metal-organic compounds
Potassium N-bromo-4-chloro-2-methylbenzenesulfonamidate monohydrate
aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany, and cJnanabharathi Campus, Bangalore University, Bangalore 560 056, India
*Correspondence e-mail: gowdabt@yahoo.com
In the title compound, K+·C7H6BrClNO2S−·H2O, the K+ cation is heptacoordinated by two water O atoms, four sulfonyl O atoms of four different N-bromo-4-chloro-2-methylbenzenesulfonamidate anions, and one Br atom of one of the anions. The S—N distance of 1.584 (3) Å is consistent with an S=N double bond. In the crystal, the anions are linked into layers by O—H⋯Br and O—H⋯N hydrogen bonds.
Related literature
For preparation of N-haloarylsulfonamides, see: Gowda & Mahadevappa (1983). For studies of the effect of substituents on the structures of N-haloarylsulfonamidates, see: George et al. (2000); Gowda et al. (2011a,b, 2012); Olmstead & Power (1986). For restrained geometry, see: Nardelli (1999)
Experimental
Crystal data
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536813014979/rz5069sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813014979/rz5069Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536813014979/rz5069Isup3.cml
The title compound was prepared by a method similar to the one described by Gowda & Mahadevappa (Gowda & Mahadevappa, 1983). 2 g of 2-methyl-4-chlorobenzenesulfonamide was dissolved with stirring in 40 ml of 5M KOH at room temperature. The resultant solution was cooled in ice and 4 ml of liquid bromine was added drop wise with constant stirring. The resultant potassium salt of N-bromo-2-methyl-4-chlorobenzenesulfon-amidate was filtered under suction, washed quickly with a minimum quantity of ice cold water. The purity of the compound was checked by determining its melting point (208° C) and estimating, iodometrically, the amount of active bromine present in it. It was further characterized from its infrared spectrum.
Prism like yellow single crystals of the title compound used in the X-ray diffraction studies were obtained from its aqueous solution at room temperature.
H atoms bonded to C were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å and the methyl C—H = 0.96 Å. The O-bound H atoms were located in difference map and were refined with restrained geometry (Nardelli, 1999), viz. O—H distances were restrained to 0.85 (2) Å and H—H distance was restrained to 1.365 Å, thus leading to the angle of 107°. All H atoms were refined with isotropic displacement parameters set at 1.2 Ueq(C-aromatic, O) or 1.5 Ueq(C-methyl) of the parent atom. The highest peak and the deepest hole are 0.93 and 0.80 Å from Br1, respectively.
The present work was undertaken in order to explore the effect of replacing sodium ion by potassium ion on the solid state structures of metal salts of N-haloarylsulfonamidates (Gowda et al., 2011a,b, 2012), the structure of potassium N-bromo-2-methyl-4-chlorobenzenesulfonamidate monohydrate (I) has been determined (Fig. 1). The structure of (I) resembles those of potassium N-bromo-2,4-dichlorobenzenesulfonamidate sesquihydrate (II) (Gowda et al., 2012), potassium N-bromo-4-chlorobenzenesulfonamidate monohydrate (III) (Gowda et al., 2011a), potassium N-bromo-2-methyl-benzenesulfonamidate sesquihydrate (IV) (Gowda et al., 2011b) and other sodium N-chloroarylsulfonamidates (George et al., 2000; Olmstead & Power, 1986).
In the title compound, the K+ ion is hepta coordinated by two O atoms from two different water molecules, four sulfonyl O atoms of four different N-bromo-2-methyl-4-chlorobenzenesulfonamide anions and one Br atom of N-bromo-2-methyl-4-chlorobenzenesulfonamide anion, similarly to that observed in III. But this is in contrast to the hepta coordination of K+ ion by three O atoms from three different water molecules, four sulfonyl O atoms of three different N-bromo-2-methyl-4-chlorobenzenesulfonamide anions in II and IV.
The S—N distance of 1.584 (3) Å is consistent with a S—N double bond and is in agreement with the observed values of 1.575 (3) Å in (II), 1.584 (6) Å in (III) and 1.577 (5) Å in (IV).
In the
the anions are linked by intermolecular O3—H32···Br1 and O3—H31···N1 hydrogen bonding into layers (Fig. 2 and Table 1).For preparation of N-haloarylsulfonamides, see: Gowda & Mahadevappa (1983). For studies of the effect of substituents on the structures of N-haloarylsulfonamidates, see: George et al. (2000); Gowda et al. (2011a,b, 2012); Olmstead & Power (1986). For restrained geometry, see: Nardelli (1999)
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).K+·C7H6BrClNO2S·H2O | F(000) = 672 |
Mr = 340.66 | Dx = 1.951 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2484 reflections |
a = 15.265 (1) Å | θ = 3.1–27.8° |
b = 11.4817 (8) Å | µ = 4.30 mm−1 |
c = 6.7552 (5) Å | T = 293 K |
β = 101.617 (7)° | Prism, yellow |
V = 1159.72 (14) Å3 | 0.42 × 0.30 × 0.12 mm |
Z = 4 |
Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector | 2367 independent reflections |
Radiation source: fine-focus sealed tube | 1971 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
Rotation method data acquisition using ω scans. | θmax = 26.4°, θmin = 3.3° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | h = −19→14 |
Tmin = 0.265, Tmax = 0.627 | k = −14→14 |
4387 measured reflections | l = −8→8 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.129 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0847P)2 + 0.3516P] where P = (Fo2 + 2Fc2)/3 |
2367 reflections | (Δ/σ)max = 0.001 |
143 parameters | Δρmax = 0.97 e Å−3 |
3 restraints | Δρmin = −1.18 e Å−3 |
K+·C7H6BrClNO2S·H2O | V = 1159.72 (14) Å3 |
Mr = 340.66 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 15.265 (1) Å | µ = 4.30 mm−1 |
b = 11.4817 (8) Å | T = 293 K |
c = 6.7552 (5) Å | 0.42 × 0.30 × 0.12 mm |
β = 101.617 (7)° |
Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector | 2367 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | 1971 reflections with I > 2σ(I) |
Tmin = 0.265, Tmax = 0.627 | Rint = 0.030 |
4387 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 3 restraints |
wR(F2) = 0.129 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | Δρmax = 0.97 e Å−3 |
2367 reflections | Δρmin = −1.18 e Å−3 |
143 parameters |
Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.23345 (3) | 0.48001 (4) | 1.31553 (6) | 0.03995 (19) | |
K1 | 0.04696 (6) | 0.63387 (8) | 1.34287 (13) | 0.0345 (2) | |
Cl1 | 0.53340 (9) | 0.62486 (17) | 0.7141 (2) | 0.0736 (5) | |
S1 | 0.15358 (6) | 0.55763 (8) | 0.91712 (13) | 0.0261 (2) | |
O1 | 0.09358 (19) | 0.5225 (3) | 0.7316 (4) | 0.0384 (7) | |
O2 | 0.1350 (2) | 0.6710 (2) | 0.9950 (4) | 0.0373 (7) | |
O3 | −0.0700 (2) | 0.7364 (3) | 1.5563 (6) | 0.0487 (8) | |
H31 | −0.091 (3) | 0.801 (3) | 1.511 (8) | 0.058* | |
H32 | −0.109 (3) | 0.694 (3) | 1.588 (8) | 0.058* | |
N1 | 0.1502 (2) | 0.4538 (3) | 1.0698 (5) | 0.0342 (8) | |
C1 | 0.2632 (2) | 0.5708 (3) | 0.8616 (5) | 0.0252 (7) | |
C2 | 0.3104 (3) | 0.4738 (3) | 0.8140 (6) | 0.0299 (8) | |
C3 | 0.3941 (3) | 0.4935 (4) | 0.7699 (7) | 0.0381 (10) | |
H3 | 0.4277 | 0.4310 | 0.7389 | 0.046* | |
C4 | 0.4281 (3) | 0.6058 (5) | 0.7717 (6) | 0.0412 (11) | |
C5 | 0.3810 (3) | 0.7006 (4) | 0.8170 (6) | 0.0433 (11) | |
H5 | 0.4046 | 0.7753 | 0.8170 | 0.052* | |
C6 | 0.2980 (3) | 0.6829 (4) | 0.8625 (6) | 0.0337 (8) | |
H6 | 0.2651 | 0.7460 | 0.8939 | 0.040* | |
C7 | 0.2770 (3) | 0.3482 (3) | 0.8127 (6) | 0.0330 (9) | |
H7A | 0.2162 | 0.3443 | 0.7399 | 0.050* | |
H7B | 0.2801 | 0.3224 | 0.9491 | 0.050* | |
H7C | 0.3137 | 0.2989 | 0.7483 | 0.050* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0480 (3) | 0.0389 (3) | 0.0321 (3) | 0.00845 (18) | 0.00612 (19) | 0.00640 (16) |
K1 | 0.0322 (5) | 0.0317 (5) | 0.0400 (5) | −0.0031 (3) | 0.0087 (4) | −0.0016 (4) |
Cl1 | 0.0330 (7) | 0.1197 (13) | 0.0715 (9) | −0.0165 (7) | 0.0187 (6) | 0.0105 (8) |
S1 | 0.0229 (5) | 0.0261 (5) | 0.0291 (5) | 0.0015 (4) | 0.0047 (3) | 0.0014 (4) |
O1 | 0.0251 (15) | 0.0519 (18) | 0.0348 (16) | −0.0037 (13) | −0.0019 (12) | 0.0013 (13) |
O2 | 0.0389 (17) | 0.0294 (14) | 0.0460 (17) | 0.0086 (13) | 0.0139 (12) | 0.0002 (12) |
O3 | 0.042 (2) | 0.0411 (18) | 0.066 (2) | 0.0001 (15) | 0.0176 (15) | −0.0089 (17) |
N1 | 0.0352 (19) | 0.0316 (18) | 0.0374 (19) | −0.0041 (14) | 0.0111 (14) | 0.0036 (14) |
C1 | 0.0226 (18) | 0.0256 (19) | 0.0268 (17) | −0.0038 (15) | 0.0039 (14) | 0.0022 (14) |
C2 | 0.031 (2) | 0.032 (2) | 0.0265 (19) | 0.0019 (16) | 0.0050 (15) | 0.0015 (15) |
C3 | 0.029 (2) | 0.050 (3) | 0.037 (2) | 0.0066 (18) | 0.0090 (17) | 0.0018 (19) |
C4 | 0.022 (2) | 0.069 (3) | 0.034 (2) | −0.010 (2) | 0.0065 (16) | 0.007 (2) |
C5 | 0.041 (3) | 0.048 (3) | 0.041 (2) | −0.018 (2) | 0.0081 (18) | 0.000 (2) |
C6 | 0.037 (2) | 0.029 (2) | 0.035 (2) | −0.0032 (17) | 0.0048 (16) | 0.0009 (16) |
C7 | 0.033 (2) | 0.029 (2) | 0.038 (2) | 0.0080 (16) | 0.0091 (16) | −0.0041 (16) |
Br1—N1 | 1.901 (4) | O3—K1i | 2.786 (4) |
Br1—K1 | 3.3868 (10) | O3—H31 | 0.842 (19) |
K1—O2i | 2.706 (3) | O3—H32 | 0.824 (19) |
K1—O1ii | 2.765 (3) | C1—C6 | 1.392 (5) |
K1—O3 | 2.773 (3) | C1—C2 | 1.399 (5) |
K1—O3iii | 2.786 (4) | C2—C3 | 1.387 (6) |
K1—O1iv | 2.878 (3) | C2—C7 | 1.529 (5) |
K1—O2 | 2.964 (3) | C3—C4 | 1.389 (7) |
K1—N1 | 3.366 (4) | C3—H3 | 0.9300 |
Cl1—C4 | 1.743 (4) | C4—C5 | 1.373 (7) |
S1—O1 | 1.453 (3) | C5—C6 | 1.377 (6) |
S1—O2 | 1.453 (3) | C5—H5 | 0.9300 |
S1—N1 | 1.584 (3) | C6—H6 | 0.9300 |
S1—C1 | 1.794 (4) | C7—H7A | 0.9600 |
O1—K1ii | 2.765 (3) | C7—H7B | 0.9600 |
O1—K1v | 2.878 (3) | C7—H7C | 0.9600 |
O2—K1iii | 2.706 (3) | ||
N1—Br1—K1 | 73.06 (11) | O3—K1—K1iii | 104.29 (8) |
O2i—K1—O1ii | 156.13 (10) | O3iii—K1—K1iii | 39.16 (7) |
O2i—K1—O3 | 76.93 (10) | O1iv—K1—K1iii | 162.22 (6) |
O1ii—K1—O3 | 79.22 (10) | O2—K1—K1iii | 38.44 (5) |
O2i—K1—O3iii | 91.20 (10) | N1—K1—K1iii | 82.90 (6) |
O1ii—K1—O3iii | 81.70 (9) | Br1—K1—K1iii | 98.488 (15) |
O3—K1—O3iii | 75.20 (7) | S1—K1—K1iii | 57.636 (16) |
O2i—K1—O1iv | 90.50 (9) | K1vi—K1—K1iii | 156.16 (3) |
O1ii—K1—O1iv | 85.28 (9) | K1i—K1—K1iii | 103.41 (4) |
O3—K1—O1iv | 77.35 (10) | O1—S1—O2 | 115.20 (18) |
O3iii—K1—O1iv | 151.34 (10) | O1—S1—N1 | 104.79 (19) |
O2i—K1—O2 | 84.95 (8) | O2—S1—N1 | 113.85 (17) |
O1ii—K1—O2 | 114.10 (9) | O1—S1—C1 | 107.20 (17) |
O3—K1—O2 | 142.52 (10) | O2—S1—C1 | 104.97 (18) |
O3iii—K1—O2 | 72.64 (9) | N1—S1—C1 | 110.72 (18) |
O1iv—K1—O2 | 135.98 (9) | O1—S1—K1 | 116.01 (13) |
O2i—K1—N1 | 117.70 (9) | O2—S1—K1 | 49.88 (12) |
O1ii—K1—N1 | 86.17 (9) | N1—S1—K1 | 65.99 (13) |
O3—K1—N1 | 165.27 (10) | C1—S1—K1 | 136.12 (12) |
O3iii—K1—N1 | 104.65 (10) | S1—O1—K1ii | 131.95 (17) |
O1iv—K1—N1 | 99.80 (9) | S1—O1—K1v | 131.38 (17) |
O2—K1—N1 | 46.90 (8) | K1ii—O1—K1v | 94.72 (8) |
O2i—K1—Br1 | 95.38 (7) | S1—O2—K1iii | 136.25 (17) |
O1ii—K1—Br1 | 106.34 (7) | S1—O2—K1 | 108.10 (15) |
O3—K1—Br1 | 152.38 (8) | K1iii—O2—K1 | 98.64 (9) |
O3iii—K1—Br1 | 132.00 (8) | K1—O3—K1i | 101.45 (11) |
O1iv—K1—Br1 | 76.23 (7) | K1—O3—H31 | 115 (4) |
O2—K1—Br1 | 60.75 (6) | K1i—O3—H31 | 86 (4) |
N1—K1—Br1 | 32.69 (6) | K1—O3—H32 | 117 (4) |
O2i—K1—S1 | 103.26 (7) | K1i—O3—H32 | 122 (4) |
O1ii—K1—S1 | 98.76 (7) | H31—O3—H32 | 112 (3) |
O3—K1—S1 | 159.84 (8) | S1—N1—Br1 | 110.23 (19) |
O3iii—K1—S1 | 84.65 (8) | S1—N1—K1 | 88.56 (14) |
O1iv—K1—S1 | 122.67 (7) | Br1—N1—K1 | 74.25 (11) |
O2—K1—S1 | 22.02 (6) | C6—C1—C2 | 121.6 (3) |
N1—K1—S1 | 25.45 (6) | C6—C1—S1 | 116.6 (3) |
Br1—K1—S1 | 47.56 (2) | C2—C1—S1 | 121.8 (3) |
O2i—K1—K1vi | 127.95 (7) | C3—C2—C1 | 117.3 (4) |
O1ii—K1—K1vi | 43.70 (6) | C3—C2—C7 | 118.2 (4) |
O3—K1—K1vi | 73.95 (8) | C1—C2—C7 | 124.4 (3) |
O3iii—K1—K1vi | 120.81 (7) | C2—C3—C4 | 120.5 (4) |
O1iv—K1—K1vi | 41.58 (6) | C2—C3—H3 | 119.7 |
O2—K1—K1vi | 140.40 (7) | C4—C3—H3 | 119.7 |
N1—K1—K1vi | 94.21 (6) | C5—C4—C3 | 121.8 (4) |
Br1—K1—K1vi | 91.28 (3) | C5—C4—Cl1 | 119.9 (4) |
S1—K1—K1vi | 118.40 (4) | C3—C4—Cl1 | 118.4 (4) |
O2i—K1—K1i | 42.91 (6) | C4—C5—C6 | 118.6 (4) |
O1ii—K1—K1i | 115.00 (7) | C4—C5—H5 | 120.7 |
O3—K1—K1i | 39.39 (7) | C6—C5—H5 | 120.7 |
O3iii—K1—K1i | 96.47 (8) | C5—C6—C1 | 120.2 (4) |
O1iv—K1—K1i | 66.31 (6) | C5—C6—H6 | 119.9 |
O2—K1—K1i | 127.22 (6) | C1—C6—H6 | 119.9 |
N1—K1—K1i | 152.22 (6) | C2—C7—H7A | 109.5 |
Br1—K1—K1i | 119.924 (16) | C2—C7—H7B | 109.5 |
S1—K1—K1i | 146.08 (3) | H7A—C7—H7B | 109.5 |
K1vi—K1—K1i | 90.17 (2) | C2—C7—H7C | 109.5 |
O2i—K1—K1iii | 72.93 (7) | H7A—C7—H7C | 109.5 |
O1ii—K1—K1iii | 112.48 (6) | H7B—C7—H7C | 109.5 |
N1—Br1—K1—O2i | −135.87 (12) | Br1—K1—O2—S1 | 47.29 (13) |
N1—Br1—K1—O1ii | 54.15 (12) | K1vi—K1—O2—S1 | −3.2 (2) |
N1—Br1—K1—O3 | 152.19 (19) | K1i—K1—O2—S1 | 154.31 (11) |
N1—Br1—K1—O3iii | −39.37 (14) | K1iii—K1—O2—S1 | −144.9 (2) |
N1—Br1—K1—O1iv | 134.94 (12) | O2i—K1—O2—K1iii | −68.74 (14) |
N1—Br1—K1—O2 | −54.73 (12) | O1ii—K1—O2—K1iii | 96.32 (10) |
N1—Br1—K1—S1 | −32.81 (11) | O3—K1—O2—K1iii | −8.0 (2) |
N1—Br1—K1—K1vi | 95.82 (11) | O3iii—K1—O2—K1iii | 24.11 (10) |
N1—Br1—K1—K1i | −173.25 (11) | O1iv—K1—O2—K1iii | −154.21 (10) |
N1—Br1—K1—K1iii | −62.37 (10) | N1—K1—O2—K1iii | 155.05 (16) |
O2i—K1—S1—O1 | −136.58 (16) | Br1—K1—O2—K1iii | −167.79 (11) |
O1ii—K1—S1—O1 | 34.1 (2) | S1—K1—O2—K1iii | 144.9 (2) |
O3—K1—S1—O1 | −48.4 (3) | K1vi—K1—O2—K1iii | 141.75 (6) |
O3iii—K1—S1—O1 | −46.60 (16) | K1i—K1—O2—K1iii | −60.78 (11) |
O1iv—K1—S1—O1 | 124.12 (19) | O2i—K1—O3—K1i | −25.56 (10) |
O2—K1—S1—O1 | −102.0 (2) | O1ii—K1—O3—K1i | 155.48 (12) |
N1—K1—S1—O1 | 95.4 (2) | O3iii—K1—O3—K1i | −120.36 (16) |
Br1—K1—S1—O1 | 138.29 (15) | O1iv—K1—O3—K1i | 67.95 (11) |
K1vi—K1—S1—O1 | 75.68 (15) | O2—K1—O3—K1i | −88.74 (18) |
K1i—K1—S1—O1 | −140.24 (14) | N1—K1—O3—K1i | 148.3 (3) |
K1iii—K1—S1—O1 | −77.00 (14) | Br1—K1—O3—K1i | 50.8 (2) |
O2i—K1—S1—O2 | −34.55 (11) | S1—K1—O3—K1i | −118.5 (2) |
O1ii—K1—S1—O2 | 136.15 (17) | K1vi—K1—O3—K1i | 110.80 (10) |
O3—K1—S1—O2 | 53.6 (3) | K1iii—K1—O3—K1i | −93.84 (10) |
O3iii—K1—S1—O2 | 55.42 (18) | O1—S1—N1—Br1 | 175.11 (18) |
O1iv—K1—S1—O2 | −133.86 (18) | O2—S1—N1—Br1 | −58.1 (2) |
N1—K1—S1—O2 | −162.6 (2) | C1—S1—N1—Br1 | 59.8 (2) |
Br1—K1—S1—O2 | −119.69 (16) | K1—S1—N1—Br1 | −72.62 (15) |
K1vi—K1—S1—O2 | 177.70 (17) | O1—S1—N1—K1 | −112.27 (15) |
K1i—K1—S1—O2 | −38.22 (17) | O2—S1—N1—K1 | 14.48 (18) |
K1iii—K1—S1—O2 | 25.03 (16) | C1—S1—N1—K1 | 132.46 (14) |
O2i—K1—S1—N1 | 128.05 (16) | K1—Br1—N1—S1 | 82.43 (18) |
O1ii—K1—S1—N1 | −61.25 (16) | O2i—K1—N1—S1 | −59.97 (17) |
O3—K1—S1—N1 | −143.8 (3) | O1ii—K1—N1—S1 | 119.72 (15) |
O3iii—K1—S1—N1 | −141.97 (16) | O3—K1—N1—S1 | 126.8 (4) |
O1iv—K1—S1—N1 | 28.75 (16) | O3iii—K1—N1—S1 | 39.34 (16) |
O2—K1—S1—N1 | 162.6 (2) | O1iv—K1—N1—S1 | −155.74 (14) |
Br1—K1—S1—N1 | 42.92 (15) | O2—K1—N1—S1 | −8.83 (11) |
K1vi—K1—S1—N1 | −19.69 (15) | Br1—K1—N1—S1 | −111.50 (18) |
K1i—K1—S1—N1 | 124.39 (15) | K1vi—K1—N1—S1 | 162.71 (13) |
K1iii—K1—S1—N1 | −172.37 (15) | K1i—K1—N1—S1 | −98.89 (17) |
O2i—K1—S1—C1 | 32.56 (19) | K1iii—K1—N1—S1 | 6.49 (13) |
O1ii—K1—S1—C1 | −156.73 (19) | O2i—K1—N1—Br1 | 51.53 (13) |
O3—K1—S1—C1 | 120.7 (3) | O1ii—K1—N1—Br1 | −128.78 (11) |
O3iii—K1—S1—C1 | 122.54 (19) | O3—K1—N1—Br1 | −121.7 (4) |
O1iv—K1—S1—C1 | −66.74 (19) | O3iii—K1—N1—Br1 | 150.84 (10) |
O2—K1—S1—C1 | 67.1 (2) | O1iv—K1—N1—Br1 | −44.24 (11) |
N1—K1—S1—C1 | −95.5 (2) | O2—K1—N1—Br1 | 102.67 (14) |
Br1—K1—S1—C1 | −52.57 (18) | S1—K1—N1—Br1 | 111.50 (18) |
K1vi—K1—S1—C1 | −115.18 (18) | K1vi—K1—N1—Br1 | −85.79 (9) |
K1i—K1—S1—C1 | 28.90 (19) | K1i—K1—N1—Br1 | 12.6 (2) |
K1iii—K1—S1—C1 | 92.15 (18) | K1iii—K1—N1—Br1 | 117.99 (9) |
O2—S1—O1—K1ii | −104.0 (2) | O1—S1—C1—C6 | 110.7 (3) |
N1—S1—O1—K1ii | 22.0 (3) | O2—S1—C1—C6 | −12.3 (3) |
C1—S1—O1—K1ii | 139.7 (2) | N1—S1—C1—C6 | −135.6 (3) |
K1—S1—O1—K1ii | −48.2 (3) | K1—S1—C1—C6 | −59.1 (4) |
O2—S1—O1—K1v | 56.0 (3) | O1—S1—C1—C2 | −67.5 (3) |
N1—S1—O1—K1v | −178.1 (2) | O2—S1—C1—C2 | 169.5 (3) |
C1—S1—O1—K1v | −60.4 (3) | N1—S1—C1—C2 | 46.2 (4) |
K1—S1—O1—K1v | 111.75 (18) | K1—S1—C1—C2 | 122.7 (3) |
O1—S1—O2—K1iii | −21.0 (3) | C6—C1—C2—C3 | 0.8 (5) |
N1—S1—O2—K1iii | −142.1 (2) | S1—C1—C2—C3 | 178.9 (3) |
C1—S1—O2—K1iii | 96.6 (2) | C6—C1—C2—C7 | 179.2 (4) |
K1—S1—O2—K1iii | −124.7 (3) | S1—C1—C2—C7 | −2.7 (5) |
O1—S1—O2—K1 | 103.73 (18) | C1—C2—C3—C4 | −0.6 (6) |
N1—S1—O2—K1 | −17.4 (2) | C7—C2—C3—C4 | −179.1 (4) |
C1—S1—O2—K1 | −138.62 (14) | C2—C3—C4—C5 | 0.1 (7) |
O2i—K1—O2—S1 | 146.34 (11) | C2—C3—C4—Cl1 | −179.8 (3) |
O1ii—K1—O2—S1 | −48.60 (18) | C3—C4—C5—C6 | 0.3 (7) |
O3—K1—O2—S1 | −152.88 (15) | Cl1—C4—C5—C6 | −179.8 (3) |
O3iii—K1—O2—S1 | −120.81 (18) | C4—C5—C6—C1 | −0.1 (6) |
O1iv—K1—O2—S1 | 60.9 (2) | C2—C1—C6—C5 | −0.4 (6) |
N1—K1—O2—S1 | 10.13 (13) | S1—C1—C6—C5 | −178.6 (3) |
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x, −y+1, −z+2; (iii) x, −y+3/2, z−1/2; (iv) x, y, z+1; (v) x, y, z−1; (vi) −x, −y+1, −z+3. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H31···N1vii | 0.84 (2) | 2.00 (2) | 2.835 (5) | 173 (5) |
O3—H32···Br1vi | 0.82 (2) | 2.93 (2) | 3.744 (3) | 173 (4) |
Symmetry codes: (vi) −x, −y+1, −z+3; (vii) −x, y+1/2, −z+5/2. |
Experimental details
Crystal data | |
Chemical formula | K+·C7H6BrClNO2S·H2O |
Mr | 340.66 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 15.265 (1), 11.4817 (8), 6.7552 (5) |
β (°) | 101.617 (7) |
V (Å3) | 1159.72 (14) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 4.30 |
Crystal size (mm) | 0.42 × 0.30 × 0.12 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.265, 0.627 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4387, 2367, 1971 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.129, 1.10 |
No. of reflections | 2367 |
No. of parameters | 143 |
No. of restraints | 3 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.97, −1.18 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H31···N1i | 0.842 (19) | 2.00 (2) | 2.835 (5) | 173 (5) |
O3—H32···Br1ii | 0.824 (19) | 2.925 (19) | 3.744 (3) | 173 (4) |
Symmetry codes: (i) −x, y+1/2, −z+5/2; (ii) −x, −y+1, −z+3. |
Acknowledgements
HSS thanks the Department of Science and Technology, Government of India, New Delhi, for a Research Fellowship through PURSE grants. BTG thanks the University Grants Commission, Government of India, New Delhi, for a grant under the UGC–BSR one-time grant to Faculty/Professors.
References
George, E., Vivekanandan, S. & Sivakumar, K. (2000). Acta Cryst. C56, 1208–1209. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Gowda, B. T., Foro, S. & Shakuntala, K. (2011a). Acta Cryst. E67, m961. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S. & Shakuntala, K. (2011b). Acta Cryst. E67, m962. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S. & Spandana, H. S. (2012). Acta Cryst. E68, m1358. CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T. & Mahadevappa, D. S. (1983). Talanta, 30, 359–362. CrossRef PubMed CAS Web of Science Google Scholar
Nardelli, M. (1999). J. Appl. Cryst. 32, 563–571. Web of Science CrossRef CAS IUCr Journals Google Scholar
Olmstead, M. M. & Power, P. P. (1986). Inorg. Chem. 25, 4057–4058. CSD CrossRef CAS Web of Science Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The present work was undertaken in order to explore the effect of replacing sodium ion by potassium ion on the solid state structures of metal salts of N-haloarylsulfonamidates (Gowda et al., 2011a,b, 2012), the structure of potassium N-bromo-2-methyl-4-chlorobenzenesulfonamidate monohydrate (I) has been determined (Fig. 1). The structure of (I) resembles those of potassium N-bromo-2,4-dichlorobenzenesulfonamidate sesquihydrate (II) (Gowda et al., 2012), potassium N-bromo-4-chlorobenzenesulfonamidate monohydrate (III) (Gowda et al., 2011a), potassium N-bromo-2-methyl-benzenesulfonamidate sesquihydrate (IV) (Gowda et al., 2011b) and other sodium N-chloroarylsulfonamidates (George et al., 2000; Olmstead & Power, 1986).
In the title compound, the K+ ion is hepta coordinated by two O atoms from two different water molecules, four sulfonyl O atoms of four different N-bromo-2-methyl-4-chlorobenzenesulfonamide anions and one Br atom of N-bromo-2-methyl-4-chlorobenzenesulfonamide anion, similarly to that observed in III. But this is in contrast to the hepta coordination of K+ ion by three O atoms from three different water molecules, four sulfonyl O atoms of three different N-bromo-2-methyl-4-chlorobenzenesulfonamide anions in II and IV.
The S—N distance of 1.584 (3) Å is consistent with a S—N double bond and is in agreement with the observed values of 1.575 (3) Å in (II), 1.584 (6) Å in (III) and 1.577 (5) Å in (IV).
In the crystal structure the anions are linked by intermolecular O3—H32···Br1 and O3—H31···N1 hydrogen bonding into layers (Fig. 2 and Table 1).