental details

Crystal data
Chemical formula[Cu(C7H4ClO2)2(C6H6N2O)2]
Mr618.91
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.6614 (2), 12.5429 (3), 12.8728 (3)
α, β, γ (°)61.598 (2), 87.386 (3), 77.115 (3)
V3)1334.30 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.35 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART BREEZE CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2012)
Tmin, Tmax0.774, 0.852
No. of measured, independent and
observed [I > 2σ(I)] reflections
19053, 5434, 4970
Rint0.022
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.083, 1.06
No. of reflections5434
No. of parameters368
No. of restraints117
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.43

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.80 (2)2.12 (2)2.896 (2)164 (2)
N2—H2B···O6ii0.84 (3)2.02 (3)2.790 (2)153 (2)
N4—H4A···O5i0.83 (3)2.01 (3)2.817 (2)164 (2)
N4—H4B···O4ii0.81 (2)2.05 (2)2.836 (2)162 (3)
C19—H19···O1iii0.932.453.100 (2)127
C21—H21···O5i0.932.563.416 (2)154
C24—H24···O3iv0.932.593.475 (3)158
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z+1; (iii) x+1, y+2, z; (iv) x, y+2, z.
 

Acknowledgements

The authors are indebted to Aksaray University and the Science and Technology Application and Research Center of Aksaray University, Aksaray, Turkey, for the use of X–ray diffractometer.

References

First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGreenaway, F. T., Pazeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67–71.  CSD CrossRef CAS Web of Science Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009). Acta Cryst. E65, m651–m652.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Gündüz, H. & Necefouglu, H. (1996). Acta Cryst. C52, 2470–2473.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T. & Necefouglu, H. (1996). Acta Cryst. C52, 1128–1131.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009). Acta Cryst. E65, m1416–m1417.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationNecefoğlu, H., Özbek, F. E., Öztürk, V., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, m887–m888.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2013). Acta Cryst. E69, m290–m291.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds