metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[silver(I)-μ-N-(pyridin-3-ylmeth­yl)pyridine-2-amine-κ2N:N′] tri­fluoro­methane­sulfonate]

aDepartment of Food & Nutrition, Kyungnam College of Information and Technology, Busan 617-701, Republic of Korea, and bDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: kmpark@gnu.ac.kr

(Received 10 June 2013; accepted 12 June 2013; online 26 June 2013)

In the asymmetric unit of the title polymeric complex, {[Ag(C11H11N3)](CF3SO3)}n, there are two AgI atoms, two N-(pyridin-3-ylmeth­yl)pyridine-2-amine ligands (A and B) and two CF3SO3 anions. One AgI atom is coordinated by two pyridine N atoms from two symmetry-related A ligands in a geometry slightly distorted from linear [N—Ag—N = 173.2 (3)°], forming a left-handed helical chain, while the other AgI atom is coordinated by two pyridine N atoms from two symmetry-related B ligands in a bent arrangement [N—Ag—N = 157.1 (3)°], forming a right-handed helical chain. Both helical chains have the same pitch length [10.4007 (7) Å], propagate along the b-axis direction and are alternately arranged via Ag⋯Ag [3.0897 (12) Å] and ππ stacking inter­actions [centroid–centroid distances = 3.564 (7) and 3.518 (6) Å], resulting in the formation of a two-dimensional supra­molecular network extending parallel to the ab plane. Inter­molecular N—H⋯O, C—H⋯O and C—H⋯F hydrogen-bonding inter­actions occur between the helical chains and the anions.

Related literature

For related structures and applications of AgI coordination polymers with dipyridyl ligands, see: Leong & Vittal (2011[Leong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688-764.]); Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]). For the crystal structure of the related perchlorate salt, see: Zhang et al. (2013[Zhang, Z.-Y., Deng, Z.-P., Huo, L.-H., Zhao, H. & Gao, S. (2013). Inorg. Chem. 52, 5914-5923.]). For the synthesis of the ligand, see: Foxon et al. (2002[Foxon, S. P., Walter, O. & Schindler, S. (2002). Eur. J. Inorg. Chem. pp. 111-121.]); Lee et al. (2008[Lee, S., Park, S., Kang, Y., Moon, S.-H., Lee, S. S. & Park, K.-M. (2008). Bull. Korean Chem. Soc. 29, 1811-1814.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C11H11N3)](CF3O3S)

  • Mr = 442.17

  • Monoclinic, P 21 /c

  • a = 14.0965 (10) Å

  • b = 10.4007 (7) Å

  • c = 20.6593 (15) Å

  • β = 102.994 (1)°

  • V = 2951.4 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.56 mm−1

  • T = 173 K

  • 0.30 × 0.25 × 0.25 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker. (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.652, Tmax = 0.697

  • 16169 measured reflections

  • 5797 independent reflections

  • 4479 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.088

  • wR(F2) = 0.238

  • S = 1.09

  • 5797 reflections

  • 415 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 2.70 e Å−3

  • Δρmin = −1.89 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O4 0.88 2.20 3.021 (12) 156
N6—H6⋯O2i 0.88 2.42 3.159 (12) 142
C1—H1⋯O1 0.95 2.56 3.389 (16) 146
C6—H6A⋯F6ii 0.99 2.55 3.282 (15) 131
C9—H9⋯O3iii 0.95 2.44 3.329 (14) 156
C10—H10⋯O1iv 0.95 2.57 3.373 (14) 142
C12—H12⋯O4v 0.95 2.51 3.331 (15) 145
C17—H17A⋯O3i 0.99 2.42 3.186 (14) 134
C21—H21⋯F6vi 0.95 2.54 3.325 (14) 140
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x-1, y, z; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker. (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker. (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Silver coordination polymers based on dipyridyl type ligands have attracted particular interest because of the intriguing architectures caused by a variety of coordination geometries for the Ag(I) cation as well as their potential applications as functional materials (Leong & Vittal, 2011; Moulton & Zaworotko, 2001). However, despite the rapid growth in the Ag(I) coordination chemistry based on symmetrical dipyridyl ligands, investigations using unsymmetrical dipyridyl ligands with nitrogen donor atoms in different positions on the two terminal pyridines still remains lacking. Herein, we report the crystal structure of the title compound prepared by the reaction of silver trifluoromethanesulfonate with the unsymmetrical dipyridyl ligand. The structure of title compound is isostructural with the perchlorate salt (Zhang et al., 2013).

The asymmetric unit of the title compound contains two AgI atoms (Ag1 and Ag2), two N-(pyridin-3-ylmethyl)pyridine-2-amine (Foxon et al., 2002; Lee et al., 2008) ligands (A and B) and two CF3SO3- anions. The Ag1 atom is coordinated by two pyridine N atoms from two symmetry-related ligand A in a geometry slightly distorted from linear [N–Ag1–N = 173.2 (3)°] to form left-handed helical chain, while the Ag2 atom is coordinated by two pyridine N atoms from two symmetry-related ligand B in a bent arrangement [N–Ag2–N = 157.1 (3)°] to form right-handed helical chain (Fig. 1). Two pyridine rings coordinated to the Ag1 and Ag2 centers are tilted by 14.2 (7)° and 34.1 (5)°, respectively, with respect to each other. Both helical chains with the same pitch length of 10.4007 (7) Å propagate along the b axis and are alternately arranged via the Ag···Ag interactions [3.0897 (12) Å], resulting in the formation of a two-dimensional supramolecular network extending parallel to the ab plane. Furthermore, ππ stacking interactions [centroid-centroid distances = 3.564 (7) and 3.518 (6) Å] between pyridine rings of both helical chains, as shown in Fig. 2, contribute to stabilize the two-dimensional network.

The non-coordinating CF3SO3- anions participate in N–H···O hydrogen bonding (Table 1, Fig. 2) and Ag···O interactions (Ag1···O4 2.815 (8), Ag1···O5 2.852 (10), Ag1···O1 2.867 (8), Ag2···O2 2.722 (8) Å) (Fig. 1,2). In addition, C–H···O and C–H···F hydrogen bonds (Table 1) between the helical chains and anions are also detected in the crystal.

Related literature top

For related structures and applications of AgI coordination polymers with dipyridyl ligands, see: Leong & Vittal (2011); Moulton & Zaworotko (2001). For the crystal structure of the isotypic perchlorate salt, see: Zhang et al. (2013). For the synthesis of the ligand, see: Foxon et al. (2002); Lee et al. (2008).

Experimental top

The ligand (N-(pyridin-3-ylmethyl)pyridine-2-amine) was prepared according to a procedure described by Foxon et al. (2002). Crystals of the title compound suitable for X-ray analysis were obtained by vapor diffusion of diethyl ether into a DMSO solution of the white precipitate afforded by the reaction of the ligand with silver(I) trifluoromethanesulfonate in a 1:1 molar ratio in methanol.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with d(C-H) = 0.95 Å for Csp2-H, 0.88 Å for amine N-H and 0.99 Å for methylene C-H. For all H atoms Uiso(H) = 1.2Ueq(C,N).

Structure description top

Silver coordination polymers based on dipyridyl type ligands have attracted particular interest because of the intriguing architectures caused by a variety of coordination geometries for the Ag(I) cation as well as their potential applications as functional materials (Leong & Vittal, 2011; Moulton & Zaworotko, 2001). However, despite the rapid growth in the Ag(I) coordination chemistry based on symmetrical dipyridyl ligands, investigations using unsymmetrical dipyridyl ligands with nitrogen donor atoms in different positions on the two terminal pyridines still remains lacking. Herein, we report the crystal structure of the title compound prepared by the reaction of silver trifluoromethanesulfonate with the unsymmetrical dipyridyl ligand. The structure of title compound is isostructural with the perchlorate salt (Zhang et al., 2013).

The asymmetric unit of the title compound contains two AgI atoms (Ag1 and Ag2), two N-(pyridin-3-ylmethyl)pyridine-2-amine (Foxon et al., 2002; Lee et al., 2008) ligands (A and B) and two CF3SO3- anions. The Ag1 atom is coordinated by two pyridine N atoms from two symmetry-related ligand A in a geometry slightly distorted from linear [N–Ag1–N = 173.2 (3)°] to form left-handed helical chain, while the Ag2 atom is coordinated by two pyridine N atoms from two symmetry-related ligand B in a bent arrangement [N–Ag2–N = 157.1 (3)°] to form right-handed helical chain (Fig. 1). Two pyridine rings coordinated to the Ag1 and Ag2 centers are tilted by 14.2 (7)° and 34.1 (5)°, respectively, with respect to each other. Both helical chains with the same pitch length of 10.4007 (7) Å propagate along the b axis and are alternately arranged via the Ag···Ag interactions [3.0897 (12) Å], resulting in the formation of a two-dimensional supramolecular network extending parallel to the ab plane. Furthermore, ππ stacking interactions [centroid-centroid distances = 3.564 (7) and 3.518 (6) Å] between pyridine rings of both helical chains, as shown in Fig. 2, contribute to stabilize the two-dimensional network.

The non-coordinating CF3SO3- anions participate in N–H···O hydrogen bonding (Table 1, Fig. 2) and Ag···O interactions (Ag1···O4 2.815 (8), Ag1···O5 2.852 (10), Ag1···O1 2.867 (8), Ag2···O2 2.722 (8) Å) (Fig. 1,2). In addition, C–H···O and C–H···F hydrogen bonds (Table 1) between the helical chains and anions are also detected in the crystal.

For related structures and applications of AgI coordination polymers with dipyridyl ligands, see: Leong & Vittal (2011); Moulton & Zaworotko (2001). For the crystal structure of the isotypic perchlorate salt, see: Zhang et al. (2013). For the synthesis of the ligand, see: Foxon et al. (2002); Lee et al. (2008).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with atom numbering. Displacement ellipsoids are drawn at the 50% probability level and dashed lines present Ag···O and N–H···O contacts. [Symmetry codes: (i) 1 - x, 1/2 + y, 1/2 - z; (ii) -x, 1/2 + y, 1/2 - z; (iii) 1 - x, -1/2 + y, 1/2 - z; (iv) -x, -1/2 + y, 1/2 - z].
[Figure 2] Fig. 2. The two-dimensional supramolecular structure formed through Ag···Ag and Ag···O interactions (yellow dashed lines) and ππ stacking interactions (black dashed lines). Red dashed lines present N–H···O hydrogen bonds.
catena-Poly[[silver(I)-µ-N-(pyridin-3-ylmethyl)pyridine-2-amine-κ2N:N'] trifluoromethanesulfonate] top
Crystal data top
[Ag(C11H11N3)](CF3O3S)F(000) = 1744
Mr = 442.17Dx = 1.990 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5912 reflections
a = 14.0965 (10) Åθ = 2.2–28.1°
b = 10.4007 (7) ŵ = 1.56 mm1
c = 20.6593 (15) ÅT = 173 K
β = 102.994 (1)°Block, colourless
V = 2951.4 (4) Å30.30 × 0.25 × 0.25 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
5797 independent reflections
Radiation source: fine-focus sealed tube4479 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
φ and ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1714
Tmin = 0.652, Tmax = 0.697k = 1212
16169 measured reflectionsl = 1525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.088Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.238H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.1255P)2 + 38.027P]
where P = (Fo2 + 2Fc2)/3
5797 reflections(Δ/σ)max = 0.001
415 parametersΔρmax = 2.70 e Å3
6 restraintsΔρmin = 1.89 e Å3
Crystal data top
[Ag(C11H11N3)](CF3O3S)V = 2951.4 (4) Å3
Mr = 442.17Z = 8
Monoclinic, P21/cMo Kα radiation
a = 14.0965 (10) ŵ = 1.56 mm1
b = 10.4007 (7) ÅT = 173 K
c = 20.6593 (15) Å0.30 × 0.25 × 0.25 mm
β = 102.994 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5797 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4479 reflections with I > 2σ(I)
Tmin = 0.652, Tmax = 0.697Rint = 0.047
16169 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0886 restraints
wR(F2) = 0.238H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.1255P)2 + 38.027P]
where P = (Fo2 + 2Fc2)/3
5797 reflectionsΔρmax = 2.70 e Å3
415 parametersΔρmin = 1.89 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.30400 (6)0.83549 (8)0.19418 (4)0.0296 (3)
Ag20.19133 (6)1.03934 (8)0.25579 (4)0.0301 (3)
N10.2935 (6)0.6974 (8)0.2706 (4)0.0255 (19)
N20.6866 (6)0.4901 (9)0.3732 (5)0.029 (2)
N30.4482 (7)0.7530 (10)0.3296 (4)0.037 (2)
H30.45850.78730.29290.045*
N40.1876 (6)0.7099 (8)0.3036 (4)0.0268 (19)
N50.2011 (6)0.9267 (9)0.3454 (5)0.029 (2)
N60.0305 (7)0.6806 (9)0.3627 (5)0.031 (2)
H60.02450.62070.33380.037*
C10.2165 (9)0.6290 (13)0.2671 (7)0.045 (3)
H10.16790.63900.22730.053*
C20.1944 (9)0.5454 (12)0.3110 (7)0.041 (3)
H20.13410.50080.30380.049*
C30.2670 (9)0.5300 (13)0.3677 (7)0.045 (3)
H3A0.25790.47180.40120.055*
C40.3531 (10)0.5987 (12)0.3761 (6)0.041 (3)
H40.40290.58830.41520.050*
C50.3656 (8)0.6842 (10)0.3259 (5)0.028 (2)
C60.5209 (9)0.7732 (12)0.3911 (6)0.041 (3)
H6A0.48840.76770.42880.050*
H6B0.54740.86130.39080.050*
C70.6058 (8)0.6777 (10)0.4031 (5)0.027 (2)
C80.6852 (8)0.6987 (10)0.4541 (6)0.030 (2)
H80.68560.77120.48210.036*
C90.7637 (8)0.6182 (11)0.4657 (5)0.031 (2)
H90.81770.63270.50170.038*
C100.7620 (8)0.5156 (11)0.4235 (5)0.028 (2)
H100.81700.46030.43050.034*
C110.6099 (8)0.5723 (11)0.3626 (5)0.030 (2)
H110.55680.55710.32600.036*
C120.2713 (9)0.7802 (10)0.2889 (6)0.031 (2)
H120.32480.74890.25620.037*
C130.2807 (10)0.8951 (12)0.3200 (7)0.044 (3)
H130.34000.94210.30970.053*
C140.2031 (10)0.9394 (11)0.3658 (6)0.042 (3)
H140.20821.01950.38680.051*
C150.1179 (9)0.8727 (10)0.3827 (5)0.030 (3)
H150.06410.90460.41510.036*
C160.1127 (8)0.7554 (10)0.3505 (6)0.030 (2)
C170.0462 (9)0.6965 (11)0.4212 (6)0.035 (3)
H17A0.07700.61180.43360.041*
H17B0.01710.72520.45810.041*
C180.1260 (7)0.7931 (9)0.4138 (5)0.024 (2)
C190.1999 (8)0.8217 (10)0.4677 (5)0.028 (2)
H190.19920.78710.51020.034*
C200.2750 (9)0.9011 (11)0.4598 (6)0.034 (3)
H200.32630.92190.49660.040*
C210.2744 (8)0.9506 (10)0.3966 (5)0.029 (2)
H210.32731.00210.39040.034*
C220.1266 (8)0.8491 (10)0.3534 (5)0.027 (2)
H220.07400.83330.31650.032*
S10.03282 (18)0.8243 (2)0.12350 (13)0.0236 (5)
O10.1186 (5)0.7565 (7)0.1159 (4)0.0321 (17)
O20.0432 (6)0.8922 (7)0.1865 (4)0.0351 (18)
O30.0157 (6)0.8948 (7)0.0660 (4)0.0353 (18)
C230.0529 (8)0.6965 (11)0.1288 (6)0.033 (3)
F10.1388 (5)0.7438 (7)0.1347 (4)0.0483 (19)
F20.0687 (6)0.6231 (7)0.0747 (4)0.0506 (19)
F30.0193 (5)0.6218 (7)0.1815 (4)0.0451 (18)
S20.4912 (2)0.6737 (3)0.15718 (15)0.0355 (7)
O40.5019 (6)0.7902 (9)0.1973 (4)0.043 (2)
O50.3907 (6)0.6430 (10)0.1279 (5)0.053 (2)
O60.5539 (7)0.5725 (8)0.1845 (4)0.046 (2)
C240.5353 (10)0.7271 (13)0.0856 (7)0.046 (3)
F40.6289 (5)0.7586 (8)0.1038 (4)0.056 (2)
F50.4872 (7)0.8264 (8)0.0557 (4)0.067 (3)
F60.5285 (6)0.6260 (8)0.0427 (4)0.055 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0285 (4)0.0302 (5)0.0323 (5)0.0106 (3)0.0116 (3)0.0109 (3)
Ag20.0345 (5)0.0296 (5)0.0286 (5)0.0019 (3)0.0124 (3)0.0066 (3)
N10.028 (5)0.018 (4)0.032 (5)0.009 (4)0.010 (4)0.006 (4)
N20.024 (5)0.033 (5)0.030 (5)0.002 (4)0.010 (4)0.003 (4)
N30.042 (6)0.049 (6)0.020 (5)0.014 (5)0.006 (4)0.017 (4)
N40.033 (5)0.024 (4)0.027 (5)0.002 (4)0.014 (4)0.001 (4)
N50.019 (4)0.031 (5)0.036 (5)0.001 (4)0.006 (4)0.001 (4)
N60.034 (5)0.024 (5)0.035 (5)0.011 (4)0.005 (4)0.001 (4)
C10.031 (7)0.047 (8)0.052 (8)0.006 (6)0.002 (6)0.005 (6)
C20.038 (7)0.034 (7)0.055 (8)0.001 (5)0.018 (6)0.005 (6)
C30.037 (7)0.052 (8)0.054 (8)0.007 (6)0.024 (6)0.022 (7)
C40.047 (7)0.039 (7)0.039 (7)0.026 (6)0.011 (6)0.017 (6)
C50.027 (5)0.027 (6)0.034 (6)0.014 (4)0.015 (5)0.001 (4)
C60.046 (7)0.040 (7)0.037 (7)0.015 (6)0.005 (6)0.004 (5)
C70.026 (5)0.029 (6)0.026 (5)0.002 (4)0.008 (4)0.003 (4)
C80.033 (6)0.025 (5)0.035 (6)0.009 (5)0.015 (5)0.001 (5)
C90.029 (6)0.041 (6)0.022 (5)0.004 (5)0.004 (4)0.001 (5)
C100.025 (5)0.037 (6)0.024 (5)0.002 (5)0.008 (4)0.003 (5)
C110.027 (6)0.034 (6)0.030 (6)0.018 (5)0.008 (5)0.001 (5)
C120.042 (6)0.024 (5)0.035 (6)0.003 (5)0.026 (5)0.010 (5)
C130.054 (8)0.028 (6)0.061 (8)0.001 (6)0.037 (7)0.004 (6)
C140.066 (9)0.024 (6)0.047 (7)0.017 (6)0.034 (7)0.011 (5)
C150.048 (7)0.017 (5)0.029 (6)0.017 (5)0.020 (5)0.010 (4)
C160.032 (6)0.027 (6)0.036 (6)0.004 (5)0.014 (5)0.001 (5)
C170.039 (5)0.029 (5)0.036 (5)0.015 (4)0.008 (4)0.010 (4)
C180.025 (5)0.009 (4)0.035 (6)0.000 (4)0.003 (4)0.000 (4)
C190.043 (6)0.021 (5)0.020 (5)0.001 (5)0.006 (5)0.004 (4)
C200.039 (6)0.026 (6)0.034 (6)0.004 (5)0.006 (5)0.002 (5)
C210.024 (5)0.031 (6)0.031 (6)0.001 (4)0.008 (5)0.004 (5)
C220.033 (6)0.021 (5)0.027 (5)0.003 (4)0.008 (5)0.003 (4)
S10.0243 (12)0.0202 (12)0.0250 (13)0.0021 (10)0.0031 (10)0.0036 (10)
O10.024 (4)0.036 (4)0.039 (4)0.004 (3)0.014 (3)0.006 (4)
O20.044 (5)0.029 (4)0.033 (4)0.009 (4)0.009 (4)0.006 (3)
O30.042 (5)0.027 (4)0.035 (4)0.004 (3)0.005 (4)0.013 (3)
C230.029 (6)0.026 (6)0.043 (7)0.004 (5)0.009 (5)0.002 (5)
F10.022 (3)0.051 (4)0.074 (5)0.002 (3)0.016 (3)0.013 (4)
F20.065 (5)0.036 (4)0.049 (4)0.012 (4)0.008 (4)0.020 (3)
F30.039 (4)0.034 (4)0.061 (5)0.001 (3)0.008 (3)0.026 (3)
S20.0376 (16)0.0334 (15)0.0401 (16)0.0023 (12)0.0185 (13)0.0078 (12)
O40.039 (5)0.052 (5)0.039 (5)0.014 (4)0.013 (4)0.014 (4)
O50.036 (5)0.060 (6)0.068 (7)0.017 (4)0.020 (5)0.007 (5)
O60.078 (7)0.029 (4)0.034 (5)0.014 (4)0.017 (4)0.005 (4)
C240.050 (8)0.045 (8)0.044 (7)0.006 (6)0.015 (6)0.009 (6)
F40.046 (4)0.057 (5)0.077 (6)0.020 (4)0.039 (4)0.005 (4)
F50.090 (7)0.061 (5)0.054 (5)0.032 (5)0.029 (5)0.038 (4)
F60.070 (5)0.056 (5)0.041 (4)0.014 (4)0.016 (4)0.016 (4)
Geometric parameters (Å, º) top
Ag1—N2i2.151 (9)C9—H90.9500
Ag1—N12.164 (9)C10—H100.9500
Ag1—Ag23.0897 (12)C11—H110.9500
Ag2—N4ii2.151 (9)C12—C131.378 (17)
Ag2—N52.169 (9)C12—H120.9500
N1—C11.286 (16)C13—C141.36 (2)
N1—C51.355 (14)C13—H130.9500
N2—C101.336 (14)C14—C151.362 (18)
N2—C111.357 (15)C14—H140.9500
N2—Ag1iii2.151 (9)C15—C161.399 (15)
N3—C51.354 (15)C15—H150.9500
N3—C61.458 (15)C17—C181.541 (14)
N3—H30.8800C17—H17A0.9900
N4—C161.348 (14)C17—H17B0.9900
N4—C121.363 (14)C18—C191.376 (15)
N4—Ag2iv2.151 (9)C18—C221.378 (15)
N5—C211.325 (14)C19—C201.382 (16)
N5—C221.364 (14)C19—H190.9500
N6—C161.371 (15)C20—C211.401 (16)
N6—C171.437 (14)C20—H200.9500
N6—H60.8800C21—H210.9500
C1—C21.343 (19)C22—H220.9500
C1—H10.9500S1—O31.432 (8)
C2—C31.380 (19)S1—O11.439 (8)
C2—H20.9500S1—O21.459 (8)
C3—C41.385 (19)S1—C231.817 (11)
C3—H3A0.9500C23—F21.331 (14)
C4—C51.406 (16)C23—F31.335 (13)
C4—H40.9500C23—F11.338 (13)
C6—C71.532 (15)S2—O61.408 (9)
C6—H6A0.9900S2—O51.445 (9)
C6—H6B0.9900S2—O41.457 (9)
C7—C81.370 (15)S2—C241.815 (13)
C7—C111.388 (16)C24—F51.312 (15)
C8—C91.365 (16)C24—F41.329 (15)
C8—H80.9500C24—F61.365 (16)
C9—C101.374 (16)
N2i—Ag1—N1173.2 (3)N4—C12—C13122.1 (12)
N2i—Ag1—Ag282.3 (2)N4—C12—H12118.9
N1—Ag1—Ag291.7 (2)C13—C12—H12118.9
N4ii—Ag2—N5157.1 (3)C14—C13—C12118.1 (13)
N4ii—Ag2—Ag1106.3 (2)C14—C13—H13120.9
N5—Ag2—Ag192.4 (2)C12—C13—H13120.9
C1—N1—C5117.0 (10)C13—C14—C15122.2 (11)
C1—N1—Ag1121.4 (8)C13—C14—H14118.9
C5—N1—Ag1121.4 (7)C15—C14—H14118.9
C10—N2—C11117.8 (9)C14—C15—C16117.3 (11)
C10—N2—Ag1iii119.9 (7)C14—C15—H15121.3
C11—N2—Ag1iii122.0 (7)C16—C15—H15121.3
C5—N3—C6123.5 (10)N4—C16—N6115.2 (9)
C5—N3—H3118.3N4—C16—C15122.1 (10)
C6—N3—H3118.3N6—C16—C15122.6 (10)
C16—N4—C12118.0 (9)N6—C17—C18114.8 (9)
C16—N4—Ag2iv127.9 (7)N6—C17—H17A108.6
C12—N4—Ag2iv114.0 (7)C18—C17—H17A108.6
C21—N5—C22119.9 (9)N6—C17—H17B108.6
C21—N5—Ag2117.9 (7)C18—C17—H17B108.6
C22—N5—Ag2121.3 (7)H17A—C17—H17B107.5
C16—N6—C17122.3 (10)C19—C18—C22119.0 (10)
C16—N6—H6118.9C19—C18—C17119.8 (9)
C17—N6—H6118.9C22—C18—C17121.2 (9)
N1—C1—C2129.9 (13)C18—C19—C20119.5 (10)
N1—C1—H1115.1C18—C19—H19120.2
C2—C1—H1115.1C20—C19—H19120.2
C1—C2—C3114.1 (12)C19—C20—C21119.1 (10)
C1—C2—H2123.0C19—C20—H20120.4
C3—C2—H2123.0C21—C20—H20120.4
C2—C3—C4120.6 (12)N5—C21—C20121.0 (10)
C2—C3—H3A119.7N5—C21—H21119.5
C4—C3—H3A119.7C20—C21—H21119.5
C3—C4—C5119.0 (11)N5—C22—C18121.4 (10)
C3—C4—H4120.5N5—C22—H22119.3
C5—C4—H4120.5C18—C22—H22119.3
N3—C5—N1117.8 (9)O3—S1—O1114.7 (5)
N3—C5—C4122.8 (10)O3—S1—O2115.2 (5)
N1—C5—C4119.4 (11)O1—S1—O2114.6 (5)
N3—C6—C7114.7 (10)O3—S1—C23103.0 (5)
N3—C6—H6A108.6O1—S1—C23103.6 (5)
C7—C6—H6A108.6O2—S1—C23103.6 (5)
N3—C6—H6B108.6F2—C23—F3108.3 (9)
C7—C6—H6B108.6F2—C23—F1107.7 (9)
H6A—C6—H6B107.6F3—C23—F1107.5 (9)
C8—C7—C11116.8 (10)F2—C23—S1110.9 (8)
C8—C7—C6119.6 (10)F3—C23—S1110.9 (8)
C11—C7—C6123.5 (10)F1—C23—S1111.3 (8)
C9—C8—C7121.8 (11)O6—S2—O5118.1 (6)
C9—C8—H8119.1O6—S2—O4114.7 (5)
C7—C8—H8119.1O5—S2—O4112.9 (6)
C8—C9—C10117.9 (10)O6—S2—C24104.9 (6)
C8—C9—H9121.1O5—S2—C24102.1 (6)
C10—C9—H9121.1O4—S2—C24101.5 (6)
N2—C10—C9123.0 (10)F5—C24—F4108.3 (11)
N2—C10—H10118.5F5—C24—F6110.3 (11)
C9—C10—H10118.5F4—C24—F6107.1 (11)
N2—C11—C7122.7 (10)F5—C24—S2112.9 (9)
N2—C11—H11118.7F4—C24—S2110.2 (9)
C7—C11—H11118.7F6—C24—S2107.8 (9)
N2i—Ag1—Ag2—N4ii0.5 (3)C12—C13—C14—C151.5 (19)
N1—Ag1—Ag2—N4ii177.3 (3)C13—C14—C15—C160.4 (17)
N2i—Ag1—Ag2—N5166.0 (3)C12—N4—C16—N6179.8 (9)
N1—Ag1—Ag2—N510.9 (3)Ag2iv—N4—C16—N62.3 (14)
N2i—Ag1—N1—C1110 (3)C12—N4—C16—C151.6 (15)
Ag2—Ag1—N1—C182.1 (9)Ag2iv—N4—C16—C15175.8 (8)
N2i—Ag1—N1—C567 (3)C17—N6—C16—N4164.2 (9)
Ag2—Ag1—N1—C594.4 (7)C17—N6—C16—C1517.7 (16)
N4ii—Ag2—N5—C2151.1 (13)C14—C15—C16—N41.2 (16)
Ag1—Ag2—N5—C2193.7 (8)C14—C15—C16—N6179.2 (10)
N4ii—Ag2—N5—C22118.2 (10)C16—N6—C17—C1889.4 (13)
Ag1—Ag2—N5—C2296.9 (8)N6—C17—C18—C19176.1 (10)
C5—N1—C1—C21 (2)N6—C17—C18—C225.8 (16)
Ag1—N1—C1—C2175.3 (12)C22—C18—C19—C202.8 (15)
N1—C1—C2—C31 (2)C17—C18—C19—C20175.3 (10)
C1—C2—C3—C40.9 (19)C18—C19—C20—C210.2 (16)
C2—C3—C4—C50.3 (19)C22—N5—C21—C202.4 (16)
C6—N3—C5—N1164.4 (10)Ag2—N5—C21—C20167.1 (8)
C6—N3—C5—C416.9 (17)C19—C20—C21—N52.8 (17)
C1—N1—C5—N3178.2 (11)C21—N5—C22—C180.7 (15)
Ag1—N1—C5—N35.1 (13)Ag2—N5—C22—C18169.8 (8)
C1—N1—C5—C40.5 (15)C19—C18—C22—N53.3 (15)
Ag1—N1—C5—C4176.2 (8)C17—C18—C22—N5174.8 (10)
C3—C4—C5—N3178.6 (11)O3—S1—C23—F261.0 (9)
C3—C4—C5—N10.0 (17)O1—S1—C23—F258.8 (9)
C5—N3—C6—C795.1 (14)O2—S1—C23—F2178.7 (8)
N3—C6—C7—C8170.4 (10)O3—S1—C23—F3178.7 (8)
N3—C6—C7—C116.0 (17)O1—S1—C23—F361.6 (9)
C11—C7—C8—C91.6 (16)O2—S1—C23—F358.3 (9)
C6—C7—C8—C9178.3 (11)O3—S1—C23—F159.0 (9)
C7—C8—C9—C101.4 (17)O1—S1—C23—F1178.7 (8)
C11—N2—C10—C92.0 (16)O2—S1—C23—F161.3 (9)
Ag1iii—N2—C10—C9175.4 (8)O6—S2—C24—F5177.0 (10)
C8—C9—C10—N21.6 (17)O5—S2—C24—F559.3 (11)
C10—N2—C11—C72.3 (15)O4—S2—C24—F557.4 (11)
Ag1iii—N2—C11—C7175.5 (8)O6—S2—C24—F455.7 (11)
C8—C7—C11—N22.1 (16)O5—S2—C24—F4179.3 (9)
C6—C7—C11—N2178.7 (11)O4—S2—C24—F464.0 (10)
C16—N4—C12—C130.5 (15)O6—S2—C24—F660.9 (10)
Ag2iv—N4—C12—C13177.3 (9)O5—S2—C24—F662.8 (10)
N4—C12—C13—C141.1 (17)O4—S2—C24—F6179.5 (8)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O40.882.203.021 (12)156
N6—H6···O2iv0.882.423.159 (12)142
C1—H1···O10.952.563.389 (16)146
C6—H6A···F6v0.992.553.282 (15)131
C9—H9···O3vi0.952.443.329 (14)156
C10—H10···O1iii0.952.573.373 (14)142
C12—H12···O4vii0.952.513.331 (15)145
C17—H17A···O3iv0.992.423.186 (14)134
C21—H21···F6i0.952.543.325 (14)140
Symmetry codes: (i) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x, y1/2, z+1/2; (v) x, y+3/2, z+1/2; (vi) x+1, y+3/2, z+1/2; (vii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Ag(C11H11N3)](CF3O3S)
Mr442.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)14.0965 (10), 10.4007 (7), 20.6593 (15)
β (°) 102.994 (1)
V3)2951.4 (4)
Z8
Radiation typeMo Kα
µ (mm1)1.56
Crystal size (mm)0.30 × 0.25 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.652, 0.697
No. of measured, independent and
observed [I > 2σ(I)] reflections
16169, 5797, 4479
Rint0.047
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.088, 0.238, 1.09
No. of reflections5797
No. of parameters415
No. of restraints6
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.1255P)2 + 38.027P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.70, 1.89

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O40.882.203.021 (12)156
N6—H6···O2i0.882.423.159 (12)142
C1—H1···O10.952.563.389 (16)146
C6—H6A···F6ii0.992.553.282 (15)131
C9—H9···O3iii0.952.443.329 (14)156
C10—H10···O1iv0.952.573.373 (14)142
C12—H12···O4v0.952.513.331 (15)145
C17—H17A···O3i0.992.423.186 (14)134
C21—H21···F6vi0.952.543.325 (14)140
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x+1, y+3/2, z+1/2; (iv) x+1, y1/2, z+1/2; (v) x1, y, z; (vi) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by NRF (2010–0022675 and 2012R1A4A1027750) projects.

References

First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Germany.  Google Scholar
First citationBruker. (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFoxon, S. P., Walter, O. & Schindler, S. (2002). Eur. J. Inorg. Chem. pp. 111–121.  CSD CrossRef Google Scholar
First citationLee, S., Park, S., Kang, Y., Moon, S.-H., Lee, S. S. & Park, K.-M. (2008). Bull. Korean Chem. Soc. 29, 1811–1814.  CAS Google Scholar
First citationLeong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688–764.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Z.-Y., Deng, Z.-P., Huo, L.-H., Zhao, H. & Gao, S. (2013). Inorg. Chem. 52, 5914–5923.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds