organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[1-(4-Bromo­phen­yl)-3-hy­dr­oxy-3-(4-meth­­oxy­phen­yl)prop­yl]cyclo­hexa­nol

aDepartment of Physics, Faculty of Sciences, Cumhuriyet University, 58140 Sivas, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Physics, Faculty of Arts and Sciences, Gaziosmanpaşa University, 60240 Tokat, Turkey, and dFaculty of Industrial Chemistry and, Environmental Engineering, Politehnica University of Timisoara, 6 Pirvan Boulevard, 300223, Timimisoara, Romania
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 5 June 2013; accepted 7 June 2013; online 12 June 2013)

In the title compound, C22H27BrO3, the cyclo­hexane ring adopts a chair conformation. The dihedral angle between the benzene rings is 41.9 (4)°. In the crystal, mol­ecules are linked by O—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network. In addition, ππ stacking inter­actions [centroid–centroid distance = 3.953 (6) Å] between the benzene rings of the meth­oxy­benzene groups occur.

Related literature

For the biological properties of 1,5-diols, see: Flamme & Roush (2005[Flamme, E. M. & Roush, W. R. (2005). Beilstein J. Org. Chem. 1, 7. doi:10.1186/1860-5397-1-7.]); Hansen et al. (2003[Hansen, T. M., Florence, G. J., Lugo-Mas, P., Chen, J., Abrams, J. N. & Forsyth, C. J. (2003). Tetrahedron Lett. 44, 57-59.]); Huang et al. (2009[Huang, K., Ortiz-Marciales, M., Jesus, M. D. & Stepanenko, V. (2009). J. Heterocycl. Chem. 46, 1252-1258.]); Oger et al. (2010[Oger, C., Marton, Z., Brinkmann, Y., Bultel-Ponce, V., Durand, T., Graber, M. & Galano, J.-M. (2010). J. Org. Chem. 75, 1892-1897.]). For details of the synthesis, see: Ceylan & Gezegen (2008[Ceylan, M. & Gezegen, H. (2008). Turk. J. Chem. 32, 55-61.]); Gezegen et al. (2010[Gezegen, H., Dingil, A. & Ceylan, M. (2010). J. Heterocycl. Chem. 47, 1017-1024.]). For ring conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C22H27BrO3

  • Mr = 419.34

  • Monoclinic, C 2/c

  • a = 23.2993 (14) Å

  • b = 10.9282 (5) Å

  • c = 22.3632 (11) Å

  • β = 133.032 (3)°

  • V = 4162.2 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.99 mm−1

  • T = 296 K

  • 0.60 × 0.34 × 0.28 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration [X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) and XABS2 (Parkin et al., 1995[Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53-56.])] Tmin = 0.448, Tmax = 0.572

  • 4301 measured reflections

  • 4301 independent reflections

  • 2327 reflections with I > 2σ(I)

  • Rint = 0.000

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.198

  • S = 1.03

  • 4301 reflections

  • 240 parameters

  • 149 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2i 0.82 2.13 2.854 (4) 147
O2—H2A⋯O2ii 0.78 (3) 2.46 (2) 2.871 (6) 115 (2)
C5—H5⋯O3iii 0.93 2.36 3.287 (10) 171
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [-x+2, y, -z+{\script{1\over 2}}]; (iii) x, y-1, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,5-Diols are useful and important compounds as intermediates in synthetic organic reactions (Huang et al., 2009; Oger et al., 2010). They are used in the synthesis of bioactive molecules and natural products (Flamme & Roush, 2005; Hansen et al., 2003). In this paper we report synthesis of 2-(1-(4-bromophenyl)-3-hydroxy-3-(4-methoxyphenyl)propyl)cyclohexanol in moderate yield together with its crystal structure.

The cyclohexyl ring of the title compound (I, Fig. 1) adopts a chair conformation with the puckering parameters (Cremer & Pople, 1975) of QT = 0.564 (6) Å, θ = 2.7 (6) ° and φ = 12 (13)°. The two benzene rings (C1–C6 and C16–C21) make a dihedral angle of 41.9 (4)° with each other. The C6–C7–C8–C13, C6–C7–C14–C15, C7–C14–C15–O2 and C7–C14–C15–C16 torsion angles are 177.9 (4), 59.2 (6), 64.0 (5) and -171.5 (4)°, respectively. All bond lengths of (I) are within normal ranges (Allen et al., 1987), as are the bond angles.

In the crystal, intermolecular O—H···O and C—H···O hydrogen bonds connect molecules, forming a three-dimensional network (Table 1, Fig. 2). Furthermore, π-π stacking interactions [Cg3···Cg3(2 - x, y, 1/2 - z) = 3.953 (6) Å, where Cg3 is a centroid of the C16–C21 benzene ring], between the benzene rings of the methoxybenzene groups, stabilize the crystal packing.

Related literature top

For the biological properties of 1,5-diols, see: Flamme & Roush (2005); Hansen et al. (2003); Huang et al. (2009); Oger et al. (2010). For details of the synthesis, see: Ceylan & Gezegen (2008); Gezegen et al. (2010). For ring conformation analysis, see: Cremer & Pople (1975). For standard bond-length data, see: Allen et al. (1987).

Experimental top

2-(1-(4-Bromophenyl)-3-hydroxy-3-(4-methoxyphenyl)propyl)cyclohexanol was synthesized from 2-(1-(4-bromophenyl)-3-(4-methoxyphenyl)-3-oxopropyl)cyclohexanone (1,5-diketone) (Ceylan & Gezegen, 2008; Gezegen et al., 2010). To a solution of 2-(1-(4-bromophenyl)-3-(4-methoxyphenyl)-3-oxopropyl)cyclohexanone (1 mmol) in THF-MeOH (12 ml 5:1) was added NaBH4 (3 mmol) and stirred for 16 h at room temperature. After completion of the reaction, the mixture was transferred to a separatory funnel, dilute HCl (10% 10 ml) was added and extracted with diethyl ether (3x20 ml). The organic layer was dried over Na2SO4 and evaporated. The crude product was crystallized from EtO2-hexane (3:1) to give pure 2-(1-(4-bromophenyl)-3-hydroxy-3-(4-methoxyphenyl)propyl)cyclohexanol in 75% yield; m.p.: 470–472 K.

Refinement top

C-bound H atoms and the hydroxyl H atom H1A were positioned geometrically and refined using a riding model with O—H = 0.82 Å, C—H = 0.93 Å (aromatic), 0.96 Å (methyl), 0.97 Å (methylene) and 0.98 Å (methine), and with Uiso(H) = 1.5Ueq(Cmethyl, Ohydroxyl), and Uiso(H) = 1.2Ueq(Caromatic, methylene, methine). The other hydroxyl H atom H2A was found in difference Fourier maps and the O2—H2A bond length were restrained to 0.83 (2) Å with Uiso(H) = 1.5Ueq(O). Twelve poorly fitted reflections (2 2 1), (0 2 2), (-25 3 19), (-9 3 7), (-10 2 20), (-13 7 5), (-6 2 6), (2 0 0), (-6 2 10), (10 6 2), (-9 11 3) and (-15 5 6) were omitted from the refinement owing to bad disagreement between Fo and Fc.

Structure description top

1,5-Diols are useful and important compounds as intermediates in synthetic organic reactions (Huang et al., 2009; Oger et al., 2010). They are used in the synthesis of bioactive molecules and natural products (Flamme & Roush, 2005; Hansen et al., 2003). In this paper we report synthesis of 2-(1-(4-bromophenyl)-3-hydroxy-3-(4-methoxyphenyl)propyl)cyclohexanol in moderate yield together with its crystal structure.

The cyclohexyl ring of the title compound (I, Fig. 1) adopts a chair conformation with the puckering parameters (Cremer & Pople, 1975) of QT = 0.564 (6) Å, θ = 2.7 (6) ° and φ = 12 (13)°. The two benzene rings (C1–C6 and C16–C21) make a dihedral angle of 41.9 (4)° with each other. The C6–C7–C8–C13, C6–C7–C14–C15, C7–C14–C15–O2 and C7–C14–C15–C16 torsion angles are 177.9 (4), 59.2 (6), 64.0 (5) and -171.5 (4)°, respectively. All bond lengths of (I) are within normal ranges (Allen et al., 1987), as are the bond angles.

In the crystal, intermolecular O—H···O and C—H···O hydrogen bonds connect molecules, forming a three-dimensional network (Table 1, Fig. 2). Furthermore, π-π stacking interactions [Cg3···Cg3(2 - x, y, 1/2 - z) = 3.953 (6) Å, where Cg3 is a centroid of the C16–C21 benzene ring], between the benzene rings of the methoxybenzene groups, stabilize the crystal packing.

For the biological properties of 1,5-diols, see: Flamme & Roush (2005); Hansen et al. (2003); Huang et al. (2009); Oger et al. (2010). For details of the synthesis, see: Ceylan & Gezegen (2008); Gezegen et al. (2010). For ring conformation analysis, see: Cremer & Pople (1975). For standard bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing and hydrogen bonding of the title compound viewed down the b axis. H atoms not involved in hydrogen bonding are omitted for clarity. Hydrogen bonds are shown as dashed lines.
2-[1-(4-Bromophenyl)-3-hydroxy-3-(4-methoxyphenyl)propyl]cyclohexanol top
Crystal data top
C22H27BrO3F(000) = 1744
Mr = 419.34Dx = 1.338 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 538 reflections
a = 23.2993 (14) Åθ = 1.8–28.0°
b = 10.9282 (5) ŵ = 1.99 mm1
c = 22.3632 (11) ÅT = 296 K
β = 133.032 (3)°Prism, colourless
V = 4162.2 (4) Å30.60 × 0.34 × 0.28 mm
Z = 8
Data collection top
Stoe IPDS 2
diffractometer
4301 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2327 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.000
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 2.0°
ω scansh = 2921
Absorption correction: integration
[X-RED32 (Stoe & Cie, 2002) and XABS2 (Parkin et al., 1995)]
k = 013
Tmin = 0.448, Tmax = 0.572l = 028
4301 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.198H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0945P)2 + 0.8672P]
where P = (Fo2 + 2Fc2)/3
4301 reflections(Δ/σ)max = 0.001
240 parametersΔρmax = 0.78 e Å3
149 restraintsΔρmin = 0.56 e Å3
Crystal data top
C22H27BrO3V = 4162.2 (4) Å3
Mr = 419.34Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.2993 (14) ŵ = 1.99 mm1
b = 10.9282 (5) ÅT = 296 K
c = 22.3632 (11) Å0.60 × 0.34 × 0.28 mm
β = 133.032 (3)°
Data collection top
Stoe IPDS 2
diffractometer
4301 independent reflections
Absorption correction: integration
[X-RED32 (Stoe & Cie, 2002) and XABS2 (Parkin et al., 1995)]
2327 reflections with I > 2σ(I)
Tmin = 0.448, Tmax = 0.572Rint = 0.000
4301 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.068149 restraints
wR(F2) = 0.198H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.78 e Å3
4301 reflectionsΔρmin = 0.56 e Å3
240 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.90669 (5)0.12894 (8)0.49681 (4)0.1178 (4)
O10.68319 (18)0.2009 (3)0.02218 (19)0.0645 (10)
O20.91572 (17)0.3614 (3)0.19089 (19)0.0594 (10)
O30.9041 (4)0.9462 (3)0.2060 (3)0.130 (3)
C10.7850 (3)0.2963 (4)0.2729 (3)0.0658 (16)
C20.8135 (3)0.2666 (5)0.3495 (3)0.0762 (19)
C30.8642 (3)0.1688 (5)0.3903 (3)0.0678 (16)
C40.8854 (3)0.1024 (4)0.3576 (3)0.0664 (16)
C50.8566 (3)0.1340 (4)0.2812 (3)0.0579 (16)
C60.8059 (2)0.2320 (4)0.2374 (2)0.0479 (11)
C70.7740 (2)0.2639 (4)0.1536 (2)0.0494 (12)
C80.6854 (2)0.2325 (4)0.0871 (2)0.0548 (14)
C90.6696 (3)0.0990 (5)0.0910 (3)0.0761 (16)
C100.5823 (3)0.0706 (6)0.0323 (3)0.090 (2)
C110.5419 (3)0.1067 (5)0.0550 (3)0.0787 (18)
C120.5591 (3)0.2377 (5)0.0597 (3)0.0705 (16)
C130.6465 (2)0.2654 (4)0.0002 (2)0.0565 (14)
C140.7910 (2)0.3971 (4)0.1491 (2)0.0542 (12)
C150.8779 (2)0.4304 (4)0.2098 (2)0.0541 (12)
C160.8874 (3)0.5678 (4)0.2089 (3)0.0542 (12)
C170.8778 (4)0.6232 (5)0.1470 (4)0.092 (3)
C180.8820 (5)0.7492 (5)0.1436 (4)0.108 (3)
C190.8971 (4)0.8204 (4)0.2031 (4)0.087 (3)
C200.9063 (4)0.7675 (4)0.2643 (4)0.088 (2)
C210.9017 (3)0.6423 (4)0.2674 (3)0.0690 (19)
C220.8947 (6)1.0051 (5)0.1428 (6)0.146 (5)
H10.750600.361900.244700.0790*
H1A0.650100.160800.063700.0970*
H20.798800.311400.372600.0910*
H2A0.9441 (7)0.398 (3)0.1907 (8)0.0890*
H40.919000.035900.385800.0800*
H50.871700.088200.258800.0700*
H70.801200.212100.143800.0600*
H80.659300.281400.099400.0660*
H9A0.693900.079800.146300.0910*
H9B0.693600.047400.077800.0910*
H10A0.558900.115400.048700.1080*
H10B0.574800.016100.034300.1080*
H11A0.559800.053100.074000.0950*
H11B0.485700.096000.090900.0950*
H12A0.534300.291600.048500.0850*
H12B0.536200.254500.114800.0850*
H130.653200.353400.001700.0670*
H14A0.768800.413400.094200.0650*
H14B0.764500.449800.158800.0650*
H150.900900.407100.264700.0650*
H170.868200.574900.106800.1100*
H180.874600.784900.101000.1280*
H200.915700.816300.304300.1050*
H210.908300.607500.309800.0830*
H22A0.934500.976500.144000.2190*
H22B0.899601.092000.151200.2190*
H22C0.843800.986300.090600.2190*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1390 (7)0.1527 (7)0.0648 (4)0.0010 (5)0.0707 (5)0.0173 (4)
O10.0527 (17)0.092 (2)0.0556 (17)0.0169 (16)0.0396 (15)0.0152 (16)
O20.0511 (17)0.0657 (18)0.0653 (18)0.0043 (14)0.0412 (15)0.0047 (14)
O30.260 (6)0.060 (2)0.194 (5)0.006 (3)0.204 (5)0.002 (3)
C10.075 (3)0.075 (3)0.060 (2)0.008 (2)0.051 (3)0.002 (2)
C20.095 (4)0.084 (3)0.071 (3)0.001 (3)0.065 (3)0.008 (3)
C30.071 (3)0.076 (3)0.053 (2)0.011 (2)0.041 (2)0.003 (2)
C40.062 (3)0.066 (3)0.057 (2)0.003 (2)0.035 (2)0.010 (2)
C50.055 (3)0.063 (3)0.056 (2)0.002 (2)0.038 (2)0.000 (2)
C60.042 (2)0.056 (2)0.0412 (19)0.0040 (17)0.0266 (18)0.0032 (17)
C70.046 (2)0.060 (2)0.045 (2)0.0022 (18)0.0321 (19)0.0002 (18)
C80.040 (2)0.078 (3)0.046 (2)0.003 (2)0.0292 (18)0.000 (2)
C90.061 (3)0.091 (3)0.056 (2)0.026 (3)0.032 (2)0.006 (2)
C100.061 (3)0.139 (5)0.057 (3)0.037 (3)0.035 (3)0.002 (3)
C110.048 (3)0.125 (4)0.055 (2)0.022 (3)0.032 (2)0.005 (3)
C120.046 (2)0.106 (4)0.050 (2)0.001 (2)0.029 (2)0.005 (2)
C130.045 (2)0.075 (3)0.046 (2)0.0012 (19)0.0297 (19)0.0007 (19)
C140.053 (2)0.058 (2)0.048 (2)0.0022 (19)0.033 (2)0.0056 (18)
C150.053 (2)0.062 (2)0.047 (2)0.005 (2)0.034 (2)0.0005 (19)
C160.057 (2)0.059 (2)0.053 (2)0.006 (2)0.040 (2)0.0039 (19)
C170.159 (6)0.068 (3)0.101 (4)0.007 (3)0.109 (4)0.002 (3)
C180.209 (7)0.065 (3)0.135 (5)0.006 (4)0.151 (6)0.013 (3)
C190.147 (6)0.053 (3)0.127 (5)0.002 (3)0.119 (5)0.001 (3)
C200.140 (5)0.063 (3)0.099 (4)0.005 (3)0.097 (4)0.011 (3)
C210.093 (4)0.064 (3)0.068 (3)0.001 (2)0.062 (3)0.000 (2)
C220.287 (12)0.068 (4)0.227 (9)0.018 (5)0.232 (10)0.028 (5)
Geometric parameters (Å, º) top
Br1—C31.904 (5)C19—C201.361 (11)
O1—C131.436 (7)C20—C211.378 (6)
O2—C151.426 (7)C1—H10.9300
O3—C191.381 (6)C2—H20.9300
O3—C221.427 (13)C4—H40.9300
O1—H1A0.8200C5—H50.9300
O2—H2A0.78 (3)C7—H70.9800
C1—C21.389 (8)C8—H80.9800
C1—C61.374 (9)C9—H9A0.9700
C2—C31.378 (8)C9—H9B0.9700
C3—C41.341 (10)C10—H10A0.9700
C4—C51.387 (8)C10—H10B0.9700
C5—C61.387 (7)C11—H11A0.9700
C6—C71.512 (5)C11—H11B0.9700
C7—C81.550 (6)C12—H12A0.9700
C7—C141.530 (6)C12—H12B0.9700
C8—C91.522 (7)C13—H130.9800
C8—C131.524 (5)C14—H14A0.9700
C9—C101.521 (10)C14—H14B0.9700
C10—C111.531 (7)C15—H150.9800
C11—C121.510 (8)C17—H170.9300
C12—C131.520 (8)C18—H180.9300
C14—C151.524 (7)C20—H200.9300
C15—C161.520 (6)C21—H210.9300
C16—C211.375 (8)C22—H22A0.9600
C16—C171.382 (10)C22—H22B0.9600
C17—C181.386 (8)C22—H22C0.9600
C18—C191.364 (10)
C19—O3—C22118.0 (6)C14—C7—H7107.00
C13—O1—H1A110.00C7—C8—H8107.00
C15—O2—H2A116 (2)C9—C8—H8107.00
C2—C1—C6122.2 (5)C13—C8—H8107.00
C1—C2—C3118.1 (6)C8—C9—H9A109.00
Br1—C3—C2119.0 (5)C8—C9—H9B109.00
Br1—C3—C4119.2 (4)C10—C9—H9A109.00
C2—C3—C4121.8 (5)C10—C9—H9B109.00
C3—C4—C5119.2 (5)H9A—C9—H9B108.00
C4—C5—C6121.7 (6)C9—C10—H10A110.00
C5—C6—C7121.0 (5)C9—C10—H10B110.00
C1—C6—C5117.0 (4)C11—C10—H10A110.00
C1—C6—C7122.0 (4)C11—C10—H10B110.00
C6—C7—C14111.8 (3)H10A—C10—H10B108.00
C6—C7—C8110.2 (4)C10—C11—H11A109.00
C8—C7—C14112.5 (3)C10—C11—H11B109.00
C7—C8—C13114.5 (4)C12—C11—H11A109.00
C7—C8—C9111.9 (4)C12—C11—H11B109.00
C9—C8—C13110.0 (3)H11A—C11—H11B108.00
C8—C9—C10112.3 (5)C11—C12—H12A109.00
C9—C10—C11110.1 (6)C11—C12—H12B109.00
C10—C11—C12111.8 (4)C13—C12—H12A109.00
C11—C12—C13112.8 (5)C13—C12—H12B109.00
O1—C13—C12110.7 (4)H12A—C12—H12B108.00
O1—C13—C8110.6 (4)O1—C13—H13108.00
C8—C13—C12110.5 (5)C8—C13—H13108.00
C7—C14—C15114.5 (3)C12—C13—H13108.00
O2—C15—C16113.2 (5)C7—C14—H14A109.00
C14—C15—C16109.9 (4)C7—C14—H14B108.00
O2—C15—C14108.9 (3)C15—C14—H14A109.00
C17—C16—C21117.5 (5)C15—C14—H14B109.00
C15—C16—C17121.4 (5)H14A—C14—H14B108.00
C15—C16—C21121.0 (5)O2—C15—H15108.00
C16—C17—C18121.4 (7)C14—C15—H15108.00
C17—C18—C19119.6 (8)C16—C15—H15108.00
O3—C19—C20116.3 (6)C16—C17—H17119.00
O3—C19—C18123.9 (7)C18—C17—H17119.00
C18—C19—C20119.8 (5)C17—C18—H18120.00
C19—C20—C21120.5 (6)C19—C18—H18120.00
C16—C21—C20121.1 (6)C19—C20—H20120.00
C2—C1—H1119.00C21—C20—H20120.00
C6—C1—H1119.00C16—C21—H21119.00
C1—C2—H2121.00C20—C21—H21119.00
C3—C2—H2121.00O3—C22—H22A109.00
C3—C4—H4120.00O3—C22—H22B110.00
C5—C4—H4120.00O3—C22—H22C110.00
C4—C5—H5119.00H22A—C22—H22B109.00
C6—C5—H5119.00H22A—C22—H22C109.00
C6—C7—H7107.00H22B—C22—H22C109.00
C8—C7—H7107.00
C22—O3—C19—C20179.9 (10)C9—C8—C13—C1256.1 (6)
C22—O3—C19—C180.2 (16)C7—C8—C13—O160.3 (5)
C2—C1—C6—C50.7 (9)C7—C8—C13—C12176.9 (4)
C2—C1—C6—C7179.3 (6)C8—C9—C10—C1155.8 (7)
C6—C1—C2—C30.2 (10)C9—C10—C11—C1253.1 (8)
C1—C2—C3—Br1178.1 (5)C10—C11—C12—C1353.9 (8)
C1—C2—C3—C40.7 (10)C11—C12—C13—C855.2 (6)
Br1—C3—C4—C5177.8 (5)C11—C12—C13—O167.6 (6)
C2—C3—C4—C51.1 (10)C7—C14—C15—C16171.5 (4)
C3—C4—C5—C60.5 (10)C7—C14—C15—O264.0 (5)
C4—C5—C6—C7179.0 (5)O2—C15—C16—C1744.5 (8)
C4—C5—C6—C10.4 (9)C14—C15—C16—C2198.9 (7)
C5—C6—C7—C8109.2 (6)O2—C15—C16—C21139.1 (6)
C1—C6—C7—C869.4 (6)C14—C15—C16—C1777.5 (9)
C1—C6—C7—C1456.5 (7)C15—C16—C21—C20176.6 (7)
C5—C6—C7—C14125.0 (5)C17—C16—C21—C200.0 (12)
C14—C7—C8—C9178.6 (4)C15—C16—C17—C18176.3 (8)
C14—C7—C8—C1352.5 (5)C21—C16—C17—C180.3 (13)
C6—C7—C14—C1559.2 (6)C16—C17—C18—C191.0 (16)
C8—C7—C14—C15176.3 (4)C17—C18—C19—C201.4 (16)
C6—C7—C8—C956.0 (5)C17—C18—C19—O3178.5 (10)
C6—C7—C8—C13177.9 (4)O3—C19—C20—C21178.9 (9)
C13—C8—C9—C1057.8 (7)C18—C19—C20—C211.0 (15)
C7—C8—C9—C10173.7 (5)C19—C20—C21—C160.3 (14)
C9—C8—C13—O166.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.822.132.854 (4)147
O2—H2A···O2ii0.78 (3)2.46 (2)2.871 (6)115 (2)
C5—H5···O3iii0.932.363.287 (10)171
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+2, y, z+1/2; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC22H27BrO3
Mr419.34
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)23.2993 (14), 10.9282 (5), 22.3632 (11)
β (°) 133.032 (3)
V3)4162.2 (4)
Z8
Radiation typeMo Kα
µ (mm1)1.99
Crystal size (mm)0.60 × 0.34 × 0.28
Data collection
DiffractometerStoe IPDS 2
Absorption correctionIntegration
[X-RED32 (Stoe & Cie, 2002) and XABS2 (Parkin et al., 1995)]
Tmin, Tmax0.448, 0.572
No. of measured, independent and
observed [I > 2σ(I)] reflections
4301, 4301, 2327
Rint0.000
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.198, 1.03
No. of reflections4301
No. of parameters240
No. of restraints149
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.78, 0.56

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.82002.13002.854 (4)147.00
O2—H2A···O2ii0.78 (3)2.457 (17)2.871 (6)114.9 (18)
C5—H5···O3iii0.93002.36003.287 (10)171.00
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+2, y, z+1/2; (iii) x, y1, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund). The authors are indebted to the Gaziosmanpaşa University (grant BAP-2011/94) for financial support of this work.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationCeylan, M. & Gezegen, H. (2008). Turk. J. Chem. 32, 55–61.  CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlamme, E. M. & Roush, W. R. (2005). Beilstein J. Org. Chem. 1, 7. doi:10.1186/1860-5397-1-7.  Web of Science CrossRef Google Scholar
First citationGezegen, H., Dingil, A. & Ceylan, M. (2010). J. Heterocycl. Chem. 47, 1017–1024.  Web of Science CrossRef CAS Google Scholar
First citationHansen, T. M., Florence, G. J., Lugo-Mas, P., Chen, J., Abrams, J. N. & Forsyth, C. J. (2003). Tetrahedron Lett. 44, 57–59.  Web of Science CrossRef CAS Google Scholar
First citationHuang, K., Ortiz-Marciales, M., Jesus, M. D. & Stepanenko, V. (2009). J. Heterocycl. Chem. 46, 1252–1258.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOger, C., Marton, Z., Brinkmann, Y., Bultel-Ponce, V., Durand, T., Graber, M. & Galano, J.-M. (2010). J. Org. Chem. 75, 1892–1897.  Web of Science CrossRef CAS PubMed Google Scholar
First citationParkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds