organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-acetyl-5-anilino-3-methyl­thio­phene-2-carboxyl­ate

aDepartment of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, Faculty of Science, Alexandria University, PO Box 426, Ibrahimia 21321 Alexandria, Egypt, and cH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 28 May 2013; accepted 4 June 2013; online 8 June 2013)

In the title compound, C16H17NO3S, a thio­phene derivative with amino phenyl, acetyl, methyl and ethyl carboxyl susbtituents attached to a central thio­phene ring, the phenyl and thio­phene rings form a dihedral angle of 36.92 (9) Å. The mol­ecular conformation is stabilized by an intra­molecular N—H⋯O hydrogen bond, which forms an S(6) ring motif.

Related literature

For the biological activity of thio­phene derivatives, see: Mishra et al. (2011[Mishra, R., Jha, K. K., Kumar, S. & Tomer, S. (2011). Pharma Chem. 3, 38-54.]); Mabkhot et al. (2013b[Mabkhot, Y. N., Barakat, A., Al-Majid, A. & Choudhary, M. I. (2013b). Int. J. Mol. Sci. 14, 5712-5722.]). For the synthesis of fused heterocyclic compounds, see: Sommen et al. (2003[Sommen, G., Comel, A. & Kirsch, G. (2003). Tetrahedron 59, 1557-1564.]). For crystal data for related thio­phene compounds, see: Mabkhot et al. (2013a[Mabkhot, Y. N., Barakat, A., Alatibi, F., Choudhary, M. I. & Yousuf, S. (2013a). Acta Cryst. E69, o351.],b[Mabkhot, Y. N., Barakat, A., Al-Majid, A. & Choudhary, M. I. (2013b). Int. J. Mol. Sci. 14, 5712-5722.]); Buehrdel et al. (2007[Buehrdel, G., Beckert, R., Birckner, E., Grummt, U.-W., Beyer, B., Kluge, S., Weston, J. & Goerls, H. (2007). Eur. J. Org. Chem. 32, 5404-5409.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17NO3S

  • Mr = 303.37

  • Triclinic, [P \overline 1]

  • a = 7.9443 (6) Å

  • b = 9.5038 (7) Å

  • c = 11.8706 (9) Å

  • α = 66.759 (2)°

  • β = 89.754 (2)°

  • γ = 66.785 (2)°

  • V = 744.60 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 273 K

  • 0.45 × 0.42 × 0.23 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.905, Tmax = 0.950

  • 10410 measured reflections

  • 3699 independent reflections

  • 2848 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.126

  • S = 1.05

  • 3699 reflections

  • 194 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.82 (3) 1.93 (3) 2.607 (3) 140 (2)

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfur containing heterocyclic compounds are well known for their diverse range of biological activities (Mabkhot et al., 2013b; Mishra et al. 2011). The title compound was synthesized in continuation of our research towards the synthesis of biologically active compounds with fused heterocyclic systems (Mabkhot et al., 2013b).

The structure of the title compound (Fig. 1) is composed of a planar thiophene (S1/C2–C5) ring with amino phenyl (N1/C12–C17), acetyl (O1/C10–C11), methyl (C8) and ethyl carboxylate (O2–O3/N2/C6–C7) susbtituents attached to atoms C1, C2,C3 and C4, respectively, of the thiophene ring. The dihedral angle between the planes of thiophene and amino phenyl ring (N1/C11–C16) is 36.92 (9)°. The bond lengths and angles are similar to those of structurally related compounds (Mabkhot et al., 2013a,b; Buehrdel et al., 2007). The molecular conformation is stabilized by an N1—H1A···O1 intramolecular hydrogen bond (Table 1) to form a S6 graph set ring motif. In the crystal packing (Fig. 2), no π···π or C—H···π interactions are observed between adjacent molecules.

Related literature top

For the biological activity of thiophene derivatives, see: Mishra et al. (2011); Mabkhot et al. (2013b). For the synthesis of fused heterocyclic compounds, see: Sommen et al. (2003). For crystal data for related thiophene compounds, see: Mabkhot et al. (2013a,b); Buehrdel et al. (2007).

Experimental top

The title compound was synthesized by the procedure described in the literature (Sommen et al., 2003). The compound was crystallized by using a mixture of dimethyl formamide and dichloromethane 1:1 v/v at room temperature. M. p.: 399 K. Spectral Data: IR (KBr, cm-1): 1680, 1700, 2990 cm-1; 1H-NMR (400 MHz, CDCl3): δ 1.34 (t, 3H, J = 7.1 Hz), 2.58 (s, 3H), 2.82 (s, 3H), 4.28 (q, 2H, J = 7.1 Hz), 7.35–7.42 (m, 5H), 12.1 (s, 1H); 13C-NMR (100 MHz, CDCl3): δ 14.3, 16.5, 31.3, 60.5, 108.9, 119.2, 120.5, 124.7 (2 C), 129.5 (2 C), 139.6, 145.8, 162.7, 163.4, 195.7; Anal. calcd for C16H17NO3S: C 63.34; H 5.65; N 4.62. Found: C 63.47; H 5.46; N 4.61.

Refinement top

H atoms on methyl, methylene and methine were positioned geometrically with C—H = 0.96 Å, 0.97 Å and 0.93 Å respectively, and constrained to ride on their parent atoms with Uiso(H)= 1.2Ueq (CH2, CH) and 1.5Ueq(CH3). The H atoms on the nitrogen atom was located in a difference Fourier map and refined isotropically (N–H= 0.82 (3) Å).

Structure description top

Sulfur containing heterocyclic compounds are well known for their diverse range of biological activities (Mabkhot et al., 2013b; Mishra et al. 2011). The title compound was synthesized in continuation of our research towards the synthesis of biologically active compounds with fused heterocyclic systems (Mabkhot et al., 2013b).

The structure of the title compound (Fig. 1) is composed of a planar thiophene (S1/C2–C5) ring with amino phenyl (N1/C12–C17), acetyl (O1/C10–C11), methyl (C8) and ethyl carboxylate (O2–O3/N2/C6–C7) susbtituents attached to atoms C1, C2,C3 and C4, respectively, of the thiophene ring. The dihedral angle between the planes of thiophene and amino phenyl ring (N1/C11–C16) is 36.92 (9)°. The bond lengths and angles are similar to those of structurally related compounds (Mabkhot et al., 2013a,b; Buehrdel et al., 2007). The molecular conformation is stabilized by an N1—H1A···O1 intramolecular hydrogen bond (Table 1) to form a S6 graph set ring motif. In the crystal packing (Fig. 2), no π···π or C—H···π interactions are observed between adjacent molecules.

For the biological activity of thiophene derivatives, see: Mishra et al. (2011); Mabkhot et al. (2013b). For the synthesis of fused heterocyclic compounds, see: Sommen et al. (2003). For crystal data for related thiophene compounds, see: Mabkhot et al. (2013a,b); Buehrdel et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. The dashed line indicates the intramolecular hydrogen bond.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed down the b axis. Hydrogen atoms are ommited for clarity.
Ethyl 4-acetyl-5-anilino-3-methylthiophene-2-carboxylate top
Crystal data top
C16H17NO3SZ = 2
Mr = 303.37F(000) = 320
Triclinic, P1Dx = 1.353 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9443 (6) ÅCell parameters from 2619 reflections
b = 9.5038 (7) Åθ = 2.5–25.8°
c = 11.8706 (9) ŵ = 0.23 mm1
α = 66.759 (2)°T = 273 K
β = 89.754 (2)°Block, yellow
γ = 66.785 (2)°0.45 × 0.42 × 0.23 mm
V = 744.60 (10) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3699 independent reflections
Radiation source: fine-focus sealed tube2848 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scanθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1010
Tmin = 0.905, Tmax = 0.950k = 1212
10410 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0618P)2 + 0.0954P]
where P = (Fo2 + 2Fc2)/3
3699 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C16H17NO3Sγ = 66.785 (2)°
Mr = 303.37V = 744.60 (10) Å3
Triclinic, P1Z = 2
a = 7.9443 (6) ÅMo Kα radiation
b = 9.5038 (7) ŵ = 0.23 mm1
c = 11.8706 (9) ÅT = 273 K
α = 66.759 (2)°0.45 × 0.42 × 0.23 mm
β = 89.754 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3699 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2848 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.950Rint = 0.028
10410 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.30 e Å3
3699 reflectionsΔρmin = 0.25 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.48333 (6)0.26835 (5)0.00730 (4)0.04325 (15)
O10.8347 (2)0.01329 (18)0.22852 (13)0.0685 (4)
O20.6413 (2)0.06433 (17)0.34080 (12)0.0704 (5)
O30.41944 (19)0.19842 (16)0.23323 (11)0.0546 (3)
N10.5630 (2)0.2832 (2)0.23190 (14)0.0483 (4)
C20.6046 (2)0.1930 (2)0.10687 (15)0.0404 (4)
C30.7453 (2)0.0270 (2)0.04358 (15)0.0407 (4)
C40.7482 (2)0.0370 (2)0.08869 (15)0.0394 (4)
C50.6149 (2)0.0774 (2)0.12066 (15)0.0419 (4)
C60.5653 (3)0.0580 (2)0.24344 (16)0.0475 (4)
C70.3506 (3)0.1937 (3)0.34727 (19)0.0634 (6)
H7A0.45030.16390.41110.076*
H7B0.29960.11090.37760.076*
C80.2028 (3)0.3670 (3)0.3158 (2)0.0728 (6)
H8A0.15260.37020.38890.109*
H8B0.10540.39480.25240.109*
H8C0.25530.44750.28580.109*
C90.8800 (3)0.2083 (2)0.18489 (17)0.0539 (5)
H9A0.85280.21970.26610.081*
H9B1.00550.22050.18200.081*
H9C0.86590.29440.16820.081*
C100.8559 (2)0.0600 (2)0.11438 (17)0.0466 (4)
C110.9989 (3)0.2421 (3)0.0534 (2)0.0605 (5)
H11A1.05580.27490.11590.091*
H11B0.93940.31330.01020.091*
H11C1.09250.25380.00490.091*
C120.4166 (2)0.4428 (2)0.30492 (15)0.0435 (4)
C130.3570 (3)0.5761 (2)0.27179 (18)0.0536 (5)
H13A0.40970.56140.19580.064*
C140.2190 (3)0.7316 (2)0.3516 (2)0.0640 (6)
H14A0.17810.82100.32860.077*
C150.1418 (3)0.7551 (3)0.4643 (2)0.0665 (6)
H15A0.05010.86030.51810.080*
C160.2008 (3)0.6224 (3)0.49714 (19)0.0653 (6)
H16A0.14840.63800.57350.078*
C170.3366 (3)0.4667 (2)0.41818 (17)0.0540 (5)
H17A0.37500.37720.44090.065*
H1A0.627 (3)0.228 (3)0.267 (2)0.058 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0447 (3)0.0347 (2)0.0357 (2)0.00843 (18)0.00177 (18)0.00958 (17)
O10.0810 (10)0.0576 (9)0.0452 (8)0.0093 (8)0.0116 (7)0.0217 (7)
O20.0924 (11)0.0462 (8)0.0366 (7)0.0056 (7)0.0057 (7)0.0072 (6)
O30.0653 (8)0.0428 (7)0.0390 (7)0.0107 (6)0.0109 (6)0.0139 (6)
N10.0532 (9)0.0401 (8)0.0330 (8)0.0071 (7)0.0017 (7)0.0105 (6)
C20.0419 (9)0.0394 (9)0.0344 (8)0.0161 (7)0.0013 (7)0.0119 (7)
C30.0382 (9)0.0379 (8)0.0387 (9)0.0121 (7)0.0011 (7)0.0136 (7)
C40.0379 (8)0.0348 (8)0.0369 (8)0.0121 (7)0.0019 (7)0.0105 (7)
C50.0459 (9)0.0357 (8)0.0331 (8)0.0132 (7)0.0013 (7)0.0084 (7)
C60.0573 (11)0.0370 (9)0.0381 (9)0.0144 (8)0.0025 (8)0.0121 (7)
C70.0785 (15)0.0569 (12)0.0454 (11)0.0198 (11)0.0207 (10)0.0223 (10)
C80.0731 (15)0.0667 (14)0.0759 (16)0.0192 (12)0.0235 (13)0.0386 (13)
C90.0515 (11)0.0418 (10)0.0426 (10)0.0044 (8)0.0029 (8)0.0090 (8)
C100.0447 (10)0.0452 (10)0.0461 (10)0.0156 (8)0.0045 (8)0.0194 (8)
C110.0581 (12)0.0510 (11)0.0601 (13)0.0085 (9)0.0104 (10)0.0268 (10)
C120.0440 (9)0.0390 (9)0.0351 (9)0.0153 (7)0.0041 (7)0.0065 (7)
C130.0664 (13)0.0430 (10)0.0415 (10)0.0210 (9)0.0020 (9)0.0107 (8)
C140.0776 (15)0.0396 (10)0.0563 (13)0.0154 (10)0.0040 (11)0.0126 (9)
C150.0637 (13)0.0466 (11)0.0528 (12)0.0064 (10)0.0046 (10)0.0034 (9)
C160.0684 (14)0.0613 (13)0.0417 (11)0.0148 (11)0.0086 (10)0.0112 (10)
C170.0619 (12)0.0493 (10)0.0368 (10)0.0146 (9)0.0011 (8)0.0140 (8)
Geometric parameters (Å, º) top
S1—C21.7182 (18)C8—H8C0.9600
S1—C51.7422 (16)C9—H9A0.9600
O1—C101.230 (2)C9—H9B0.9600
O2—C61.202 (2)C9—H9C0.9600
O3—C61.339 (2)C10—C111.509 (3)
O3—C71.449 (2)C11—H11A0.9600
N1—C21.350 (2)C11—H11B0.9600
N1—C121.409 (2)C11—H11C0.9600
N1—H1A0.82 (2)C12—C131.379 (3)
C2—C31.409 (2)C12—C171.384 (3)
C3—C41.439 (2)C13—C141.382 (3)
C3—C101.460 (2)C13—H13A0.9300
C4—C51.365 (2)C14—C151.371 (3)
C4—C91.500 (2)C14—H14A0.9300
C5—C61.468 (2)C15—C161.372 (3)
C7—C81.491 (3)C15—H15A0.9300
C7—H7A0.9700C16—C171.374 (3)
C7—H7B0.9700C16—H16A0.9300
C8—H8A0.9600C17—H17A0.9300
C8—H8B0.9600
C2—S1—C591.06 (8)C4—C9—H9B109.5
C6—O3—C7116.03 (14)H9A—C9—H9B109.5
C2—N1—C12129.39 (17)C4—C9—H9C109.5
C2—N1—H1A111.3 (15)H9A—C9—H9C109.5
C12—N1—H1A118.8 (15)H9B—C9—H9C109.5
N1—C2—C3124.72 (16)O1—C10—C3120.70 (17)
N1—C2—S1122.77 (13)O1—C10—C11116.71 (17)
C3—C2—S1112.47 (12)C3—C10—C11122.59 (17)
C2—C3—C4111.16 (15)C10—C11—H11A109.5
C2—C3—C10119.78 (15)C10—C11—H11B109.5
C4—C3—C10128.91 (15)H11A—C11—H11B109.5
C5—C4—C3112.44 (14)C10—C11—H11C109.5
C5—C4—C9121.66 (16)H11A—C11—H11C109.5
C3—C4—C9125.89 (16)H11B—C11—H11C109.5
C4—C5—C6129.30 (15)C13—C12—C17119.32 (16)
C4—C5—S1112.85 (13)C13—C12—N1123.40 (16)
C6—C5—S1117.80 (13)C17—C12—N1117.20 (17)
O2—C6—O3123.37 (17)C12—C13—C14119.95 (18)
O2—C6—C5126.39 (17)C12—C13—H13A120.0
O3—C6—C5110.24 (14)C14—C13—H13A120.0
O3—C7—C8106.38 (17)C15—C14—C13120.5 (2)
O3—C7—H7A110.5C15—C14—H14A119.8
C8—C7—H7A110.5C13—C14—H14A119.8
O3—C7—H7B110.5C14—C15—C16119.61 (19)
C8—C7—H7B110.5C14—C15—H15A120.2
H7A—C7—H7B108.6C16—C15—H15A120.2
C7—C8—H8A109.5C15—C16—C17120.50 (19)
C7—C8—H8B109.5C15—C16—H16A119.7
H8A—C8—H8B109.5C17—C16—H16A119.7
C7—C8—H8C109.5C16—C17—C12120.15 (19)
H8A—C8—H8C109.5C16—C17—H17A119.9
H8B—C8—H8C109.5C12—C17—H17A119.9
C4—C9—H9A109.5
C12—N1—C2—C3174.03 (18)C4—C5—C6—O23.2 (3)
C12—N1—C2—S13.6 (3)S1—C5—C6—O2179.74 (17)
C5—S1—C2—N1176.62 (16)C4—C5—C6—O3176.76 (17)
C5—S1—C2—C31.28 (14)S1—C5—C6—O30.3 (2)
N1—C2—C3—C4176.94 (17)C6—O3—C7—C8174.54 (18)
S1—C2—C3—C40.91 (19)C2—C3—C10—O14.0 (3)
N1—C2—C3—C101.0 (3)C4—C3—C10—O1179.20 (18)
S1—C2—C3—C10176.89 (13)C2—C3—C10—C11175.38 (17)
C2—C3—C4—C50.1 (2)C4—C3—C10—C110.2 (3)
C10—C3—C4—C5175.39 (17)C2—N1—C12—C1339.8 (3)
C2—C3—C4—C9179.55 (16)C2—N1—C12—C17143.5 (2)
C10—C3—C4—C94.9 (3)C17—C12—C13—C140.1 (3)
C3—C4—C5—C6176.08 (18)N1—C12—C13—C14176.61 (18)
C9—C4—C5—C64.2 (3)C12—C13—C14—C150.7 (3)
C3—C4—C5—S11.09 (19)C13—C14—C15—C160.8 (4)
C9—C4—C5—S1178.60 (14)C14—C15—C16—C170.2 (4)
C2—S1—C5—C41.37 (14)C15—C16—C17—C120.6 (3)
C2—S1—C5—C6176.16 (15)C13—C12—C17—C160.7 (3)
C7—O3—C6—O22.5 (3)N1—C12—C17—C16176.19 (19)
C7—O3—C6—C5177.47 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.82 (3)1.93 (3)2.607 (3)140 (2)

Experimental details

Crystal data
Chemical formulaC16H17NO3S
Mr303.37
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)7.9443 (6), 9.5038 (7), 11.8706 (9)
α, β, γ (°)66.759 (2), 89.754 (2), 66.785 (2)
V3)744.60 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.45 × 0.42 × 0.23
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.905, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
10410, 3699, 2848
Rint0.028
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.126, 1.05
No. of reflections3699
No. of parameters194
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.25

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.82 (3)1.93 (3)2.607 (3)140 (2)
 

Footnotes

Additional correspondence author, email: yahia@ksu.edu.sa.

Acknowledgements

The authors are thankful to King Saud University, Deanship of Scientific Research, College of Science Research Center, for financial support of this project.

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuehrdel, G., Beckert, R., Birckner, E., Grummt, U.-W., Beyer, B., Kluge, S., Weston, J. & Goerls, H. (2007). Eur. J. Org. Chem. 32, 5404–5409.  Web of Science CSD CrossRef Google Scholar
First citationMabkhot, Y. N., Barakat, A., Alatibi, F., Choudhary, M. I. & Yousuf, S. (2013a). Acta Cryst. E69, o351.  CSD CrossRef IUCr Journals Google Scholar
First citationMabkhot, Y. N., Barakat, A., Al-Majid, A. & Choudhary, M. I. (2013b). Int. J. Mol. Sci. 14, 5712–5722.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMishra, R., Jha, K. K., Kumar, S. & Tomer, S. (2011). Pharma Chem. 3, 38–54.  CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSommen, G., Comel, A. & Kirsch, G. (2003). Tetrahedron 59, 1557–1564.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds