organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1R*,21S*,22R*,24S*)-Methyl ethyl 2-[23-hy­dr­oxy-22,24-di­phenyl-8,11,14-trioxa-25-aza­tetra­cyclo­[19.3.1.02,7.015,20]penta­cosa-2,4,6,15(20),16,18-hexaen-25-yl]but-2-enedioate

aDepartment of Chemistry, Vietnam National University, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam, bOrganic Chemistry Department, Russian Peoples Friendship University, Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation, and cX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: thh1101@yahoo.com

(Received 14 May 2013; accepted 28 May 2013; online 8 June 2013)

The title compound, C40H41NO8, is a product of the reduction of the cyclic carbonyl group of the γ-piperidone subunit of the aza-14-crown-4 ether with subsequent re-esterification of its dimethyl butenoate substituent into a monoethyl monomethyl group. The aza­crown macrocycle exhibits a bowl conformation with a dihedral angle of 70.82 (5)° between the benzene rings fused to it. The piperidine ring adopts a chair conformation and the methyl ethyl ethyl­enedi­carboxyl­ate fragment has a cis conformation, with a dihedral angle of 66.51 (7)° between the two carboxyl­ate groups. The ethyl group is disordered over two sites with occupancies of 0.70 (1):0.30 (1). In the crystal, mol­ecules form inversion dimers, via pairs of O—H⋯O hydrogen bonds, that stack along the a axis.

Related literature

For the synthesis of aza­crown ethers of this type, see: Levov et al. (2006[Levov, A. N., Strokina, V. M., Komarova, A. I., Anh, L. T., Soldatenkov, A. T. & Khrustalev, V. N. (2006). Mendeleev Commun. 16, 35-37.], 2008[Levov, A. N., Komarova, A. I., Soldatenkov, A. T., Avramenko, G. V., Soldatova, S. A. & Khrustalev, V. N. (2008). Russ. J. Org. Chem. 44, 1665-1670.]); Anh et al. (2008[Anh, L. T., Levov, A. N., Soldatenkov, A. T., Gruzdev, R. D. & Hieu, T. H. (2008). Russ. J. Org. Chem. 44, 463-465.]); Hieu et al. (2011[Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Golovtsov, N. I. & Soldatova, S. A. (2011). Chem. Heterocycl. Compd, 47, 1307-1308.]); Khieu et al. (2011[Khieu, C. K., Soldatenkov, A. T., Anh, L. T., Levov, A. N., Smol'yakov, A. F., Khrustalev, V. N. & Antipin, M. Yu. (2011). Russ. J. Org. Chem. 47, 766-770.]). For the structures of related compounds, see: Anh et al. (2012a[Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o1588-o1589.],b[Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Soldatova, S. A. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o1386-o1387.]); Hieu et al. (2012[Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012). Acta Cryst. E68, o2431-o2432.]).

[Scheme 1]

Experimental

Crystal data
  • C40H41NO8

  • Mr = 663.74

  • Monoclinic, P 21 /n

  • a = 11.6594 (4) Å

  • b = 19.3088 (6) Å

  • c = 15.8522 (5) Å

  • β = 108.887 (1)°

  • V = 3376.64 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.18 × 0.15 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.984, Tmax = 0.989

  • 44045 measured reflections

  • 9846 independent reflections

  • 6852 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.136

  • S = 1.00

  • 9846 reflections

  • 452 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O23—H23O⋯O43i 0.82 (2) 2.39 (2) 3.1109 (14) 148 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently we have developed effective methods of synthesis of azacrown ethers including piperidine (Levov et al., 2006, 2008; Anh et al., 2008), perhydropyrimidine (Hieu et al., 2011) and perhydrotriazine subunits (Khieu et al., 2011). Currently we study their structures and properties systematically (Anh et al., 2012a,b; Hieu et al., 2012). In attempt to reduce the cyclic carbonyl group of the γ-piperidone subunit into the carbinol one of the initial bis(benzo)-(β,β'-diphenyl-γ-piperidono)aza-14-crown-4 ether containing N-(dimethyl)maleinate fragment, we found that the expected reduction was accompanied by re-esterification of one methoxy group of the dimethyl butenoate substituent into the ethoxy one (Fig. 1). The structure of the resulting compound - the higher sterically hindered product (I) was unambiguously established by X-ray diffraction analysis.

The title compound I, C40H41NO8, comprises the aza-14-crown-4-ether skeletal moiety and adopts a bowl conformation (Fig. 2). The configuration of the C7-O8-C9-C10-O11-C12-C13-O14-C15 polyether chain is t-g(-)-t-t-g(+)-t (t = trans, 180°; g = gauche, ±60°). The piperidine ring of the bicyclic fragment have a chair conformation. The dihedral angle between the planes of the benzene rings fused to the aza-14-crown-4-ether moiety is 70.82 (5)°. The phenyl rings at the C22 and C24 carbon atoms occupy the sterically favorable equatorial positions, and are rotated to each other by 65.00 (6)°. Contrary to that, the hydroxyl group at the C23 carbon atom occupies the axial position. The methyl ethyl ethylenedicarboxylate fragment has a cis configuration with the dihedral angle of 66.51 (7)° between the two carboxylate groups. The ethyl group is disordered over two sites with the occupancies of 0.70 (1):0.30 (1). The volume of the internal cavity of macrocycle I is approximately equal to 61Å3.

The molecule of I possesses four asymmetric centers at the C1, C21, C22 and C24 carbon atoms and can have potentially numerous diastereomers. The crystal of I is racemic and consists of enantiomeric pairs with the following relative configuration of the centers: rac-1R*,21S*,22R*,24S*.

In the crystal, the molecules of I form centrosymmetrical dimers by the intermolecular O23–H23···O43i hydrogen bonds (Fig. 3, Table 1). The crystal packing of the dimers is stacking along the a axis (Fig. 3). Symmetry code: (i) -x+1, -y+1, -z+1.

Related literature top

For the synthesis of azacrown ethers of this type, see: Levov et al. (2006, 2008); Anh et al. (2008); Hieu et al. (2011); Khieu et al. (2011). For the structures of related compounds, see: Anh et al. (2012a,b); Hieu et al. (2012).

Experimental top

A powder of NaBH4 (1.14 g, 30 mmol) was added to a suspension of azacrown ether (6.47 g, 10 mmol) in ethanol (50 ml). The mixture was stirred for 30 min at r.t. and then boiled for 1 h. After the solvent evaporation, the residue was washed with hot water (30 ml) and purified by re-crystallization from ethanol to give 2.27 g of colourless crystals of I. Yield is 34%. M.p. = 526-528 K. IR (KBr), ν/cm-1: 3436, 1714. 1H NMR (CDCl3, 400 MHz, 300 K): δ = 0,82 (t, 3H, 3J = 5.5, OCH2CH3), 3.48 (s, 3H, OCH3), 3.67 (q, 2H, 3J = 5.5, CH2CH3), 3.85-4.20 (m, 11H, 2×OCH2CH2O and H22, H23, H24), 4.37 (d, 2H, 3J = 10.5, H1, H21), 5.02 (s, 1H, OH), 6.51 (m, 3H, Harom), 6.63 (s, 1H, CCHCOO), 6.45-6.67 (m, 3H, Harom), 6.88-7.15 (m, 12H, Harom). Mass-spectrum (LCMS), m/z: 664 [M+1]+. Anal. Calcd. for C40H41NO8: C, 72.38; H, 6.23; N 2.11. Found: C, 72.32; H, 6.19; N, 2.08.

Refinement top

The 4 distance restraints were used to fit the ideal conformations for both orientations of the disordered ethyl group. The C–C distances were fixed at 1.500 (3)Å (C41–C42, C41–C42') (two restraints). The corresponding O···C distances (O41···C42, O41···C42') were fixed at 2.420 (3)Å (two restraints). Moreover, it was taken into account that the anisotropic displacement parameters for the C42 and C42' carbon atoms of the ethyl group are equal (one restraint).

The hydrogen atoms were placed in calculated positions with C–H = 0.95-1.00Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for the methyl groups and Uiso(H) = 1.2Ueq(C) for the other groups].

Structure description top

Recently we have developed effective methods of synthesis of azacrown ethers including piperidine (Levov et al., 2006, 2008; Anh et al., 2008), perhydropyrimidine (Hieu et al., 2011) and perhydrotriazine subunits (Khieu et al., 2011). Currently we study their structures and properties systematically (Anh et al., 2012a,b; Hieu et al., 2012). In attempt to reduce the cyclic carbonyl group of the γ-piperidone subunit into the carbinol one of the initial bis(benzo)-(β,β'-diphenyl-γ-piperidono)aza-14-crown-4 ether containing N-(dimethyl)maleinate fragment, we found that the expected reduction was accompanied by re-esterification of one methoxy group of the dimethyl butenoate substituent into the ethoxy one (Fig. 1). The structure of the resulting compound - the higher sterically hindered product (I) was unambiguously established by X-ray diffraction analysis.

The title compound I, C40H41NO8, comprises the aza-14-crown-4-ether skeletal moiety and adopts a bowl conformation (Fig. 2). The configuration of the C7-O8-C9-C10-O11-C12-C13-O14-C15 polyether chain is t-g(-)-t-t-g(+)-t (t = trans, 180°; g = gauche, ±60°). The piperidine ring of the bicyclic fragment have a chair conformation. The dihedral angle between the planes of the benzene rings fused to the aza-14-crown-4-ether moiety is 70.82 (5)°. The phenyl rings at the C22 and C24 carbon atoms occupy the sterically favorable equatorial positions, and are rotated to each other by 65.00 (6)°. Contrary to that, the hydroxyl group at the C23 carbon atom occupies the axial position. The methyl ethyl ethylenedicarboxylate fragment has a cis configuration with the dihedral angle of 66.51 (7)° between the two carboxylate groups. The ethyl group is disordered over two sites with the occupancies of 0.70 (1):0.30 (1). The volume of the internal cavity of macrocycle I is approximately equal to 61Å3.

The molecule of I possesses four asymmetric centers at the C1, C21, C22 and C24 carbon atoms and can have potentially numerous diastereomers. The crystal of I is racemic and consists of enantiomeric pairs with the following relative configuration of the centers: rac-1R*,21S*,22R*,24S*.

In the crystal, the molecules of I form centrosymmetrical dimers by the intermolecular O23–H23···O43i hydrogen bonds (Fig. 3, Table 1). The crystal packing of the dimers is stacking along the a axis (Fig. 3). Symmetry code: (i) -x+1, -y+1, -z+1.

For the synthesis of azacrown ethers of this type, see: Levov et al. (2006, 2008); Anh et al. (2008); Hieu et al. (2011); Khieu et al. (2011). For the structures of related compounds, see: Anh et al. (2012a,b); Hieu et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The reaction of reduction and subsequent re-esterification of initial dimethyl 2-[bis(benzo)-(β,β'-diphenyl-γ-piperidono)aza-14-crown-4-ether]butenoate.
[Figure 2] Fig. 2. Molecular structure of I. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitraryradius. The alternative minor position of the disordered ethyl group is not depicted.
[Figure 3] Fig. 3. The projection of the crystal structure of I along the a axis demonstrating the packing of the centrosymmetrical dimers. Dashed lines indicate the intermolecular O–H···O hydrogen bonds.
(1R*,21S*,22R*,24S*)-Methyl ethyl 2-[23-hydroxy-22,24-diphenyl-8,11,14-trioxa-25-azatetracyclo[19.3.1.02,7.015,20]pentacosa-2,4,6,15(20),16,18-hexaen-25-yl]but-2-enedioate top
Crystal data top
C40H41NO8F(000) = 1408
Mr = 663.74Dx = 1.306 Mg m3
Monoclinic, P21/nMelting point = 526–528 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.6594 (4) ÅCell parameters from 9431 reflections
b = 19.3088 (6) Åθ = 2.5–30.4°
c = 15.8522 (5) ŵ = 0.09 mm1
β = 108.887 (1)°T = 100 K
V = 3376.64 (19) Å3Prism, colourless
Z = 40.18 × 0.15 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
9846 independent reflections
Radiation source: fine-focus sealed tube6852 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 30.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1616
Tmin = 0.984, Tmax = 0.989k = 2727
44045 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difference Fourier map
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0675P)2 + 0.867P]
where P = (Fo2 + 2Fc2)/3
9846 reflections(Δ/σ)max < 0.001
452 parametersΔρmax = 0.42 e Å3
4 restraintsΔρmin = 0.48 e Å3
Crystal data top
C40H41NO8V = 3376.64 (19) Å3
Mr = 663.74Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.6594 (4) ŵ = 0.09 mm1
b = 19.3088 (6) ÅT = 100 K
c = 15.8522 (5) Å0.18 × 0.15 × 0.12 mm
β = 108.887 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
9846 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
6852 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.989Rint = 0.041
44045 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0484 restraints
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.42 e Å3
9846 reflectionsΔρmin = 0.48 e Å3
452 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.49983 (11)0.57458 (7)0.29788 (8)0.0224 (2)
H10.54050.53510.33710.027*
C20.53553 (12)0.57269 (7)0.21364 (9)0.0252 (3)
C30.61542 (13)0.52223 (9)0.20458 (10)0.0342 (3)
H30.64680.48980.25140.041*
C40.65123 (15)0.51760 (11)0.12888 (12)0.0442 (4)
H40.70660.48270.12470.053*
C50.60556 (16)0.56398 (11)0.06046 (11)0.0459 (4)
H50.62890.56100.00850.055*
C60.52562 (15)0.61508 (10)0.06706 (10)0.0404 (4)
H60.49450.64700.01960.049*
C70.49050 (13)0.61998 (8)0.14288 (9)0.0298 (3)
O80.41266 (10)0.66954 (6)0.15329 (7)0.0355 (2)
C90.35409 (15)0.71378 (10)0.07948 (11)0.0403 (4)
H9A0.31380.68590.02560.048*
H9B0.41410.74470.06650.048*
C100.26254 (15)0.75544 (9)0.10525 (12)0.0404 (4)
H10A0.30060.77670.16460.048*
H10B0.23040.79290.06140.048*
O110.16716 (10)0.71066 (6)0.10756 (7)0.0379 (3)
C120.09276 (16)0.73823 (9)0.15415 (11)0.0388 (4)
H12A0.03140.76960.11470.047*
H12B0.14260.76510.20630.047*
C130.03124 (14)0.67958 (9)0.18435 (10)0.0344 (3)
H13A0.03260.69750.20720.041*
H13B0.00660.64770.13410.041*
O140.12256 (9)0.64436 (5)0.25342 (7)0.0313 (2)
C150.09638 (12)0.58011 (7)0.27916 (9)0.0258 (3)
C160.02065 (13)0.55346 (9)0.25550 (10)0.0333 (3)
H160.08720.58010.21980.040*
C170.03998 (14)0.48800 (10)0.28412 (11)0.0393 (4)
H170.12000.47000.26810.047*
C180.05563 (14)0.44881 (9)0.33557 (11)0.0366 (3)
H180.04190.40410.35540.044*
C190.17243 (13)0.47531 (8)0.35823 (9)0.0282 (3)
H190.23830.44790.39320.034*
C200.19565 (12)0.54073 (7)0.33120 (8)0.0231 (3)
C210.32667 (11)0.56407 (7)0.35540 (8)0.0208 (2)
H210.37790.52900.39740.025*
C220.35632 (12)0.63557 (7)0.40031 (8)0.0221 (2)
H220.32000.67120.35340.027*
C230.49512 (12)0.64603 (7)0.43145 (8)0.0232 (3)
H230.51430.69290.45940.028*
O230.55753 (9)0.59506 (6)0.49501 (6)0.0281 (2)
H23O0.5347 (18)0.5986 (10)0.5383 (14)0.045 (5)*
C240.53900 (12)0.64288 (7)0.35017 (8)0.0233 (3)
H240.49600.68090.30940.028*
N250.36706 (9)0.56630 (6)0.27489 (7)0.0216 (2)
C260.30571 (12)0.64843 (8)0.47576 (9)0.0271 (3)
C270.27685 (14)0.71585 (9)0.49246 (12)0.0411 (4)
H270.28830.75250.45600.049*
C280.23144 (16)0.73048 (13)0.56181 (14)0.0586 (6)
H280.21430.77700.57340.070*
C290.21149 (18)0.67744 (15)0.61346 (13)0.0632 (7)
H290.17880.68710.65990.076*
C300.23885 (18)0.61087 (14)0.59774 (12)0.0576 (6)
H300.22420.57430.63300.069*
C310.28807 (15)0.59595 (10)0.53049 (10)0.0387 (4)
H310.30970.54970.52200.046*
C320.67345 (12)0.65566 (8)0.36966 (9)0.0271 (3)
C330.76284 (13)0.61124 (9)0.42065 (10)0.0328 (3)
H330.74030.57170.44720.039*
C340.88485 (14)0.62371 (10)0.43350 (11)0.0418 (4)
H340.94460.59270.46860.050*
C350.91940 (16)0.68080 (12)0.39551 (12)0.0501 (5)
H351.00270.68960.40460.060*
C360.83257 (17)0.72469 (11)0.34460 (14)0.0534 (5)
H360.85580.76400.31790.064*
C370.71051 (15)0.71244 (9)0.33146 (12)0.0410 (4)
H370.65140.74350.29570.049*
C380.31867 (12)0.51263 (7)0.21213 (8)0.0228 (2)
C390.22377 (12)0.52554 (8)0.14012 (9)0.0277 (3)
H390.19890.57240.12890.033*
C400.15353 (13)0.47283 (9)0.07592 (10)0.0331 (3)
O400.13153 (11)0.47494 (7)0.00366 (7)0.0477 (3)
O410.11288 (10)0.42495 (6)0.11879 (8)0.0414 (3)
C410.02979 (17)0.37424 (10)0.06340 (12)0.0507 (5)
H41A0.07320.34400.03330.061*0.70
H41B0.03660.39800.01710.061*0.70
H41C0.07530.33290.05530.061*0.30
H41D0.01250.39430.00390.061*0.30
C420.0209 (4)0.33185 (17)0.1222 (2)0.0801 (13)0.70
H42A0.04460.30550.16450.120*0.70
H42B0.08200.29980.08550.120*0.70
H42C0.05840.36250.15500.120*0.70
C42'0.0642 (6)0.3559 (5)0.1058 (5)0.0801 (13)0.30
H42D0.12330.39360.09620.120*0.30
H42E0.02490.34880.16990.120*0.30
H42F0.10570.31320.07900.120*0.30
C430.37713 (12)0.44258 (7)0.23154 (9)0.0253 (3)
O430.42283 (11)0.41895 (6)0.30529 (7)0.0355 (2)
O440.37842 (10)0.41068 (5)0.15658 (7)0.0331 (2)
C440.4458 (2)0.34731 (10)0.16785 (13)0.0523 (5)
H44A0.47410.34030.11660.078*
H44B0.39370.30850.17210.078*
H44C0.51570.34980.22250.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0179 (5)0.0297 (6)0.0198 (6)0.0009 (5)0.0065 (5)0.0019 (5)
C20.0191 (6)0.0362 (7)0.0211 (6)0.0037 (5)0.0075 (5)0.0021 (5)
C30.0250 (7)0.0477 (9)0.0305 (7)0.0035 (6)0.0100 (6)0.0024 (6)
C40.0306 (8)0.0663 (12)0.0391 (9)0.0067 (8)0.0162 (7)0.0098 (8)
C50.0351 (8)0.0795 (13)0.0285 (8)0.0013 (8)0.0178 (7)0.0057 (8)
C60.0368 (8)0.0633 (11)0.0249 (7)0.0022 (8)0.0150 (6)0.0038 (7)
C70.0258 (7)0.0423 (8)0.0225 (6)0.0036 (6)0.0093 (5)0.0006 (6)
O80.0399 (6)0.0437 (6)0.0248 (5)0.0099 (5)0.0131 (4)0.0109 (4)
C90.0382 (8)0.0535 (10)0.0289 (8)0.0028 (7)0.0103 (6)0.0185 (7)
C100.0393 (9)0.0396 (9)0.0391 (9)0.0022 (7)0.0084 (7)0.0158 (7)
O110.0379 (6)0.0427 (6)0.0349 (6)0.0014 (5)0.0141 (5)0.0001 (5)
C120.0434 (9)0.0385 (8)0.0346 (8)0.0119 (7)0.0128 (7)0.0074 (7)
C130.0283 (7)0.0439 (9)0.0287 (7)0.0120 (6)0.0062 (6)0.0068 (6)
O140.0245 (5)0.0342 (5)0.0304 (5)0.0024 (4)0.0022 (4)0.0063 (4)
C150.0219 (6)0.0337 (7)0.0225 (6)0.0005 (5)0.0079 (5)0.0014 (5)
C160.0194 (6)0.0489 (9)0.0306 (7)0.0014 (6)0.0066 (5)0.0007 (6)
C170.0218 (7)0.0586 (10)0.0371 (8)0.0110 (7)0.0089 (6)0.0012 (7)
C180.0312 (8)0.0433 (9)0.0349 (8)0.0113 (6)0.0104 (6)0.0044 (7)
C190.0244 (6)0.0345 (7)0.0259 (6)0.0030 (5)0.0084 (5)0.0030 (5)
C200.0199 (6)0.0313 (7)0.0189 (6)0.0015 (5)0.0075 (5)0.0013 (5)
C210.0191 (6)0.0260 (6)0.0174 (5)0.0001 (5)0.0062 (4)0.0012 (5)
C220.0206 (6)0.0260 (6)0.0194 (6)0.0007 (5)0.0060 (5)0.0008 (5)
C230.0211 (6)0.0277 (6)0.0200 (6)0.0023 (5)0.0056 (5)0.0011 (5)
O230.0226 (5)0.0426 (6)0.0190 (4)0.0026 (4)0.0068 (4)0.0057 (4)
C240.0206 (6)0.0294 (6)0.0198 (6)0.0033 (5)0.0063 (5)0.0016 (5)
N250.0179 (5)0.0291 (6)0.0183 (5)0.0019 (4)0.0064 (4)0.0014 (4)
C260.0181 (6)0.0390 (8)0.0226 (6)0.0005 (5)0.0046 (5)0.0060 (5)
C270.0292 (8)0.0450 (9)0.0487 (9)0.0000 (7)0.0121 (7)0.0143 (8)
C280.0341 (9)0.0770 (14)0.0624 (13)0.0076 (9)0.0125 (9)0.0398 (11)
C290.0378 (10)0.120 (2)0.0341 (9)0.0092 (11)0.0150 (8)0.0224 (11)
C300.0445 (10)0.1052 (18)0.0279 (8)0.0089 (11)0.0183 (8)0.0054 (10)
C310.0378 (8)0.0556 (10)0.0256 (7)0.0054 (7)0.0141 (6)0.0045 (7)
C320.0242 (6)0.0374 (7)0.0201 (6)0.0084 (5)0.0077 (5)0.0040 (5)
C330.0238 (7)0.0462 (9)0.0284 (7)0.0037 (6)0.0085 (6)0.0019 (6)
C340.0243 (7)0.0674 (12)0.0326 (8)0.0023 (7)0.0079 (6)0.0099 (8)
C350.0290 (8)0.0812 (14)0.0439 (10)0.0225 (9)0.0169 (7)0.0183 (9)
C360.0415 (10)0.0658 (13)0.0567 (11)0.0256 (9)0.0212 (9)0.0018 (10)
C370.0351 (8)0.0476 (10)0.0412 (9)0.0124 (7)0.0135 (7)0.0057 (7)
C380.0211 (6)0.0288 (6)0.0201 (6)0.0008 (5)0.0087 (5)0.0018 (5)
C390.0243 (6)0.0361 (7)0.0222 (6)0.0027 (5)0.0068 (5)0.0035 (5)
C400.0239 (7)0.0449 (9)0.0267 (7)0.0066 (6)0.0029 (5)0.0089 (6)
O400.0460 (7)0.0662 (8)0.0248 (6)0.0053 (6)0.0029 (5)0.0115 (5)
O410.0369 (6)0.0493 (7)0.0343 (6)0.0101 (5)0.0064 (5)0.0150 (5)
C410.0451 (10)0.0455 (10)0.0510 (11)0.0062 (8)0.0007 (8)0.0205 (8)
C420.105 (3)0.058 (2)0.069 (2)0.025 (2)0.018 (2)0.0062 (18)
C42'0.105 (3)0.058 (2)0.069 (2)0.025 (2)0.018 (2)0.0062 (18)
C430.0236 (6)0.0290 (7)0.0240 (6)0.0014 (5)0.0088 (5)0.0024 (5)
O430.0450 (6)0.0329 (6)0.0271 (5)0.0062 (5)0.0096 (5)0.0039 (4)
O440.0392 (6)0.0345 (6)0.0277 (5)0.0094 (5)0.0137 (4)0.0024 (4)
C440.0783 (14)0.0416 (9)0.0440 (10)0.0261 (9)0.0296 (10)0.0034 (8)
Geometric parameters (Å, º) top
C1—N251.4797 (16)C24—C321.5166 (18)
C1—C21.5225 (17)C24—H241.0000
C1—C241.5459 (18)N25—C381.4208 (17)
C1—H11.0000C26—C271.391 (2)
C2—C31.387 (2)C26—C311.392 (2)
C2—C71.409 (2)C27—C281.395 (3)
C3—C41.395 (2)C27—H270.9500
C3—H30.9500C28—C291.377 (3)
C4—C51.374 (3)C28—H280.9500
C4—H40.9500C29—C301.367 (3)
C5—C61.384 (3)C29—H290.9500
C5—H50.9500C30—C311.395 (2)
C6—C71.3928 (19)C30—H300.9500
C6—H60.9500C31—H310.9500
C7—O81.3651 (19)C32—C371.387 (2)
O8—C91.4310 (18)C32—C331.389 (2)
C9—C101.495 (2)C33—C341.391 (2)
C9—H9A0.9900C33—H330.9500
C9—H9B0.9900C34—C351.377 (3)
C10—O111.419 (2)C34—H340.9500
C10—H10A0.9900C35—C361.366 (3)
C10—H10B0.9900C35—H350.9500
O11—C121.4127 (19)C36—C371.390 (2)
C12—C131.500 (2)C36—H360.9500
C12—H12A0.9900C37—H370.9500
C12—H12B0.9900C38—C391.3311 (19)
C13—O141.4283 (17)C38—C431.5010 (19)
C13—H13A0.9900C39—C401.484 (2)
C13—H13B0.9900C39—H390.9500
O14—C151.3710 (17)C40—O401.2040 (18)
C15—C161.3914 (19)C40—O411.323 (2)
C15—C201.4071 (19)O41—C411.455 (3)
C16—C171.386 (2)C41—C421.498 (3)
C16—H160.9500C41—C42'1.501 (3)
C17—C181.375 (2)C41—H41A0.9900
C17—H170.9500C41—H41B0.9900
C18—C191.389 (2)C41—H41C0.9901
C18—H180.9500C41—H41D0.9901
C19—C201.3885 (19)C42—H42A0.9800
C19—H190.9500C42—H42B0.9800
C20—C211.5180 (17)C42—H42C0.9800
C21—N251.4972 (15)C42'—H42D0.9800
C21—C221.5405 (18)C42'—H42E0.9800
C21—H211.0000C42'—H42F0.9800
C22—C261.5157 (18)C43—O431.2065 (17)
C22—C231.5448 (18)C43—O441.3429 (16)
C22—H221.0000O44—C441.4337 (19)
C23—O231.4278 (16)C44—H44A0.9800
C23—C241.5337 (17)C44—H44B0.9800
C23—H231.0000C44—H44C0.9800
O23—H23O0.81 (2)
N25—C1—C2110.04 (10)C23—O23—H23O107.8 (14)
N25—C1—C24109.16 (10)C32—C24—C23115.23 (11)
C2—C1—C24111.93 (10)C32—C24—C1110.76 (11)
N25—C1—H1108.5C23—C24—C1111.30 (10)
C2—C1—H1108.5C32—C24—H24106.3
C24—C1—H1108.5C23—C24—H24106.3
C3—C2—C7117.54 (13)C1—C24—H24106.3
C3—C2—C1119.41 (13)C38—N25—C1113.45 (10)
C7—C2—C1123.05 (12)C38—N25—C21114.38 (10)
C2—C3—C4122.13 (15)C1—N25—C21112.69 (10)
C2—C3—H3118.9C27—C26—C31117.97 (14)
C4—C3—H3118.9C27—C26—C22118.90 (14)
C5—C4—C3119.32 (16)C31—C26—C22123.12 (13)
C5—C4—H4120.3C26—C27—C28121.09 (19)
C3—C4—H4120.3C26—C27—H27119.5
C4—C5—C6120.22 (14)C28—C27—H27119.5
C4—C5—H5119.9C29—C28—C27119.88 (19)
C6—C5—H5119.9C29—C28—H28120.1
C5—C6—C7120.45 (16)C27—C28—H28120.1
C5—C6—H6119.8C30—C29—C28119.79 (17)
C7—C6—H6119.8C30—C29—H29120.1
O8—C7—C6123.00 (14)C28—C29—H29120.1
O8—C7—C2116.67 (12)C29—C30—C31120.8 (2)
C6—C7—C2120.33 (14)C29—C30—H30119.6
C7—O8—C9118.65 (12)C31—C30—H30119.6
O8—C9—C10106.96 (12)C26—C31—C30120.43 (18)
O8—C9—H9A110.3C26—C31—H31119.8
C10—C9—H9A110.3C30—C31—H31119.8
O8—C9—H9B110.3C37—C32—C33117.44 (14)
C10—C9—H9B110.3C37—C32—C24119.15 (14)
H9A—C9—H9B108.6C33—C32—C24123.33 (13)
O11—C10—C9108.30 (14)C32—C33—C34121.15 (15)
O11—C10—H10A110.0C32—C33—H33119.4
C9—C10—H10A110.0C34—C33—H33119.4
O11—C10—H10B110.0C35—C34—C33120.29 (17)
C9—C10—H10B110.0C35—C34—H34119.9
H10A—C10—H10B108.4C33—C34—H34119.9
C12—O11—C10113.76 (13)C36—C35—C34119.29 (15)
O11—C12—C13108.69 (13)C36—C35—H35120.4
O11—C12—H12A110.0C34—C35—H35120.4
C13—C12—H12A110.0C35—C36—C37120.65 (17)
O11—C12—H12B110.0C35—C36—H36119.7
C13—C12—H12B110.0C37—C36—H36119.7
H12A—C12—H12B108.3C32—C37—C36121.17 (17)
O14—C13—C12106.82 (13)C32—C37—H37119.4
O14—C13—H13A110.4C36—C37—H37119.4
C12—C13—H13A110.4C39—C38—N25119.70 (12)
O14—C13—H13B110.4C39—C38—C43122.73 (12)
C12—C13—H13B110.4N25—C38—C43117.56 (11)
H13A—C13—H13B108.6C38—C39—C40125.50 (14)
C15—O14—C13118.45 (11)C38—C39—H39117.3
O14—C15—C16123.21 (13)C40—C39—H39117.3
O14—C15—C20116.32 (12)O40—C40—O41124.87 (15)
C16—C15—C20120.47 (13)O40—C40—C39125.34 (16)
C17—C16—C15119.88 (14)O41—C40—C39109.69 (12)
C17—C16—H16120.1C40—O41—C41116.08 (12)
C15—C16—H16120.1O41—C41—C42108.18 (15)
C18—C17—C16120.63 (14)O41—C41—C42'109.19 (19)
C18—C17—H17119.7O41—C41—H41A110.1
C16—C17—H17119.7C42—C41—H41A110.1
C17—C18—C19119.29 (15)O41—C41—H41B110.1
C17—C18—H18120.4C42—C41—H41B110.1
C19—C18—H18120.4H41A—C41—H41B108.4
C20—C19—C18121.89 (14)O41—C41—H41C109.9
C20—C19—H19119.1C42'—C41—H41C111.5
C18—C19—H19119.1O41—C41—H41D109.9
C19—C20—C15117.84 (12)C42'—C41—H41D108.0
C19—C20—C21118.23 (12)H41C—C41—H41D108.3
C15—C20—C21123.86 (12)C41—C42—H42A109.5
N25—C21—C20111.20 (10)C41—C42—H42B109.5
N25—C21—C22106.42 (10)C41—C42—H42C109.5
C20—C21—C22116.09 (11)C41—C42'—H42D109.5
N25—C21—H21107.6C41—C42'—H42E109.5
C20—C21—H21107.6H42D—C42'—H42E109.5
C22—C21—H21107.6C41—C42'—H42F109.5
C26—C22—C21115.15 (11)H42D—C42'—H42F109.5
C26—C22—C23111.20 (10)H42E—C42'—H42F109.5
C21—C22—C23108.66 (10)O43—C43—O44123.79 (13)
C26—C22—H22107.2O43—C43—C38124.62 (12)
C21—C22—H22107.2O44—C43—C38111.50 (11)
C23—C22—H22107.2C43—O44—C44116.36 (12)
O23—C23—C24109.46 (11)O44—C44—H44A109.5
O23—C23—C22112.17 (10)O44—C44—H44B109.5
C24—C23—C22109.04 (10)H44A—C44—H44B109.5
O23—C23—H23108.7O44—C44—H44C109.5
C24—C23—H23108.7H44A—C44—H44C109.5
C22—C23—H23108.7H44B—C44—H44C109.5
N25—C1—C2—C3120.41 (14)C2—C1—C24—C3254.16 (14)
C24—C1—C2—C3118.02 (14)N25—C1—C24—C2354.20 (13)
N25—C1—C2—C759.18 (17)C2—C1—C24—C23176.27 (11)
C24—C1—C2—C762.39 (16)C2—C1—N25—C3845.07 (14)
C7—C2—C3—C40.1 (2)C24—C1—N25—C38168.27 (10)
C1—C2—C3—C4179.73 (14)C2—C1—N25—C21177.07 (10)
C2—C3—C4—C50.5 (3)C24—C1—N25—C2159.73 (13)
C3—C4—C5—C60.5 (3)C20—C21—N25—C3836.60 (15)
C4—C5—C6—C70.1 (3)C22—C21—N25—C38163.90 (10)
C5—C6—C7—O8179.55 (16)C20—C21—N25—C1168.13 (11)
C5—C6—C7—C20.3 (2)C22—C21—N25—C164.56 (13)
C3—C2—C7—O8179.56 (13)C21—C22—C26—C27150.42 (13)
C1—C2—C7—O80.8 (2)C23—C22—C26—C2785.44 (15)
C3—C2—C7—C60.3 (2)C21—C22—C26—C3130.52 (18)
C1—C2—C7—C6179.30 (14)C23—C22—C26—C3193.62 (16)
C6—C7—O8—C97.0 (2)C31—C26—C27—C280.1 (2)
C2—C7—O8—C9173.11 (13)C22—C26—C27—C28179.20 (14)
C7—O8—C9—C10172.22 (13)C26—C27—C28—C291.8 (3)
O8—C9—C10—O1170.31 (17)C27—C28—C29—C301.4 (3)
C9—C10—O11—C12163.33 (13)C28—C29—C30—C310.7 (3)
C10—O11—C12—C13157.25 (13)C27—C26—C31—C302.2 (2)
O11—C12—C13—O1470.49 (16)C22—C26—C31—C30178.71 (15)
C12—C13—O14—C15165.89 (12)C29—C30—C31—C262.6 (3)
C13—O14—C15—C1613.83 (19)C23—C24—C32—C37117.39 (15)
C13—O14—C15—C20165.50 (12)C1—C24—C32—C37115.16 (15)
O14—C15—C16—C17179.98 (14)C23—C24—C32—C3366.03 (18)
C20—C15—C16—C170.7 (2)C1—C24—C32—C3361.42 (17)
C15—C16—C17—C180.3 (2)C37—C32—C33—C340.6 (2)
C16—C17—C18—C190.4 (3)C24—C32—C33—C34177.24 (14)
C17—C18—C19—C200.7 (2)C32—C33—C34—C350.0 (2)
C18—C19—C20—C150.2 (2)C33—C34—C35—C360.5 (3)
C18—C19—C20—C21177.17 (13)C34—C35—C36—C370.4 (3)
O14—C15—C20—C19179.83 (12)C33—C32—C37—C360.7 (2)
C16—C15—C20—C190.48 (19)C24—C32—C37—C36177.45 (16)
O14—C15—C20—C213.06 (18)C35—C36—C37—C320.2 (3)
C16—C15—C20—C21176.28 (12)C1—N25—C38—C39129.49 (13)
C19—C20—C21—N25108.80 (13)C21—N25—C38—C3999.34 (14)
C15—C20—C21—N2567.95 (16)C1—N25—C38—C4351.47 (15)
C19—C20—C21—C22129.36 (13)C21—N25—C38—C4379.71 (14)
C15—C20—C21—C2253.89 (17)N25—C38—C39—C40171.04 (13)
N25—C21—C22—C26171.20 (10)C43—C38—C39—C408.0 (2)
C20—C21—C22—C2646.87 (15)C38—C39—C40—O40127.60 (17)
N25—C21—C22—C2363.33 (12)C38—C39—C40—O4155.83 (19)
C20—C21—C22—C23172.34 (10)O40—C40—O41—C413.9 (2)
C26—C22—C23—O2366.75 (14)C39—C40—O41—C41172.73 (13)
C21—C22—C23—O2361.00 (13)C40—O41—C41—C42171.3 (2)
C26—C22—C23—C24171.84 (11)C40—O41—C41—C42'143.9 (5)
C21—C22—C23—C2460.42 (13)C39—C38—C43—O43146.67 (15)
O23—C23—C24—C3259.67 (15)N25—C38—C43—O4332.35 (19)
C22—C23—C24—C32177.29 (11)C39—C38—C43—O4436.78 (18)
O23—C23—C24—C167.51 (13)N25—C38—C43—O44144.20 (11)
C22—C23—C24—C155.53 (14)O43—C43—O44—C444.3 (2)
N25—C1—C24—C32176.23 (10)C38—C43—O44—C44172.24 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O23—H23O···O43i0.82 (2)2.39 (2)3.1109 (14)148 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC40H41NO8
Mr663.74
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)11.6594 (4), 19.3088 (6), 15.8522 (5)
β (°) 108.887 (1)
V3)3376.64 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.18 × 0.15 × 0.12
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.984, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
44045, 9846, 6852
Rint0.041
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.136, 1.00
No. of reflections9846
No. of parameters452
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.48

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O23—H23O···O43i0.82 (2)2.39 (2)3.1109 (14)148 (2)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank the National Foundation for Science and Technology Development (NAFOSTED) (grant 104.02-2012.44) for financial support of this work.

References

First citationAnh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o1588–o1589.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationAnh, L. T., Hieu, T. H., Soldatenkov, A. T., Soldatova, S. A. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o1386–o1387.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationAnh, L. T., Levov, A. N., Soldatenkov, A. T., Gruzdev, R. D. & Hieu, T. H. (2008). Russ. J. Org. Chem. 44, 463–465.  Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHieu, T. H., Anh, L. T., Soldatenkov, A. T., Golovtsov, N. I. & Soldatova, S. A. (2011). Chem. Heterocycl. Compd, 47, 1307–1308.  Google Scholar
First citationHieu, T. H., Anh, L. T., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012). Acta Cryst. E68, o2431–o2432.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKhieu, C. K., Soldatenkov, A. T., Anh, L. T., Levov, A. N., Smol'yakov, A. F., Khrustalev, V. N. & Antipin, M. Yu. (2011). Russ. J. Org. Chem. 47, 766–770.  Web of Science CrossRef CAS Google Scholar
First citationLevov, A. N., Komarova, A. I., Soldatenkov, A. T., Avramenko, G. V., Soldatova, S. A. & Khrustalev, V. N. (2008). Russ. J. Org. Chem. 44, 1665–1670.  Web of Science CrossRef CAS Google Scholar
First citationLevov, A. N., Strokina, V. M., Komarova, A. I., Anh, L. T., Soldatenkov, A. T. & Khrustalev, V. N. (2006). Mendeleev Commun. 16, 35–37.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds