organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S,2R,7R,8S,10R)-9,9-Di­bromo-2,6,6,10-tetra­methyl-1α,2α-ep­­oxy­tri­cyclo­[5.5.0.08,10]dodeca­ne

aLaboratoire de Chimie des Substances Naturelles, "Unité Associé au CNRST (URAC16)", Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, and bLaboratoire de Chimie du Solide, Appliquée, Faculté des Sciences, Université Mohammed V-Agdal , Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: berraho@uca.ma

(Received 28 May 2013; accepted 31 May 2013; online 8 June 2013)

The title compound, C16H24Br2O, was synthesized from the reaction of β-himachalene (3,5,5,9-tetra­methyl-2,4a,5,6,7,8-hexa­hydro-1H-benzo­cyclo­heptene), which was isolated from Atlas cedar (Cedrus atlantica) essential oil, after reaction with di­bromo­carbene. The asymmetric unit contains two independent mol­ecules with similar conformations. Each mol­ecule is built up from fused six-and seven-membered rings and two three-membered rings. In both mol­ecules, the six-membered ring has an envelope conformation with the flap provided by the C atom of the ep­oxy ring, whereas the seven-membered ring displays a chair conformation. The crystal packing is governed only by van der Waals inter­actions. The absolute configuration was established from anomalous dispersion effects.

Related literature

For background to β-himachalene, see: Benharref et al.(2013[Benharref, A., Ourhriss, N., El Ammari, L., Saadi, M. & Berraho, M. (2013). Acta Cryst. E69, o933-o934.]); Oukhrib et al.(2013a[Oukhrib, A., Benharref, A., Saadi, M., Berraho, M. & El Ammari, L. (2013a). Acta Cryst. E69, o521-o522.],b[Oukhrib, A., Benharref, A., Saadi, M., Berraho, M. & El Ammari, L. (2013b). Acta Cryst. E69, o589-o590.]). For the reactivity of this sesquiterpene and its derivatives, see: El Haib et al. (2011[El Haib, A., Benharref, A., Parreś-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101-108.]). For details of the synthesis, see: El Jamili et al. (2002[El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645-6648.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C16H24Br2O

  • Mr = 392.17

  • Monoclinic, P 21

  • a = 8.8056 (13) Å

  • b = 15.648 (3) Å

  • c = 12.1390 (16) Å

  • β = 91.769 (10)°

  • V = 1671.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.84 mm−1

  • T = 293 K

  • 0.25 × 0.15 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.423, Tmax = 0.617

  • 17250 measured reflections

  • 6776 independent reflections

  • 5298 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.108

  • S = 0.96

  • 6776 reflections

  • 351 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.67 e Å−3

  • Absolute structure: Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.])

  • Flack parameter: 0.009 (10)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick,2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick,2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

As part of the development of the essential oil of Atlas cedar (Cedrus atlantica) made up mainly (50%) of β-himachalene (Benharref et al., 2013; Oukhrib et al., 2013a,b). The reactivity of this sesquiterpene and its derivatives has been studied extensively by our team in order to prepare new products having biological proprieties (El Haib et al., 2011). We present in this paper the crystal structure of the title compound (1S,2R,7R 8S,10R)-9,9- dibromo-1α,2α-epoxy-2,6,6,10-tetramethyltricyclo[5.5.0.08,10]dodecane. The asymmetric unit of the title compound contains two independent molecules of similar geometry (Fig. 1). Each molecule contains a fused six- and a seven-membered ring, which are fused to two three-membered rings as shown in Fig. 1. The six-membered ring has an envelope conformation, as indicated by the total puckering amplitude QT = 0.622 (6) Å and spherical polar angle θ = 120.37 (5)° with φ = 176.92 (6)°, whereas the seven-membered ring displays a chair conformation with QT = 0.626 (5) Å, θ = 22.71 (5)°, φ2 = 149.10 (14)° and φ3 = 102.01 (6)° (Cremer & Pople, 1975). Owing to the presence of Br atoms, the absolute configuration could be fully confirmed, by refining the Flack parameter (Flack & Bernardinelli, 2000) as C1(S), C2(R), C7(R), 8(S) and 10(R).

Related literature top

For background to β-himachalene, see: Benharref et al.(2013); Oukhrib et al.(2013a,b). For the reactivity of this sesquiterpene and its derivatives, see: El Haib et al. (2011). For details of the synthesis, see: El Jamili et al. (2002). For puckering parameters, see: Cremer & Pople (1975)

Experimental top

A solution containing 2 g (9 mmol) of 6α,7α-epoxyhimachalene ((1S,2R,7R)-2,6,6,9-tetramethylbicyclo[5.4.0.]dec-8-ene) (El Jamili et al., 2002) and 1 ml (10 mmol) of CHBr3 in 40 ml of dichloromethane was added dropwise at 273 K over 30 min to 1 g of pulverized sodium hydroxide and 40 mg of N-benzyltriethylammonium chloride placed in a 100 ml three-necked flask. After stirring at room temperature for 2 h, the mixture was filtered on celite and concentrated in vacuum. The residue obtained was chromatographed on silica gel column impregnated with silver nitrate (10%) with a mixture of hexane-ethyl acetate (95:5 v/v) used as eluent. The two diastereoisomers (1S,2R,7R,8S,10R)-9,9-dibromo- 1α,2α-epoxy-2,6,6,10-tetramethyltricyclo[5.5.0.08,10]dodecane (X) and its isomer (1R,2R,7R,8R,10S)-9,9-dibromo-1α,2α-epoxy-2,6,6,10-tetramethyltricyclo[5.5.0.08,10]dodecane (Y), were obtained by this procedure in a 80/20 ratio and a combined yield of 85% (3 g; 7.6 mmol). The title compound (isomer X) was recrystallized from heptane.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methine) with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Structure description top

As part of the development of the essential oil of Atlas cedar (Cedrus atlantica) made up mainly (50%) of β-himachalene (Benharref et al., 2013; Oukhrib et al., 2013a,b). The reactivity of this sesquiterpene and its derivatives has been studied extensively by our team in order to prepare new products having biological proprieties (El Haib et al., 2011). We present in this paper the crystal structure of the title compound (1S,2R,7R 8S,10R)-9,9- dibromo-1α,2α-epoxy-2,6,6,10-tetramethyltricyclo[5.5.0.08,10]dodecane. The asymmetric unit of the title compound contains two independent molecules of similar geometry (Fig. 1). Each molecule contains a fused six- and a seven-membered ring, which are fused to two three-membered rings as shown in Fig. 1. The six-membered ring has an envelope conformation, as indicated by the total puckering amplitude QT = 0.622 (6) Å and spherical polar angle θ = 120.37 (5)° with φ = 176.92 (6)°, whereas the seven-membered ring displays a chair conformation with QT = 0.626 (5) Å, θ = 22.71 (5)°, φ2 = 149.10 (14)° and φ3 = 102.01 (6)° (Cremer & Pople, 1975). Owing to the presence of Br atoms, the absolute configuration could be fully confirmed, by refining the Flack parameter (Flack & Bernardinelli, 2000) as C1(S), C2(R), C7(R), 8(S) and 10(R).

For background to β-himachalene, see: Benharref et al.(2013); Oukhrib et al.(2013a,b). For the reactivity of this sesquiterpene and its derivatives, see: El Haib et al. (2011). For details of the synthesis, see: El Jamili et al. (2002). For puckering parameters, see: Cremer & Pople (1975)

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick,2008); program(s) used to refine structure: SHELXL97 (Sheldrick,2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
(1S,2R,7R,8S,10R)-9,9-Dibromo-2,6,6,10-tetramethyl-1α,2α-epoxytricyclo[5.5.0.08,10]dodecane top
Crystal data top
C16H24Br2OF(000) = 792
Mr = 392.17Dx = 1.558 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 6776 reflections
a = 8.8056 (13) Åθ = 1.7–26.4°
b = 15.648 (3) ŵ = 4.84 mm1
c = 12.1390 (16) ÅT = 293 K
β = 91.769 (10)°Block, colourless
V = 1671.8 (4) Å30.25 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
6776 independent reflections
Radiation source: fine-focus sealed tube5298 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
ω and φ scansθmax = 26.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 811
Tmin = 0.423, Tmax = 0.617k = 1919
17250 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0633P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.001
6776 reflectionsΔρmax = 0.71 e Å3
351 parametersΔρmin = 0.67 e Å3
1 restraintAbsolute structure: Flack & Bernardinelli (2000)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.009 (10)
Crystal data top
C16H24Br2OV = 1671.8 (4) Å3
Mr = 392.17Z = 4
Monoclinic, P21Mo Kα radiation
a = 8.8056 (13) ŵ = 4.84 mm1
b = 15.648 (3) ÅT = 293 K
c = 12.1390 (16) Å0.25 × 0.15 × 0.10 mm
β = 91.769 (10)°
Data collection top
Bruker APEXII CCD
diffractometer
6776 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5298 reflections with I > 2σ(I)
Tmin = 0.423, Tmax = 0.617Rint = 0.081
17250 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.108Δρmax = 0.71 e Å3
S = 0.96Δρmin = 0.67 e Å3
6776 reflectionsAbsolute structure: Flack & Bernardinelli (2000)
351 parametersAbsolute structure parameter: 0.009 (10)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4786 (5)0.2569 (3)0.7030 (3)0.0390 (10)
O20.5953 (4)0.2243 (2)0.7806 (2)0.0430 (8)
C20.5383 (6)0.1681 (3)0.6920 (4)0.0423 (11)
C30.6486 (6)0.1431 (3)0.6069 (4)0.0487 (12)
H3A0.59390.14120.53630.058*
H3B0.68230.08530.62330.058*
C40.7899 (6)0.1980 (3)0.5929 (4)0.0488 (12)
H4A0.83500.20910.66540.059*
H4B0.86280.16510.55220.059*
C50.7662 (5)0.2824 (3)0.5350 (4)0.0444 (11)
H5A0.71300.27120.46530.053*
H5B0.86540.30490.51800.053*
C60.6796 (5)0.3524 (3)0.5942 (3)0.0388 (10)
C70.5144 (5)0.3291 (3)0.6248 (3)0.0328 (9)
H70.47490.38060.65990.039*
C80.4079 (5)0.3138 (3)0.5248 (3)0.0325 (9)
H80.45920.29420.45890.039*
C90.2679 (5)0.3648 (3)0.5012 (3)0.0401 (11)
C100.2532 (5)0.2739 (3)0.5400 (4)0.0372 (10)
C110.1999 (5)0.2574 (4)0.6582 (4)0.0473 (12)
H11A0.16460.19880.66310.057*
H11B0.11450.29450.67220.057*
C120.3252 (5)0.2725 (4)0.7486 (4)0.0448 (11)
H12A0.31930.33080.77540.054*
H12B0.30960.23430.81010.054*
C130.4477 (8)0.0924 (4)0.7295 (5)0.0633 (16)
H13A0.51530.05010.76040.095*
H13B0.39180.06860.66770.095*
H13C0.37820.11050.78430.095*
C140.7687 (6)0.3802 (4)0.6983 (4)0.0490 (12)
H14A0.86600.40210.67850.074*
H14B0.78280.33200.74650.074*
H14C0.71320.42400.73530.074*
C150.6689 (6)0.4301 (3)0.5177 (4)0.0536 (13)
H15A0.61410.47500.55290.080*
H15B0.61660.41430.45020.080*
H15C0.76930.44960.50200.080*
C160.1993 (6)0.2064 (4)0.4603 (4)0.0546 (13)
H16A0.09030.20740.45430.082*
H16B0.23260.15140.48610.082*
H16C0.24030.21730.38930.082*
C170.2827 (5)0.7233 (3)0.8031 (3)0.0352 (10)
C180.3421 (6)0.8076 (3)0.8327 (4)0.0465 (12)
C190.4705 (7)0.8218 (3)0.9162 (5)0.0561 (14)
H19A0.42880.81650.98900.067*
H19B0.50440.88040.90870.067*
C200.6092 (6)0.7649 (4)0.9129 (4)0.0497 (13)
H20A0.64330.76360.83770.060*
H20B0.68950.79110.95790.060*
C210.5900 (6)0.6742 (3)0.9511 (4)0.0459 (12)
H21A0.54520.67601.02310.055*
H21B0.69050.64950.96110.055*
C220.4959 (5)0.6139 (3)0.8797 (4)0.0398 (10)
C230.3285 (5)0.6408 (3)0.8609 (3)0.0323 (9)
H230.28260.59520.81560.039*
C240.2385 (5)0.6414 (3)0.9667 (3)0.0368 (10)
H240.29970.65381.03360.044*
C250.1056 (7)0.5875 (4)0.9849 (4)0.0575 (15)
C260.0784 (5)0.6799 (4)0.9657 (4)0.0464 (12)
C270.0114 (6)0.7110 (5)0.8544 (4)0.0603 (15)
H27A0.07360.67430.83370.072*
H27B0.02850.76810.86440.072*
C280.1207 (5)0.7130 (4)0.7588 (4)0.0498 (12)
H28A0.11170.66030.71690.060*
H28B0.09470.76020.71000.060*
C290.2462 (8)0.8869 (4)0.8139 (6)0.0794 (19)
H29A0.31070.93410.79630.119*
H29B0.19250.89970.87960.119*
H29C0.17460.87710.75400.119*
C300.5677 (7)0.6043 (4)0.7651 (4)0.0562 (14)
H30A0.56770.65880.72860.084*
H30B0.50960.56420.72140.084*
H30C0.67030.58420.77440.084*
C310.4967 (8)0.5255 (4)0.9344 (5)0.0686 (16)
H31A0.59840.50340.93740.103*
H31B0.43210.48750.89230.103*
H31C0.46000.53041.00780.103*
C320.0383 (7)0.7370 (5)1.0609 (5)0.0702 (18)
H32A0.06850.73271.07330.105*
H32B0.06350.79511.04370.105*
H32C0.09450.71941.12600.105*
Br10.21034 (6)0.45774 (4)0.59468 (5)0.05955 (16)
Br20.21696 (7)0.39320 (4)0.34957 (4)0.06233 (17)
Br30.08341 (10)0.54023 (6)1.13196 (5)0.0965 (3)
Br40.03361 (10)0.50475 (5)0.87765 (6)0.0890 (3)
O10.3873 (4)0.7654 (2)0.7306 (2)0.0488 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.031 (2)0.058 (3)0.028 (2)0.000 (2)0.0064 (18)0.0019 (19)
O20.0350 (18)0.062 (2)0.0313 (15)0.0037 (15)0.0106 (13)0.0048 (14)
C20.043 (3)0.045 (3)0.038 (2)0.004 (2)0.008 (2)0.001 (2)
C30.052 (3)0.040 (3)0.054 (3)0.005 (2)0.001 (2)0.004 (2)
C40.037 (3)0.060 (3)0.050 (3)0.014 (2)0.003 (2)0.007 (2)
C50.030 (2)0.066 (3)0.037 (2)0.002 (2)0.002 (2)0.003 (2)
C60.031 (2)0.051 (3)0.034 (2)0.003 (2)0.0013 (18)0.0012 (19)
C70.028 (2)0.047 (3)0.0230 (19)0.0014 (19)0.0013 (16)0.0066 (17)
C80.030 (2)0.043 (2)0.0243 (19)0.0032 (18)0.0046 (17)0.0004 (17)
C90.035 (2)0.053 (3)0.032 (2)0.010 (2)0.0056 (18)0.0069 (19)
C100.025 (2)0.052 (3)0.035 (2)0.000 (2)0.0035 (18)0.003 (2)
C110.030 (2)0.073 (3)0.039 (2)0.003 (2)0.002 (2)0.005 (2)
C120.036 (3)0.067 (3)0.032 (2)0.003 (2)0.007 (2)0.006 (2)
C130.069 (4)0.063 (4)0.057 (3)0.013 (3)0.004 (3)0.014 (3)
C140.036 (3)0.061 (3)0.049 (3)0.008 (2)0.009 (2)0.006 (2)
C150.048 (3)0.056 (3)0.057 (3)0.008 (2)0.000 (2)0.011 (2)
C160.042 (3)0.069 (3)0.053 (3)0.004 (3)0.004 (2)0.007 (3)
C170.027 (2)0.054 (3)0.0245 (19)0.002 (2)0.0018 (16)0.0048 (18)
C180.038 (3)0.051 (3)0.050 (3)0.009 (2)0.003 (2)0.007 (2)
C190.054 (3)0.046 (3)0.068 (3)0.008 (3)0.009 (3)0.010 (2)
C200.034 (3)0.067 (3)0.048 (3)0.009 (2)0.008 (2)0.010 (2)
C210.036 (3)0.065 (3)0.037 (2)0.004 (2)0.007 (2)0.004 (2)
C220.035 (3)0.041 (3)0.043 (2)0.005 (2)0.003 (2)0.0016 (19)
C230.032 (2)0.038 (2)0.027 (2)0.0050 (18)0.0015 (17)0.0048 (17)
C240.036 (2)0.049 (3)0.0256 (19)0.011 (2)0.0029 (18)0.0008 (18)
C250.059 (4)0.077 (4)0.037 (2)0.037 (3)0.000 (2)0.002 (2)
C260.028 (3)0.080 (4)0.032 (2)0.013 (2)0.0011 (18)0.007 (2)
C270.027 (3)0.104 (5)0.049 (3)0.008 (3)0.004 (2)0.001 (3)
C280.036 (3)0.078 (4)0.034 (2)0.001 (3)0.009 (2)0.005 (2)
C290.072 (4)0.050 (3)0.116 (5)0.016 (3)0.003 (4)0.019 (4)
C300.049 (3)0.066 (4)0.054 (3)0.013 (3)0.011 (3)0.009 (3)
C310.065 (4)0.054 (4)0.086 (4)0.014 (3)0.002 (3)0.010 (3)
C320.037 (3)0.121 (6)0.052 (3)0.005 (3)0.004 (2)0.021 (3)
Br10.0545 (3)0.0613 (3)0.0625 (3)0.0171 (3)0.0040 (2)0.0144 (3)
Br20.0657 (4)0.0773 (4)0.0426 (3)0.0070 (3)0.0198 (2)0.0090 (3)
Br30.0981 (6)0.1335 (7)0.0583 (4)0.0518 (5)0.0060 (4)0.0353 (4)
Br40.0915 (5)0.0958 (5)0.0797 (4)0.0565 (4)0.0018 (4)0.0205 (4)
O10.044 (2)0.068 (2)0.0352 (16)0.0027 (17)0.0022 (15)0.0158 (15)
Geometric parameters (Å, º) top
C1—O21.465 (5)C17—O11.450 (5)
C1—C21.493 (7)C17—C181.459 (7)
C1—C121.495 (7)C17—C281.517 (6)
C1—C71.515 (7)C17—C231.519 (6)
O2—C21.466 (5)C18—O11.470 (6)
C2—C31.492 (7)C18—C191.512 (7)
C2—C131.506 (7)C18—C291.514 (8)
C3—C41.526 (8)C19—C201.514 (8)
C3—H3A0.9700C19—H19A0.9700
C3—H3B0.9700C19—H19B0.9700
C4—C51.507 (8)C20—C211.504 (8)
C4—H4A0.9700C20—H20A0.9700
C4—H4B0.9700C20—H20B0.9700
C5—C61.528 (7)C21—C221.511 (7)
C5—H5A0.9700C21—H21A0.9700
C5—H5B0.9700C21—H21B0.9700
C6—C141.530 (6)C22—C311.535 (8)
C6—C151.530 (7)C22—C231.543 (6)
C6—C71.556 (6)C22—C301.554 (7)
C7—C81.530 (5)C23—C241.530 (6)
C7—H70.9800C23—H230.9800
C8—C91.489 (6)C24—C251.464 (7)
C8—C101.514 (6)C24—C261.532 (7)
C8—H80.9800C24—H240.9800
C9—C101.504 (7)C25—C261.482 (9)
C9—Br11.922 (4)C25—Br41.930 (5)
C9—Br21.933 (4)C25—Br31.948 (5)
C10—C161.500 (7)C26—C321.510 (7)
C10—C111.545 (6)C26—C271.536 (7)
C11—C121.551 (7)C27—C281.531 (7)
C11—H11A0.9700C27—H27A0.9700
C11—H11B0.9700C27—H27B0.9700
C12—H12A0.9700C28—H28A0.9700
C12—H12B0.9700C28—H28B0.9700
C13—H13A0.9600C29—H29A0.9600
C13—H13B0.9600C29—H29B0.9600
C13—H13C0.9600C29—H29C0.9600
C14—H14A0.9600C30—H30A0.9600
C14—H14B0.9600C30—H30B0.9600
C14—H14C0.9600C30—H30C0.9600
C15—H15A0.9600C31—H31A0.9600
C15—H15B0.9600C31—H31B0.9600
C15—H15C0.9600C31—H31C0.9600
C16—H16A0.9600C32—H32A0.9600
C16—H16B0.9600C32—H32B0.9600
C16—H16C0.9600C32—H32C0.9600
O2—C1—C259.4 (3)O1—C17—C1860.7 (3)
O2—C1—C12116.3 (4)O1—C17—C28116.2 (3)
C2—C1—C12120.7 (4)C18—C17—C28120.6 (4)
O2—C1—C7120.5 (4)O1—C17—C23120.1 (4)
C2—C1—C7123.8 (4)C18—C17—C23124.5 (4)
C12—C1—C7108.6 (4)C28—C17—C23107.8 (4)
C1—O2—C261.3 (3)C17—C18—O159.4 (3)
O2—C2—C3116.8 (4)C17—C18—C19123.6 (4)
O2—C2—C159.4 (3)O1—C18—C19114.6 (4)
C3—C2—C1123.0 (4)C17—C18—C29120.6 (5)
O2—C2—C13114.9 (4)O1—C18—C29114.0 (5)
C3—C2—C13111.4 (4)C19—C18—C29112.5 (5)
C1—C2—C13120.9 (5)C18—C19—C20118.9 (4)
C2—C3—C4118.7 (4)C18—C19—H19A107.6
C2—C3—H3A107.6C20—C19—H19A107.6
C4—C3—H3A107.6C18—C19—H19B107.6
C2—C3—H3B107.6C20—C19—H19B107.6
C4—C3—H3B107.6H19A—C19—H19B107.0
H3A—C3—H3B107.1C21—C20—C19116.6 (4)
C5—C4—C3116.4 (4)C21—C20—H20A108.1
C5—C4—H4A108.2C19—C20—H20A108.1
C3—C4—H4A108.2C21—C20—H20B108.1
C5—C4—H4B108.2C19—C20—H20B108.1
C3—C4—H4B108.2H20A—C20—H20B107.3
H4A—C4—H4B107.4C20—C21—C22118.5 (4)
C4—C5—C6118.2 (4)C20—C21—H21A107.7
C4—C5—H5A107.8C22—C21—H21A107.7
C6—C5—H5A107.8C20—C21—H21B107.7
C4—C5—H5B107.8C22—C21—H21B107.7
C6—C5—H5B107.8H21A—C21—H21B107.1
H5A—C5—H5B107.1C21—C22—C31108.6 (4)
C5—C6—C14110.0 (4)C21—C22—C23114.8 (4)
C5—C6—C15107.8 (4)C31—C22—C23107.5 (4)
C14—C6—C15107.2 (4)C21—C22—C30110.1 (4)
C5—C6—C7115.3 (4)C31—C22—C30107.7 (4)
C14—C6—C7109.2 (4)C23—C22—C30107.9 (4)
C15—C6—C7106.9 (4)C17—C23—C24104.2 (4)
C1—C7—C8104.2 (4)C17—C23—C22122.6 (4)
C1—C7—C6122.6 (4)C24—C23—C22113.3 (3)
C8—C7—C6113.7 (3)C17—C23—H23105.1
C1—C7—H7104.9C24—C23—H23105.1
C8—C7—H7104.9C22—C23—H23105.1
C6—C7—H7104.9C25—C24—C23124.0 (4)
C9—C8—C1060.1 (3)C25—C24—C2659.2 (4)
C9—C8—C7123.5 (4)C23—C24—C26119.7 (4)
C10—C8—C7120.0 (4)C25—C24—H24114.3
C9—C8—H8114.2C23—C24—H24114.3
C10—C8—H8114.2C26—C24—H24114.3
C7—C8—H8114.2C24—C25—C2662.7 (3)
C8—C9—C1060.8 (3)C24—C25—Br4122.1 (4)
C8—C9—Br1121.6 (3)C26—C25—Br4120.0 (4)
C10—C9—Br1120.2 (3)C24—C25—Br3117.4 (3)
C8—C9—Br2118.2 (3)C26—C25—Br3119.6 (4)
C10—C9—Br2119.7 (3)Br4—C25—Br3108.8 (3)
Br1—C9—Br2109.3 (2)C25—C26—C32119.8 (5)
C16—C10—C9119.5 (4)C25—C26—C2458.1 (4)
C16—C10—C8118.6 (4)C32—C26—C24117.6 (4)
C9—C10—C859.1 (3)C25—C26—C27120.2 (5)
C16—C10—C11112.4 (4)C32—C26—C27113.1 (5)
C9—C10—C11118.7 (4)C24—C26—C27117.4 (4)
C8—C10—C11118.8 (4)C28—C27—C26116.1 (4)
C10—C11—C12113.7 (4)C28—C27—H27A108.3
C10—C11—H11A108.8C26—C27—H27A108.3
C12—C11—H11A108.8C28—C27—H27B108.3
C10—C11—H11B108.8C26—C27—H27B108.3
C12—C11—H11B108.8H27A—C27—H27B107.4
H11A—C11—H11B107.7C17—C28—C27109.9 (4)
C1—C12—C11110.1 (4)C17—C28—H28A109.7
C1—C12—H12A109.6C27—C28—H28A109.7
C11—C12—H12A109.6C17—C28—H28B109.7
C1—C12—H12B109.6C27—C28—H28B109.7
C11—C12—H12B109.6H28A—C28—H28B108.2
H12A—C12—H12B108.2C18—C29—H29A109.5
C2—C13—H13A109.5C18—C29—H29B109.5
C2—C13—H13B109.5H29A—C29—H29B109.5
H13A—C13—H13B109.5C18—C29—H29C109.5
C2—C13—H13C109.5H29A—C29—H29C109.5
H13A—C13—H13C109.5H29B—C29—H29C109.5
H13B—C13—H13C109.5C22—C30—H30A109.5
C6—C14—H14A109.5C22—C30—H30B109.5
C6—C14—H14B109.5H30A—C30—H30B109.5
H14A—C14—H14B109.5C22—C30—H30C109.5
C6—C14—H14C109.5H30A—C30—H30C109.5
H14A—C14—H14C109.5H30B—C30—H30C109.5
H14B—C14—H14C109.5C22—C31—H31A109.5
C6—C15—H15A109.5C22—C31—H31B109.5
C6—C15—H15B109.5H31A—C31—H31B109.5
H15A—C15—H15B109.5C22—C31—H31C109.5
C6—C15—H15C109.5H31A—C31—H31C109.5
H15A—C15—H15C109.5H31B—C31—H31C109.5
H15B—C15—H15C109.5C26—C32—H32A109.5
C10—C16—H16A109.5C26—C32—H32B109.5
C10—C16—H16B109.5H32A—C32—H32B109.5
H16A—C16—H16B109.5C26—C32—H32C109.5
C10—C16—H16C109.5H32A—C32—H32C109.5
H16A—C16—H16C109.5H32B—C32—H32C109.5
H16B—C16—H16C109.5C17—O1—C1860.0 (3)

Experimental details

Crystal data
Chemical formulaC16H24Br2O
Mr392.17
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)8.8056 (13), 15.648 (3), 12.1390 (16)
β (°) 91.769 (10)
V3)1671.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)4.84
Crystal size (mm)0.25 × 0.15 × 0.10
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.423, 0.617
No. of measured, independent and
observed [I > 2σ(I)] reflections
17250, 6776, 5298
Rint0.081
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.108, 0.96
No. of reflections6776
No. of parameters351
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.67
Absolute structureFlack & Bernardinelli (2000)
Absolute structure parameter0.009 (10)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick,2008), SHELXL97 (Sheldrick,2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX publication routines (Farrugia, 2012).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBenharref, A., Ourhriss, N., El Ammari, L., Saadi, M. & Berraho, M. (2013). Acta Cryst. E69, o933–o934.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl Haib, A., Benharref, A., Parreś-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101–108.  Web of Science CrossRef CAS Google Scholar
First citationEl Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645–6648.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOukhrib, A., Benharref, A., Saadi, M., Berraho, M. & El Ammari, L. (2013a). Acta Cryst. E69, o521–o522.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationOukhrib, A., Benharref, A., Saadi, M., Berraho, M. & El Ammari, L. (2013b). Acta Cryst. E69, o589–o590.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds