organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3,4-Di­fluoro­benz­yl)-4-(4-methyl­phenyl­sulfon­yl)piperazine

aDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur Karnataka 572 103, India, bCenter for Advanced Materials and Department of Chemistry, Tumkur University, Tumkur Karnataka, 572 103, India, cDepartment of Studies and Research in Physics, U.C.S. Tumkur University, Tumkur Karnataka 572 103, India, and dDepartment of Physics, Karnatak University, Dharwad, Karnataka 580 003, India
*Correspondence e-mail: drsreenivasa@yahoo.co.in

(Received 3 June 2013; accepted 13 June 2013; online 29 June 2013)

In the title compound, C18H20F2N2O2S, the central piperazine ring adopts a chair conformation. The dihedral angle between the two benzene rings is 40.20°, whereas those between the piperazine ring (considering the best fit plane through all the non-H atoms) and the sulfonyl-bound benzene and di­fluoro­benzene rings are 74.96 and 86.16°, respectively. In the crystal, mol­ecules are stacked along the a axis through weak C—H⋯O and C—H⋯F inter­actions.

Related literature

For similar structures, see: Sreenivasa et al. (2013a[Sreenivasa, S., Anitha, H. C., ManojKumar, K. E., Tonannavar, J., Jayashree, Y., Suchetan, P. A. & Palakshamurthy, B. S. (2013a). Acta Cryst. E69, o239.],b[Sreenivasa, S., ManojKumar, K. E., Suchetan, P. A., Tonannavar, J., Chavan, Y. & Palakshamurthy, B. S. (2013b). Acta Cryst. E69, o185.],c[Sreenivasa, S., ManojKumar, K. E., Anitha, H. C., Suchetan, P. A., Palakshamurthy, B. S., Jayashree, Y. & Tonannavar, J. (2013c). Acta Cryst. E69, o782.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20F2N2O2S

  • Mr = 366.42

  • Monoclinic, P 21 /c

  • a = 6.6680 (2) Å

  • b = 36.0404 (8) Å

  • c = 7.6093 (2) Å

  • β = 99.728 (2)°

  • V = 1802.35 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 298 K

  • 0.28 × 0.24 × 0.20 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.943, Tmax = 0.959

  • 9583 measured reflections

  • 2434 independent reflections

  • 1910 reflections with I > 2σ(I)

  • Rint = 0.025

  • θmax = 22.8°

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.114

  • S = 1.02

  • 2434 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.93 2.67 3.380 (4) 134
C7—H7A⋯O1ii 0.96 2.66 3.400 (4) 134
C10—H10B⋯F1iii 0.97 2.66 3.585 (3) 160
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+1, -z+2; (iii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our continued efforts to study the crystal structures of N-(aryl)(4-tosylpiperazin-1-yl)methanone derivatives (Sreenivasa et al., 2013a,b,c), we report herein the crystal structure of the title compound.

The title compound, Fig. 1, crystallizes in the monoclinic crystal system and P21/c space group. The piperazine ring in the title compound adopts a chair conformation. The dihedral angle between the two benzene rings is 40.20°, compared to the observed dihedral angles of 72.2 (12)°, 76.86° and 30.97 (2)° respectively in (I), 1-(2,4-dichlorobenzyl)-4-[(4-methyl-phenyl)sulfonyl]-piperazine (Sreenivasa et al., 2013a), (II) 1-tosyl-4-[2-(trifluoromethyl)-benzyl]piperazine (Sreenivasa et al., 2013b) and (III) (2,3-difluorophenyl)(4-tosylpiperazin-1-yl)methanone (Sreenivasa et al., 2013c). Further, the dihedral angles between the piperazine ring (considering the best fit plane through all the non-hydrogen atoms) and the sulfonyl bound benzene and difluorobenzene rings are 74.96° and 86.16° respectively, compared to 74.16 (2)° and 2.44 (13)° in I, 74.36° and 68.29 (3)° in II, and 69.4 (2)° and 75.98 (2)° in III.

In the crystal structure, the molecules are stacked along the a axis through weak C–H···O and C–H···F interactions, Fig. 2.

Related literature top

For similar structures, see: Sreenivasa et al. (2013a,b,c).

Experimental top

A mixture of 1-tosylpiperazine (0.01 mmol), potassium carbonate (0.03 mmol) and 3,4-difluorobenzyl bromide (0.01 mmol) was added to dry acetonitrile (5 ml). The mixture was stirred at 85°C for 8 h. The reaction was monitored by TLC. Solvent was removed by vacuum distillation and the crude product obtained was purified by column chromatography using 230–400 silica gel and petroleum ether/ethyl acetate as eluent.

Colourless prisms were obtained from a mixture of dichloromethane/methanol (7:3) by slow evaporation.

Refinement top

H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 - 0.96 Å. The isotropic displacement parameters for all H atoms were set to 1.2 times Ueq of the parent atom or 1.5 times that of the parent atom for CH3.

Crystals were small and very weakly diffracting, with no significant data obtained beyond θ = 22.8° hence the low values of sin(θ/λ). However the structure solved and refined satisfactorily and gave acceptable residuals and su values.

Structure description top

As a part of our continued efforts to study the crystal structures of N-(aryl)(4-tosylpiperazin-1-yl)methanone derivatives (Sreenivasa et al., 2013a,b,c), we report herein the crystal structure of the title compound.

The title compound, Fig. 1, crystallizes in the monoclinic crystal system and P21/c space group. The piperazine ring in the title compound adopts a chair conformation. The dihedral angle between the two benzene rings is 40.20°, compared to the observed dihedral angles of 72.2 (12)°, 76.86° and 30.97 (2)° respectively in (I), 1-(2,4-dichlorobenzyl)-4-[(4-methyl-phenyl)sulfonyl]-piperazine (Sreenivasa et al., 2013a), (II) 1-tosyl-4-[2-(trifluoromethyl)-benzyl]piperazine (Sreenivasa et al., 2013b) and (III) (2,3-difluorophenyl)(4-tosylpiperazin-1-yl)methanone (Sreenivasa et al., 2013c). Further, the dihedral angles between the piperazine ring (considering the best fit plane through all the non-hydrogen atoms) and the sulfonyl bound benzene and difluorobenzene rings are 74.96° and 86.16° respectively, compared to 74.16 (2)° and 2.44 (13)° in I, 74.36° and 68.29 (3)° in II, and 69.4 (2)° and 75.98 (2)° in III.

In the crystal structure, the molecules are stacked along the a axis through weak C–H···O and C–H···F interactions, Fig. 2.

For similar structures, see: Sreenivasa et al. (2013a,b,c).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound, showing C–H···O and C–H···F interactions (dotted lines). Hydrogen atoms not involved in hydrogen bonding are omitted.
1-(3,4-Difluorobenzyl)-4-(4-methylphenylsulfonyl)piperazine top
Crystal data top
C18H20F2N2O2Sprism
Mr = 366.42Dx = 1.350 Mg m3
Monoclinic, P21/cMelting point: 501 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 6.6680 (2) ÅCell parameters from 227 reflections
b = 36.0404 (8) Åθ = 2.3–22.8°
c = 7.6093 (2) ŵ = 0.21 mm1
β = 99.728 (2)°T = 298 K
V = 1802.35 (8) Å3Prism, colourless
Z = 40.28 × 0.24 × 0.20 mm
F(000) = 768
Data collection top
Bruker APEXII
diffractometer
2434 independent reflections
Radiation source: fine-focus sealed tube1910 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 1.03 pixels mm-1θmax = 22.8°, θmin = 2.3°
φ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 3937
Tmin = 0.943, Tmax = 0.959l = 78
9583 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0512P)2 + 0.6421P]
where P = (Fo2 + 2Fc2)/3
2434 reflections(Δ/σ)max = 0.028
227 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.25 e Å3
32 constraints
Crystal data top
C18H20F2N2O2SV = 1802.35 (8) Å3
Mr = 366.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.6680 (2) ŵ = 0.21 mm1
b = 36.0404 (8) ÅT = 298 K
c = 7.6093 (2) Å0.28 × 0.24 × 0.20 mm
β = 99.728 (2)°
Data collection top
Bruker APEXII
diffractometer
2434 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1910 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.959Rint = 0.025
9583 measured reflectionsθmax = 22.8°
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.02Δρmax = 0.19 e Å3
2434 reflectionsΔρmin = 0.25 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3654 (5)0.51803 (9)0.7226 (4)0.0763 (8)
C20.4516 (5)0.48860 (11)0.7956 (4)0.0850 (9)
H20.58800.49010.80700.102*
C30.3451 (5)0.45692 (9)0.8529 (4)0.0761 (8)
H30.40880.43760.90280.091*
C40.1454 (4)0.45409 (7)0.8359 (3)0.0598 (7)
C50.0564 (4)0.48283 (9)0.7599 (4)0.0821 (9)
H50.07900.48110.74550.099*
C60.1666 (6)0.51438 (9)0.7045 (4)0.0870 (9)
H60.10340.53360.65350.104*
C70.4821 (6)0.55287 (10)0.6662 (5)0.1135 (13)
H7A0.42830.57290.74310.170*
H7B0.62290.54920.67420.170*
H7C0.46970.55870.54550.170*
C80.2454 (4)0.36712 (8)0.6955 (4)0.0737 (8)
H8A0.34190.38500.63470.088*
H8B0.29260.35920.80330.088*
C90.2310 (5)0.33415 (7)0.5761 (4)0.0738 (8)
H9A0.14060.31570.64000.089*
H9B0.36440.32300.54310.089*
C100.0484 (4)0.36109 (8)0.4655 (4)0.0734 (8)
H10A0.10080.36800.35870.088*
H10B0.13920.34270.52920.088*
C110.0404 (4)0.39451 (7)0.5809 (4)0.0680 (7)
H11A0.17620.40460.61540.082*
H11B0.04430.41340.51480.082*
C120.1536 (5)0.31498 (8)0.2910 (4)0.0801 (9)
H12A0.08540.29380.35290.096*
H12B0.07730.32240.19900.096*
C130.3660 (4)0.30386 (8)0.2051 (3)0.0629 (7)
C140.4280 (5)0.26741 (8)0.2015 (4)0.0737 (8)
H140.34050.24920.25720.088*
C150.6186 (5)0.25787 (8)0.1158 (4)0.0759 (8)
C160.7479 (5)0.28422 (10)0.0346 (4)0.0772 (8)
C170.6903 (5)0.32020 (9)0.0356 (4)0.0834 (9)
H170.77880.33810.02120.100*
C180.4993 (5)0.33006 (8)0.1215 (4)0.0729 (8)
H180.45960.35480.12310.088*
N10.0432 (3)0.38434 (6)0.7410 (3)0.0646 (6)
N20.1548 (3)0.34542 (6)0.4167 (3)0.0627 (6)
O10.2056 (3)0.42331 (6)0.9324 (3)0.0918 (7)
O20.0916 (4)0.39768 (6)1.0463 (2)0.0989 (7)
F10.6798 (3)0.22224 (5)0.1108 (3)0.1225 (8)
F20.9357 (3)0.27392 (6)0.0489 (3)0.1200 (7)
S10.00612 (12)0.41390 (2)0.90583 (9)0.0734 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.080 (2)0.089 (2)0.0536 (17)0.0093 (19)0.0063 (15)0.0117 (15)
C20.0544 (19)0.114 (3)0.086 (2)0.001 (2)0.0093 (16)0.022 (2)
C30.074 (2)0.087 (2)0.0703 (19)0.0205 (18)0.0190 (15)0.0075 (16)
C40.0567 (18)0.0677 (18)0.0527 (15)0.0136 (13)0.0024 (12)0.0043 (13)
C50.0567 (18)0.077 (2)0.114 (3)0.0079 (16)0.0178 (17)0.0131 (18)
C60.092 (3)0.071 (2)0.099 (2)0.0020 (18)0.0179 (19)0.0170 (17)
C70.128 (3)0.116 (3)0.082 (2)0.047 (2)0.023 (2)0.014 (2)
C80.082 (2)0.079 (2)0.0601 (17)0.0242 (16)0.0110 (15)0.0036 (15)
C90.084 (2)0.0610 (17)0.0711 (19)0.0216 (15)0.0014 (15)0.0047 (14)
C100.0626 (19)0.076 (2)0.0795 (19)0.0024 (15)0.0056 (14)0.0011 (16)
C110.0652 (18)0.0661 (18)0.0705 (18)0.0125 (14)0.0051 (14)0.0079 (14)
C120.073 (2)0.077 (2)0.086 (2)0.0074 (16)0.0020 (16)0.0156 (17)
C130.0687 (19)0.0607 (18)0.0582 (16)0.0072 (15)0.0069 (13)0.0111 (13)
C140.086 (2)0.0618 (19)0.0689 (18)0.0114 (16)0.0011 (16)0.0066 (14)
C150.093 (2)0.0558 (19)0.080 (2)0.0109 (18)0.0167 (18)0.0134 (15)
C160.066 (2)0.087 (2)0.075 (2)0.0040 (18)0.0003 (15)0.0177 (17)
C170.082 (2)0.079 (2)0.083 (2)0.0152 (18)0.0043 (17)0.0005 (17)
C180.078 (2)0.0592 (18)0.0782 (19)0.0012 (15)0.0042 (16)0.0011 (15)
N10.0693 (15)0.0594 (13)0.0599 (13)0.0137 (11)0.0038 (11)0.0045 (10)
N20.0631 (15)0.0628 (14)0.0602 (13)0.0042 (11)0.0047 (11)0.0009 (11)
O10.0685 (14)0.0894 (15)0.1015 (16)0.0033 (11)0.0311 (11)0.0102 (12)
O20.148 (2)0.0899 (15)0.0536 (12)0.0194 (13)0.0032 (12)0.0131 (11)
F10.1360 (18)0.0734 (13)0.154 (2)0.0270 (12)0.0134 (14)0.0162 (12)
F20.0804 (14)0.1292 (17)0.1398 (18)0.0121 (11)0.0119 (12)0.0334 (13)
S10.0845 (6)0.0688 (5)0.0590 (5)0.0099 (4)0.0110 (4)0.0051 (4)
Geometric parameters (Å, º) top
C1—C61.362 (4)C10—H10A0.9700
C1—C21.368 (4)C10—H10B0.9700
C1—C71.501 (4)C11—N11.469 (3)
C2—C31.376 (4)C11—H11A0.9700
C2—H20.9300C11—H11B0.9700
C3—C41.363 (4)C12—N21.457 (3)
C3—H30.9300C12—C131.510 (4)
C4—C51.369 (4)C12—H12A0.9700
C4—S11.754 (3)C12—H12B0.9700
C5—C61.381 (4)C13—C141.376 (4)
C5—H50.9300C13—C181.377 (4)
C6—H60.9300C14—C151.371 (4)
C7—H7A0.9600C14—H140.9300
C7—H7B0.9600C15—F11.346 (3)
C7—H7C0.9600C15—C161.359 (4)
C8—N11.472 (3)C16—C171.352 (4)
C8—C91.508 (4)C16—F21.356 (3)
C8—H8A0.9700C17—C181.377 (4)
C8—H8B0.9700C17—H170.9300
C9—N21.450 (3)C18—H180.9300
C9—H9A0.9700N1—S11.632 (2)
C9—H9B0.9700O1—S11.432 (2)
C10—N21.457 (3)O2—S11.419 (2)
C10—C111.497 (4)
C6—C1—C2116.7 (3)N1—C11—C10110.0 (2)
C6—C1—C7121.2 (3)N1—C11—H11A109.7
C2—C1—C7122.1 (3)C10—C11—H11A109.7
C1—C2—C3122.8 (3)N1—C11—H11B109.7
C1—C2—H2118.6C10—C11—H11B109.7
C3—C2—H2118.6H11A—C11—H11B108.2
C4—C3—C2119.5 (3)N2—C12—C13112.0 (2)
C4—C3—H3120.3N2—C12—H12A109.2
C2—C3—H3120.3C13—C12—H12A109.2
C3—C4—C5118.9 (3)N2—C12—H12B109.2
C3—C4—S1120.5 (2)C13—C12—H12B109.2
C5—C4—S1120.5 (2)H12A—C12—H12B107.9
C4—C5—C6120.4 (3)C14—C13—C18118.5 (3)
C4—C5—H5119.8C14—C13—C12121.2 (3)
C6—C5—H5119.8C18—C13—C12120.2 (3)
C1—C6—C5121.7 (3)C15—C14—C13120.0 (3)
C1—C6—H6119.2C15—C14—H14120.0
C5—C6—H6119.2C13—C14—H14120.0
C1—C7—H7A109.5F1—C15—C16119.2 (3)
C1—C7—H7B109.5F1—C15—C14120.3 (3)
H7A—C7—H7B109.5C16—C15—C14120.5 (3)
C1—C7—H7C109.5C17—C16—F2120.3 (3)
H7A—C7—H7C109.5C17—C16—C15120.6 (3)
H7B—C7—H7C109.5F2—C16—C15119.1 (3)
N1—C8—C9109.0 (2)C16—C17—C18119.3 (3)
N1—C8—H8A109.9C16—C17—H17120.3
C9—C8—H8A109.9C18—C17—H17120.3
N1—C8—H8B109.9C17—C18—C13121.0 (3)
C9—C8—H8B109.9C17—C18—H18119.5
H8A—C8—H8B108.3C13—C18—H18119.5
N2—C9—C8110.5 (2)C11—N1—C8111.8 (2)
N2—C9—H9A109.6C11—N1—S1116.43 (17)
C8—C9—H9A109.6C8—N1—S1118.03 (18)
N2—C9—H9B109.6C9—N2—C12112.3 (2)
C8—C9—H9B109.6C9—N2—C10109.7 (2)
H9A—C9—H9B108.1C12—N2—C10110.5 (2)
N2—C10—C11109.7 (2)O2—S1—O1120.16 (13)
N2—C10—H10A109.7O2—S1—N1106.38 (12)
C11—C10—H10A109.7O1—S1—N1106.30 (13)
N2—C10—H10B109.7O2—S1—C4108.02 (14)
C11—C10—H10B109.7O1—S1—C4107.81 (12)
H10A—C10—H10B108.2N1—S1—C4107.58 (11)
C6—C1—C2—C31.5 (5)C14—C13—C18—C170.1 (4)
C7—C1—C2—C3178.0 (3)C12—C13—C18—C17177.0 (3)
C1—C2—C3—C40.6 (4)C10—C11—N1—C856.5 (3)
C2—C3—C4—C50.8 (4)C10—C11—N1—S1163.77 (18)
C2—C3—C4—S1179.4 (2)C9—C8—N1—C1155.7 (3)
C3—C4—C5—C61.2 (4)C9—C8—N1—S1165.23 (18)
S1—C4—C5—C6179.8 (2)C8—C9—N2—C12175.5 (2)
C2—C1—C6—C51.1 (5)C8—C9—N2—C1061.1 (3)
C7—C1—C6—C5178.4 (3)C13—C12—N2—C970.2 (3)
C4—C5—C6—C10.2 (5)C13—C12—N2—C10166.9 (2)
N1—C8—C9—N257.8 (3)C11—C10—N2—C960.8 (3)
N2—C10—C11—N158.1 (3)C11—C10—N2—C12174.7 (2)
N2—C12—C13—C14129.4 (3)C11—N1—S1—O2177.66 (19)
N2—C12—C13—C1853.5 (4)C8—N1—S1—O245.1 (2)
C18—C13—C14—C150.0 (4)C11—N1—S1—O148.5 (2)
C12—C13—C14—C15177.1 (3)C8—N1—S1—O1174.31 (19)
C13—C14—C15—F1179.6 (3)C11—N1—S1—C466.8 (2)
C13—C14—C15—C160.3 (4)C8—N1—S1—C470.4 (2)
F1—C15—C16—C17179.3 (3)C3—C4—S1—O228.3 (3)
C14—C15—C16—C170.6 (5)C5—C4—S1—O2153.0 (2)
F1—C15—C16—F20.2 (4)C3—C4—S1—O1159.6 (2)
C14—C15—C16—F2179.9 (3)C5—C4—S1—O121.8 (3)
F2—C16—C17—C18179.8 (3)C3—C4—S1—N186.1 (2)
C15—C16—C17—C180.7 (5)C5—C4—S1—N192.5 (2)
C16—C17—C18—C130.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.673.380 (4)134
C7—H7A···O1ii0.962.663.400 (4)134
C10—H10B···F1iii0.972.663.585 (3)160
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+2; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H20F2N2O2S
Mr366.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)6.6680 (2), 36.0404 (8), 7.6093 (2)
β (°) 99.728 (2)
V3)1802.35 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.28 × 0.24 × 0.20
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.943, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
9583, 2434, 1910
Rint0.025
θmax (°)22.8
(sin θ/λ)max1)0.545
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.114, 1.02
No. of reflections2434
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.25

Computer programs: APEX2 (Bruker, 2009), APEX2 and SAINT-Plus (Bruker, 2009), SAINT-Plus and XPREP (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.673.380 (4)133.8
C7—H7A···O1ii0.962.663.400 (4)134.2
C10—H10B···F1iii0.972.663.585 (3)159.8
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+2; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Dr S. C. Sharma, Ex-Vice Chancellor, Tumkur University, for his constant encouragement. JT also thanks the DST, New Delhi, for the SCXRD facility under the PURSE Grant (SR/S9/Z-23/2008/11, 2009) at USIC, Karnatak University.

References

First citationBruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreenivasa, S., Anitha, H. C., ManojKumar, K. E., Tonannavar, J., Jayashree, Y., Suchetan, P. A. & Palakshamurthy, B. S. (2013a). Acta Cryst. E69, o239.  CSD CrossRef IUCr Journals Google Scholar
First citationSreenivasa, S., ManojKumar, K. E., Anitha, H. C., Suchetan, P. A., Palakshamurthy, B. S., Jayashree, Y. & Tonannavar, J. (2013c). Acta Cryst. E69, o782.  CSD CrossRef IUCr Journals Google Scholar
First citationSreenivasa, S., ManojKumar, K. E., Suchetan, P. A., Tonannavar, J., Chavan, Y. & Palakshamurthy, B. S. (2013b). Acta Cryst. E69, o185.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds