metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Potassium N-bromo-4-chloro-2-methyl­benzene­sulfonamidate monohydrate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany, and cJnanabharathi Campus, Bangalore University, Bangalore 560 056, India
*Correspondence e-mail: gowdabt@yahoo.com

(Received 26 May 2013; accepted 30 May 2013; online 8 June 2013)

In the title compound, K+·C7H6BrClNO2S·H2O, the K+ cation is hepta­coordinated by two water O atoms, four sulfonyl O atoms of four different N-bromo-4-chloro-2-methyl­benzene­sulfonamidate anions, and one Br atom of one of the anions. The S—N distance of 1.584 (3) Å is consistent with an S=N double bond. In the crystal, the anions are linked into layers by O—H⋯Br and O—H⋯N hydrogen bonds.

Related literature

For preparation of N-halo­aryl­sulfonamides, see: Gowda & Mahadevappa (1983[Gowda, B. T. & Mahadevappa, D. S. (1983). Talanta, 30, 359-362.]). For studies of the effect of substituents on the structures of N-halo­aryl­sulfonamidates, see: George et al. (2000[George, E., Vivekanandan, S. & Sivakumar, K. (2000). Acta Cryst. C56, 1208-1209.]); Gowda et al. (2011a[Gowda, B. T., Foro, S. & Shakuntala, K. (2011a). Acta Cryst. E67, m961.],b[Gowda, B. T., Foro, S. & Shakuntala, K. (2011b). Acta Cryst. E67, m962.], 2012[Gowda, B. T., Foro, S. & Spandana, H. S. (2012). Acta Cryst. E68, m1358.]); Olmstead & Power (1986[Olmstead, M. M. & Power, P. P. (1986). Inorg. Chem. 25, 4057-4058.]). For restrained geometry, see: Nardelli (1999[Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.])

[Scheme 1]

Experimental

Crystal data
  • K+·C7H6BrClNO2S·H2O

  • Mr = 340.66

  • Monoclinic, P 21 /c

  • a = 15.265 (1) Å

  • b = 11.4817 (8) Å

  • c = 6.7552 (5) Å

  • β = 101.617 (7)°

  • V = 1159.72 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.30 mm−1

  • T = 293 K

  • 0.42 × 0.30 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.265, Tmax = 0.627

  • 4387 measured reflections

  • 2367 independent reflections

  • 1971 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.129

  • S = 1.10

  • 2367 reflections

  • 143 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.97 e Å−3

  • Δρmin = −1.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H31⋯N1i 0.84 (2) 2.00 (2) 2.835 (5) 173 (5)
O3—H32⋯Br1ii 0.82 (2) 2.93 (2) 3.744 (3) 173 (4)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{5\over 2}}]; (ii) -x, -y+1, -z+3.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The present work was undertaken in order to explore the effect of replacing sodium ion by potassium ion on the solid state structures of metal salts of N-haloarylsulfonamidates (Gowda et al., 2011a,b, 2012), the structure of potassium N-bromo-2-methyl-4-chlorobenzenesulfonamidate monohydrate (I) has been determined (Fig. 1). The structure of (I) resembles those of potassium N-bromo-2,4-dichlorobenzenesulfonamidate sesquihydrate (II) (Gowda et al., 2012), potassium N-bromo-4-chlorobenzenesulfonamidate monohydrate (III) (Gowda et al., 2011a), potassium N-bromo-2-methyl-benzenesulfonamidate sesquihydrate (IV) (Gowda et al., 2011b) and other sodium N-chloroarylsulfonamidates (George et al., 2000; Olmstead & Power, 1986).

In the title compound, the K+ ion is hepta coordinated by two O atoms from two different water molecules, four sulfonyl O atoms of four different N-bromo-2-methyl-4-chlorobenzenesulfonamide anions and one Br atom of N-bromo-2-methyl-4-chlorobenzenesulfonamide anion, similarly to that observed in III. But this is in contrast to the hepta coordination of K+ ion by three O atoms from three different water molecules, four sulfonyl O atoms of three different N-bromo-2-methyl-4-chlorobenzenesulfonamide anions in II and IV.

The S—N distance of 1.584 (3) Å is consistent with a S—N double bond and is in agreement with the observed values of 1.575 (3) Å in (II), 1.584 (6) Å in (III) and 1.577 (5) Å in (IV).

In the crystal structure the anions are linked by intermolecular O3—H32···Br1 and O3—H31···N1 hydrogen bonding into layers (Fig. 2 and Table 1).

Related literature top

For preparation of N-haloarylsulfonamides, see: Gowda & Mahadevappa (1983). For studies of the effect of substituents on the structures of N-haloarylsulfonamidates, see: George et al. (2000); Gowda et al. (2011a,b, 2012); Olmstead & Power (1986). For restrained geometry, see: Nardelli (1999)

Experimental top

The title compound was prepared by a method similar to the one described by Gowda & Mahadevappa (Gowda & Mahadevappa, 1983). 2 g of 2-methyl-4-chlorobenzenesulfonamide was dissolved with stirring in 40 ml of 5M KOH at room temperature. The resultant solution was cooled in ice and 4 ml of liquid bromine was added drop wise with constant stirring. The resultant potassium salt of N-bromo-2-methyl-4-chlorobenzenesulfon-amidate was filtered under suction, washed quickly with a minimum quantity of ice cold water. The purity of the compound was checked by determining its melting point (208° C) and estimating, iodometrically, the amount of active bromine present in it. It was further characterized from its infrared spectrum.

Prism like yellow single crystals of the title compound used in the X-ray diffraction studies were obtained from its aqueous solution at room temperature.

Refinement top

H atoms bonded to C were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å and the methyl C—H = 0.96 Å. The O-bound H atoms were located in difference map and were refined with restrained geometry (Nardelli, 1999), viz. O—H distances were restrained to 0.85 (2) Å and H—H distance was restrained to 1.365 Å, thus leading to the angle of 107°. All H atoms were refined with isotropic displacement parameters set at 1.2 Ueq(C-aromatic, O) or 1.5 Ueq(C-methyl) of the parent atom. The highest peak and the deepest hole are 0.93 and 0.80 Å from Br1, respectively.

Structure description top

The present work was undertaken in order to explore the effect of replacing sodium ion by potassium ion on the solid state structures of metal salts of N-haloarylsulfonamidates (Gowda et al., 2011a,b, 2012), the structure of potassium N-bromo-2-methyl-4-chlorobenzenesulfonamidate monohydrate (I) has been determined (Fig. 1). The structure of (I) resembles those of potassium N-bromo-2,4-dichlorobenzenesulfonamidate sesquihydrate (II) (Gowda et al., 2012), potassium N-bromo-4-chlorobenzenesulfonamidate monohydrate (III) (Gowda et al., 2011a), potassium N-bromo-2-methyl-benzenesulfonamidate sesquihydrate (IV) (Gowda et al., 2011b) and other sodium N-chloroarylsulfonamidates (George et al., 2000; Olmstead & Power, 1986).

In the title compound, the K+ ion is hepta coordinated by two O atoms from two different water molecules, four sulfonyl O atoms of four different N-bromo-2-methyl-4-chlorobenzenesulfonamide anions and one Br atom of N-bromo-2-methyl-4-chlorobenzenesulfonamide anion, similarly to that observed in III. But this is in contrast to the hepta coordination of K+ ion by three O atoms from three different water molecules, four sulfonyl O atoms of three different N-bromo-2-methyl-4-chlorobenzenesulfonamide anions in II and IV.

The S—N distance of 1.584 (3) Å is consistent with a S—N double bond and is in agreement with the observed values of 1.575 (3) Å in (II), 1.584 (6) Å in (III) and 1.577 (5) Å in (IV).

In the crystal structure the anions are linked by intermolecular O3—H32···Br1 and O3—H31···N1 hydrogen bonding into layers (Fig. 2 and Table 1).

For preparation of N-haloarylsulfonamides, see: Gowda & Mahadevappa (1983). For studies of the effect of substituents on the structures of N-haloarylsulfonamidates, see: George et al. (2000); Gowda et al. (2011a,b, 2012); Olmstead & Power (1986). For restrained geometry, see: Nardelli (1999)

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling extended to show the coordination geometry of the K+ cation. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
Potassium N-bromo-4-chloro-2-methylbenzenesulfonamidate monohydrate top
Crystal data top
K+·C7H6BrClNO2S·H2OF(000) = 672
Mr = 340.66Dx = 1.951 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2484 reflections
a = 15.265 (1) Åθ = 3.1–27.8°
b = 11.4817 (8) ŵ = 4.30 mm1
c = 6.7552 (5) ÅT = 293 K
β = 101.617 (7)°Prism, yellow
V = 1159.72 (14) Å30.42 × 0.30 × 0.12 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
2367 independent reflections
Radiation source: fine-focus sealed tube1971 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Rotation method data acquisition using ω scans.θmax = 26.4°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1914
Tmin = 0.265, Tmax = 0.627k = 1414
4387 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0847P)2 + 0.3516P]
where P = (Fo2 + 2Fc2)/3
2367 reflections(Δ/σ)max = 0.001
143 parametersΔρmax = 0.97 e Å3
3 restraintsΔρmin = 1.18 e Å3
Crystal data top
K+·C7H6BrClNO2S·H2OV = 1159.72 (14) Å3
Mr = 340.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.265 (1) ŵ = 4.30 mm1
b = 11.4817 (8) ÅT = 293 K
c = 6.7552 (5) Å0.42 × 0.30 × 0.12 mm
β = 101.617 (7)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
2367 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1971 reflections with I > 2σ(I)
Tmin = 0.265, Tmax = 0.627Rint = 0.030
4387 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0433 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.97 e Å3
2367 reflectionsΔρmin = 1.18 e Å3
143 parameters
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.23345 (3)0.48001 (4)1.31553 (6)0.03995 (19)
K10.04696 (6)0.63387 (8)1.34287 (13)0.0345 (2)
Cl10.53340 (9)0.62486 (17)0.7141 (2)0.0736 (5)
S10.15358 (6)0.55763 (8)0.91712 (13)0.0261 (2)
O10.09358 (19)0.5225 (3)0.7316 (4)0.0384 (7)
O20.1350 (2)0.6710 (2)0.9950 (4)0.0373 (7)
O30.0700 (2)0.7364 (3)1.5563 (6)0.0487 (8)
H310.091 (3)0.801 (3)1.511 (8)0.058*
H320.109 (3)0.694 (3)1.588 (8)0.058*
N10.1502 (2)0.4538 (3)1.0698 (5)0.0342 (8)
C10.2632 (2)0.5708 (3)0.8616 (5)0.0252 (7)
C20.3104 (3)0.4738 (3)0.8140 (6)0.0299 (8)
C30.3941 (3)0.4935 (4)0.7699 (7)0.0381 (10)
H30.42770.43100.73890.046*
C40.4281 (3)0.6058 (5)0.7717 (6)0.0412 (11)
C50.3810 (3)0.7006 (4)0.8170 (6)0.0433 (11)
H50.40460.77530.81700.052*
C60.2980 (3)0.6829 (4)0.8625 (6)0.0337 (8)
H60.26510.74600.89390.040*
C70.2770 (3)0.3482 (3)0.8127 (6)0.0330 (9)
H7A0.21620.34430.73990.050*
H7B0.28010.32240.94910.050*
H7C0.31370.29890.74830.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0480 (3)0.0389 (3)0.0321 (3)0.00845 (18)0.00612 (19)0.00640 (16)
K10.0322 (5)0.0317 (5)0.0400 (5)0.0031 (3)0.0087 (4)0.0016 (4)
Cl10.0330 (7)0.1197 (13)0.0715 (9)0.0165 (7)0.0187 (6)0.0105 (8)
S10.0229 (5)0.0261 (5)0.0291 (5)0.0015 (4)0.0047 (3)0.0014 (4)
O10.0251 (15)0.0519 (18)0.0348 (16)0.0037 (13)0.0019 (12)0.0013 (13)
O20.0389 (17)0.0294 (14)0.0460 (17)0.0086 (13)0.0139 (12)0.0002 (12)
O30.042 (2)0.0411 (18)0.066 (2)0.0001 (15)0.0176 (15)0.0089 (17)
N10.0352 (19)0.0316 (18)0.0374 (19)0.0041 (14)0.0111 (14)0.0036 (14)
C10.0226 (18)0.0256 (19)0.0268 (17)0.0038 (15)0.0039 (14)0.0022 (14)
C20.031 (2)0.032 (2)0.0265 (19)0.0019 (16)0.0050 (15)0.0015 (15)
C30.029 (2)0.050 (3)0.037 (2)0.0066 (18)0.0090 (17)0.0018 (19)
C40.022 (2)0.069 (3)0.034 (2)0.010 (2)0.0065 (16)0.007 (2)
C50.041 (3)0.048 (3)0.041 (2)0.018 (2)0.0081 (18)0.000 (2)
C60.037 (2)0.029 (2)0.035 (2)0.0032 (17)0.0048 (16)0.0009 (16)
C70.033 (2)0.029 (2)0.038 (2)0.0080 (16)0.0091 (16)0.0041 (16)
Geometric parameters (Å, º) top
Br1—N11.901 (4)O3—K1i2.786 (4)
Br1—K13.3868 (10)O3—H310.842 (19)
K1—O2i2.706 (3)O3—H320.824 (19)
K1—O1ii2.765 (3)C1—C61.392 (5)
K1—O32.773 (3)C1—C21.399 (5)
K1—O3iii2.786 (4)C2—C31.387 (6)
K1—O1iv2.878 (3)C2—C71.529 (5)
K1—O22.964 (3)C3—C41.389 (7)
K1—N13.366 (4)C3—H30.9300
Cl1—C41.743 (4)C4—C51.373 (7)
S1—O11.453 (3)C5—C61.377 (6)
S1—O21.453 (3)C5—H50.9300
S1—N11.584 (3)C6—H60.9300
S1—C11.794 (4)C7—H7A0.9600
O1—K1ii2.765 (3)C7—H7B0.9600
O1—K1v2.878 (3)C7—H7C0.9600
O2—K1iii2.706 (3)
N1—Br1—K173.06 (11)O3—K1—K1iii104.29 (8)
O2i—K1—O1ii156.13 (10)O3iii—K1—K1iii39.16 (7)
O2i—K1—O376.93 (10)O1iv—K1—K1iii162.22 (6)
O1ii—K1—O379.22 (10)O2—K1—K1iii38.44 (5)
O2i—K1—O3iii91.20 (10)N1—K1—K1iii82.90 (6)
O1ii—K1—O3iii81.70 (9)Br1—K1—K1iii98.488 (15)
O3—K1—O3iii75.20 (7)S1—K1—K1iii57.636 (16)
O2i—K1—O1iv90.50 (9)K1vi—K1—K1iii156.16 (3)
O1ii—K1—O1iv85.28 (9)K1i—K1—K1iii103.41 (4)
O3—K1—O1iv77.35 (10)O1—S1—O2115.20 (18)
O3iii—K1—O1iv151.34 (10)O1—S1—N1104.79 (19)
O2i—K1—O284.95 (8)O2—S1—N1113.85 (17)
O1ii—K1—O2114.10 (9)O1—S1—C1107.20 (17)
O3—K1—O2142.52 (10)O2—S1—C1104.97 (18)
O3iii—K1—O272.64 (9)N1—S1—C1110.72 (18)
O1iv—K1—O2135.98 (9)O1—S1—K1116.01 (13)
O2i—K1—N1117.70 (9)O2—S1—K149.88 (12)
O1ii—K1—N186.17 (9)N1—S1—K165.99 (13)
O3—K1—N1165.27 (10)C1—S1—K1136.12 (12)
O3iii—K1—N1104.65 (10)S1—O1—K1ii131.95 (17)
O1iv—K1—N199.80 (9)S1—O1—K1v131.38 (17)
O2—K1—N146.90 (8)K1ii—O1—K1v94.72 (8)
O2i—K1—Br195.38 (7)S1—O2—K1iii136.25 (17)
O1ii—K1—Br1106.34 (7)S1—O2—K1108.10 (15)
O3—K1—Br1152.38 (8)K1iii—O2—K198.64 (9)
O3iii—K1—Br1132.00 (8)K1—O3—K1i101.45 (11)
O1iv—K1—Br176.23 (7)K1—O3—H31115 (4)
O2—K1—Br160.75 (6)K1i—O3—H3186 (4)
N1—K1—Br132.69 (6)K1—O3—H32117 (4)
O2i—K1—S1103.26 (7)K1i—O3—H32122 (4)
O1ii—K1—S198.76 (7)H31—O3—H32112 (3)
O3—K1—S1159.84 (8)S1—N1—Br1110.23 (19)
O3iii—K1—S184.65 (8)S1—N1—K188.56 (14)
O1iv—K1—S1122.67 (7)Br1—N1—K174.25 (11)
O2—K1—S122.02 (6)C6—C1—C2121.6 (3)
N1—K1—S125.45 (6)C6—C1—S1116.6 (3)
Br1—K1—S147.56 (2)C2—C1—S1121.8 (3)
O2i—K1—K1vi127.95 (7)C3—C2—C1117.3 (4)
O1ii—K1—K1vi43.70 (6)C3—C2—C7118.2 (4)
O3—K1—K1vi73.95 (8)C1—C2—C7124.4 (3)
O3iii—K1—K1vi120.81 (7)C2—C3—C4120.5 (4)
O1iv—K1—K1vi41.58 (6)C2—C3—H3119.7
O2—K1—K1vi140.40 (7)C4—C3—H3119.7
N1—K1—K1vi94.21 (6)C5—C4—C3121.8 (4)
Br1—K1—K1vi91.28 (3)C5—C4—Cl1119.9 (4)
S1—K1—K1vi118.40 (4)C3—C4—Cl1118.4 (4)
O2i—K1—K1i42.91 (6)C4—C5—C6118.6 (4)
O1ii—K1—K1i115.00 (7)C4—C5—H5120.7
O3—K1—K1i39.39 (7)C6—C5—H5120.7
O3iii—K1—K1i96.47 (8)C5—C6—C1120.2 (4)
O1iv—K1—K1i66.31 (6)C5—C6—H6119.9
O2—K1—K1i127.22 (6)C1—C6—H6119.9
N1—K1—K1i152.22 (6)C2—C7—H7A109.5
Br1—K1—K1i119.924 (16)C2—C7—H7B109.5
S1—K1—K1i146.08 (3)H7A—C7—H7B109.5
K1vi—K1—K1i90.17 (2)C2—C7—H7C109.5
O2i—K1—K1iii72.93 (7)H7A—C7—H7C109.5
O1ii—K1—K1iii112.48 (6)H7B—C7—H7C109.5
N1—Br1—K1—O2i135.87 (12)Br1—K1—O2—S147.29 (13)
N1—Br1—K1—O1ii54.15 (12)K1vi—K1—O2—S13.2 (2)
N1—Br1—K1—O3152.19 (19)K1i—K1—O2—S1154.31 (11)
N1—Br1—K1—O3iii39.37 (14)K1iii—K1—O2—S1144.9 (2)
N1—Br1—K1—O1iv134.94 (12)O2i—K1—O2—K1iii68.74 (14)
N1—Br1—K1—O254.73 (12)O1ii—K1—O2—K1iii96.32 (10)
N1—Br1—K1—S132.81 (11)O3—K1—O2—K1iii8.0 (2)
N1—Br1—K1—K1vi95.82 (11)O3iii—K1—O2—K1iii24.11 (10)
N1—Br1—K1—K1i173.25 (11)O1iv—K1—O2—K1iii154.21 (10)
N1—Br1—K1—K1iii62.37 (10)N1—K1—O2—K1iii155.05 (16)
O2i—K1—S1—O1136.58 (16)Br1—K1—O2—K1iii167.79 (11)
O1ii—K1—S1—O134.1 (2)S1—K1—O2—K1iii144.9 (2)
O3—K1—S1—O148.4 (3)K1vi—K1—O2—K1iii141.75 (6)
O3iii—K1—S1—O146.60 (16)K1i—K1—O2—K1iii60.78 (11)
O1iv—K1—S1—O1124.12 (19)O2i—K1—O3—K1i25.56 (10)
O2—K1—S1—O1102.0 (2)O1ii—K1—O3—K1i155.48 (12)
N1—K1—S1—O195.4 (2)O3iii—K1—O3—K1i120.36 (16)
Br1—K1—S1—O1138.29 (15)O1iv—K1—O3—K1i67.95 (11)
K1vi—K1—S1—O175.68 (15)O2—K1—O3—K1i88.74 (18)
K1i—K1—S1—O1140.24 (14)N1—K1—O3—K1i148.3 (3)
K1iii—K1—S1—O177.00 (14)Br1—K1—O3—K1i50.8 (2)
O2i—K1—S1—O234.55 (11)S1—K1—O3—K1i118.5 (2)
O1ii—K1—S1—O2136.15 (17)K1vi—K1—O3—K1i110.80 (10)
O3—K1—S1—O253.6 (3)K1iii—K1—O3—K1i93.84 (10)
O3iii—K1—S1—O255.42 (18)O1—S1—N1—Br1175.11 (18)
O1iv—K1—S1—O2133.86 (18)O2—S1—N1—Br158.1 (2)
N1—K1—S1—O2162.6 (2)C1—S1—N1—Br159.8 (2)
Br1—K1—S1—O2119.69 (16)K1—S1—N1—Br172.62 (15)
K1vi—K1—S1—O2177.70 (17)O1—S1—N1—K1112.27 (15)
K1i—K1—S1—O238.22 (17)O2—S1—N1—K114.48 (18)
K1iii—K1—S1—O225.03 (16)C1—S1—N1—K1132.46 (14)
O2i—K1—S1—N1128.05 (16)K1—Br1—N1—S182.43 (18)
O1ii—K1—S1—N161.25 (16)O2i—K1—N1—S159.97 (17)
O3—K1—S1—N1143.8 (3)O1ii—K1—N1—S1119.72 (15)
O3iii—K1—S1—N1141.97 (16)O3—K1—N1—S1126.8 (4)
O1iv—K1—S1—N128.75 (16)O3iii—K1—N1—S139.34 (16)
O2—K1—S1—N1162.6 (2)O1iv—K1—N1—S1155.74 (14)
Br1—K1—S1—N142.92 (15)O2—K1—N1—S18.83 (11)
K1vi—K1—S1—N119.69 (15)Br1—K1—N1—S1111.50 (18)
K1i—K1—S1—N1124.39 (15)K1vi—K1—N1—S1162.71 (13)
K1iii—K1—S1—N1172.37 (15)K1i—K1—N1—S198.89 (17)
O2i—K1—S1—C132.56 (19)K1iii—K1—N1—S16.49 (13)
O1ii—K1—S1—C1156.73 (19)O2i—K1—N1—Br151.53 (13)
O3—K1—S1—C1120.7 (3)O1ii—K1—N1—Br1128.78 (11)
O3iii—K1—S1—C1122.54 (19)O3—K1—N1—Br1121.7 (4)
O1iv—K1—S1—C166.74 (19)O3iii—K1—N1—Br1150.84 (10)
O2—K1—S1—C167.1 (2)O1iv—K1—N1—Br144.24 (11)
N1—K1—S1—C195.5 (2)O2—K1—N1—Br1102.67 (14)
Br1—K1—S1—C152.57 (18)S1—K1—N1—Br1111.50 (18)
K1vi—K1—S1—C1115.18 (18)K1vi—K1—N1—Br185.79 (9)
K1i—K1—S1—C128.90 (19)K1i—K1—N1—Br112.6 (2)
K1iii—K1—S1—C192.15 (18)K1iii—K1—N1—Br1117.99 (9)
O2—S1—O1—K1ii104.0 (2)O1—S1—C1—C6110.7 (3)
N1—S1—O1—K1ii22.0 (3)O2—S1—C1—C612.3 (3)
C1—S1—O1—K1ii139.7 (2)N1—S1—C1—C6135.6 (3)
K1—S1—O1—K1ii48.2 (3)K1—S1—C1—C659.1 (4)
O2—S1—O1—K1v56.0 (3)O1—S1—C1—C267.5 (3)
N1—S1—O1—K1v178.1 (2)O2—S1—C1—C2169.5 (3)
C1—S1—O1—K1v60.4 (3)N1—S1—C1—C246.2 (4)
K1—S1—O1—K1v111.75 (18)K1—S1—C1—C2122.7 (3)
O1—S1—O2—K1iii21.0 (3)C6—C1—C2—C30.8 (5)
N1—S1—O2—K1iii142.1 (2)S1—C1—C2—C3178.9 (3)
C1—S1—O2—K1iii96.6 (2)C6—C1—C2—C7179.2 (4)
K1—S1—O2—K1iii124.7 (3)S1—C1—C2—C72.7 (5)
O1—S1—O2—K1103.73 (18)C1—C2—C3—C40.6 (6)
N1—S1—O2—K117.4 (2)C7—C2—C3—C4179.1 (4)
C1—S1—O2—K1138.62 (14)C2—C3—C4—C50.1 (7)
O2i—K1—O2—S1146.34 (11)C2—C3—C4—Cl1179.8 (3)
O1ii—K1—O2—S148.60 (18)C3—C4—C5—C60.3 (7)
O3—K1—O2—S1152.88 (15)Cl1—C4—C5—C6179.8 (3)
O3iii—K1—O2—S1120.81 (18)C4—C5—C6—C10.1 (6)
O1iv—K1—O2—S160.9 (2)C2—C1—C6—C50.4 (6)
N1—K1—O2—S110.13 (13)S1—C1—C6—C5178.6 (3)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1, z+2; (iii) x, y+3/2, z1/2; (iv) x, y, z+1; (v) x, y, z1; (vi) x, y+1, z+3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···N1vii0.84 (2)2.00 (2)2.835 (5)173 (5)
O3—H32···Br1vi0.82 (2)2.93 (2)3.744 (3)173 (4)
Symmetry codes: (vi) x, y+1, z+3; (vii) x, y+1/2, z+5/2.

Experimental details

Crystal data
Chemical formulaK+·C7H6BrClNO2S·H2O
Mr340.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.265 (1), 11.4817 (8), 6.7552 (5)
β (°) 101.617 (7)
V3)1159.72 (14)
Z4
Radiation typeMo Kα
µ (mm1)4.30
Crystal size (mm)0.42 × 0.30 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.265, 0.627
No. of measured, independent and
observed [I > 2σ(I)] reflections
4387, 2367, 1971
Rint0.030
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.129, 1.10
No. of reflections2367
No. of parameters143
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.97, 1.18

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···N1i0.842 (19)2.00 (2)2.835 (5)173 (5)
O3—H32···Br1ii0.824 (19)2.925 (19)3.744 (3)173 (4)
Symmetry codes: (i) x, y+1/2, z+5/2; (ii) x, y+1, z+3.
 

Acknowledgements

HSS thanks the Department of Science and Technology, Government of India, New Delhi, for a Research Fellowship through PURSE grants. BTG thanks the University Grants Commission, Government of India, New Delhi, for a grant under the UGC–BSR one-time grant to Faculty/Professors.

References

First citationGeorge, E., Vivekanandan, S. & Sivakumar, K. (2000). Acta Cryst. C56, 1208–1209.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Shakuntala, K. (2011a). Acta Cryst. E67, m961.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Shakuntala, K. (2011b). Acta Cryst. E67, m962.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Spandana, H. S. (2012). Acta Cryst. E68, m1358.  CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T. & Mahadevappa, D. S. (1983). Talanta, 30, 359–362.  CrossRef PubMed CAS Web of Science Google Scholar
First citationNardelli, M. (1999). J. Appl. Cryst. 32, 563–571.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOlmstead, M. M. & Power, P. P. (1986). Inorg. Chem. 25, 4057–4058.  CSD CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds