metal-organic compounds
(3-Acetyl-4-methyl-1H-pyrazol-1-ide-5-carboxylato)bis(1,10-phenanthroline)nickel(II) 3.5-hydrate
aDepartment of Chemistry, Kiev National Taras Shevchenko University, Volodymyrska Street 64, 01601 Kiev, Ukraine, bFaculty of Chemistry, University of Wrocław, F. Joliot-Curie Street 14, 50-383 Wrocław, Poland, and cDepartment of Chemistry, Kyiv National University of Construction and Architecture, Povitroflotsky Avenue 31, 03680 Kiev, Ukraine
*Correspondence e-mail: tiskenderov@ukr.net
The title compound, [Ni(C7H6N2O3)(C12H8N2)2]·3.5H2O, crystallizes as a neutral mononuclear complex with 3.5 solvent water molecules. One of the water molecules lies on an inversion centre, so that its H atoms are disordered over two sites. The coordination environment of NiII has a slightly distorted octahedral geometry, which is formed by one O and five N atoms belonging to the N,O-chelating pyrazol-1-ide-5-carboxylate and two N,N′-chelating phenanthroline molecules. In the crystal, O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds involving the solvent water molecules and pyrazole-5-carboxylate ligands form layers parallel to the ab plane. These layers are linked further via weak π–π interactions between two adjacent phenanthroline molecules, with centroid-to-centroid distances in the range 3.886 (2)–4.018 (1) Å, together with C—H⋯π contacts, forming a three-dimensional network.
Related literature
The work presented here continues studies of complexes based on pyrazolate ligands with transition metals, see: Klingele et al. (2009); Malinkin et al. (2009, 2012a,b,c); Ng et al. (2011); Penkova et al. (2008, 2009); Meyer & Pritzkow (2000); Bauer-Siebenlist et al. (2005); Świątek-Kozłowska et al. (2000). For related structures, see: Zhong et al. (2009); Zheng et al. (2009); Bouchene et al. (2013); Fang & Wang (2010); Fritsky et al. (2004, 2006); Kanderal et al. (2005); Moroz et al. (2010). For the starting material, see: Sachse et al. (2008).
Experimental
Crystal data
|
|
Data collection: COLLECT (Nonius, 2000); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: WinGX (Farrugia, 2012); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536813017194/sj5334sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813017194/sj5334Isup2.hkl
The compound was prepared by addition of 4 ml of a methanolic solution containing 0.0360 g (0.2 mmol) of phenanthroline and 0.0366 g (0.1 mmol) Ni(ClO4)2.6H2O to a mixture containing 0.0167 g (0.1 mmol) L (Sachse et al., 2008) and 0.2 ml of aqueous NaOH solution (0.1 M) in 5 ml methanol.
Light-green crystals appeared after several days. Yield: 0.0227 g (35%). Elemental analysis calc. (%) for C31H29N6NiO6.5: C 57.38; H 4.47; N 12.96; found: C 57.22; H 4.30; N 13.05.
The OH and NH hydrogen atoms were located from the difference Fourier map, and their positional and isotropic thermal parameters were included into the further stages of
The C—H hydrogen atoms were positioned geometrically and were constrained to ride on their parent atoms, with C—H = 0.95–0.97 Å, and Uiso = 1.2–1.5 Ueq(parent atom).Large value of ratio Ueq(max)/Ueq(min) for O6 and O7 is caused by a slight disorder of the atoms. For this reason a command 'ISOR' was applied as a weak restraint.
The bridging nature of pyrazolate provides the possibility to bring metal ions into close proximity, which results in arrays with interesting magnetic and catalytic properties (Klingele et al., 2009; Malinkin et al., 2012b; Ng et al., 2011). Therefore, research focused on pyrazolate complexes with higher nuclearity is of special interest in the field of supramolecular and bioinorganic chemistry (Penkova et al., 2008, 2009; Meyer & Pritzkow, 2000; Bauer-Siebenlist et al., 2005). Mononuclear pyrazolate-based complexes bearing non-coordinated donor groups can potentially be used as building blocks for the synthesis of discrete clusters as well as extended frameworks that offer a wide range of possible applications. On the other hand, phenanthroline is often used in the synthesis of discrete polynuclear complexes in order to prevent formation of coordination polymers by blocking a certain number of vacant sites in the coordination sphere of a metal ion (Fritsky et al., 2004, 2006). Herein we report the synthesis and
of the title compound, (I), as a continuation of our earlier work devoted to complexes based on non-symmetrical pyrazole ligands (Penkova et al., 2008; Malinkin et al., 2012a,b), in particular, 3-acetyl-4-methyl-1H-pyrazole-5 carboxylic acid (Malinkin et al., 2009, 2012c).As shown in Figure 1, the NiII ion is coordinated by one pyrazolate ligand via N,O-chelating groups and two N,N-chelating phenanthroline molecules forming a slightly distorted octahedral coordination environment. The Ni—Npz, Ni—Nphen and Ni—O distances are consistent with the reported data for related complexes (Fang & Wang, 2010; Zheng et al., 2009; Zhong et al., 2009; Bouchene et al., 2013).
The coordinated pyrazolate ligand exhibits C—C, C—N, N—N bond lengths which are normal for bridging pyrazolate rings (Penkova et al., 2008; Malinkin et al., 2012a,b; Świątek-Kozłowska et al., 2000). The C—O bond lengths in the deprotonated carboxylic groups differs significantly (1.239 (2) and 1.292 (2) Å) which is typical for monodentate coordinated carboxylates (Malinkin et al., 2012a,b). Also the C—N and C—C bond lengths in the phenanthroline ligand are similar to those separations observed in other 2-substituted pyridine derivatives (Kanderal et al., 2005; Moroz et al., 2010).
In the crystal packing the complex molecules are associated via intermolecular hydrogen bonds (Table 1) that involve O—H and N—H interactions between the donor atoms of pyrazolate ligand and solvate water molecules forming layers which are parallel to the xy plane (Fig. 2). In addition layers are stabilized by a weak π–π interactions between phenanthroline moieties with intercentroid distances of 4.018 (1) Å. Further complex species are united into three-dimensional motif through a π–π interactions found between two adjacent phenanthroline molecules belonging to the different layers (intercentroid distances 3.886 (2) and 3.950 (2) Å) and a C—H(phenanthroline)···π(pyrazole) contacts (the shortest H—centroid separation is around 2.77 Å).
The work presented here continues studies of complexes based on pyrazolate ligands with transition metals, see: Klingele et al. (2009); Malinkin et al. (2009, 2012a,b,c); Ng et al. (2011); Penkova et al. (2008, 2009); Meyer & Pritzkow (2000); Bauer-Siebenlist et al. (2005); Świątek-Kozłowska et al. (2000). For related structures, see: Zhong et al. (2009); Zheng et al. (2009); Bouchene et al. (2013); Fang & Wang (2010); Fritsky et al. (2004, 2006); Kanderal et al. (2005); Moroz et al. (2010). For the starting material, see: Sachse et al. (2008).
Data collection: COLLECT (Nonius, 2000); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: WinGX (Farrugia, 2012); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 40% probability level. | |
Fig. 2. A portion of the packing, viewed down the y axis. Intermolecular hydrogen bonds link the molecules into a two-dimensional network. Hydrogen bonds and π-interactions are shown as red and black dashed lines, respectively. [Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) -x + 1, -y + 2, -z + 2; (iii) -x + 1, -y + 1, -z + 1.] |
[Ni(C7H6N2O3)(C12H8N2)2]·3.5H2O | Z = 2 |
Mr = 648.29 | F(000) = 674 |
Triclinic, P1 | Dx = 1.452 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.865 (3) Å | Cell parameters from 11133 reflections |
b = 11.659 (4) Å | θ = 3.4–36.5° |
c = 13.561 (5) Å | µ = 0.71 mm−1 |
α = 91.91 (3)° | T = 170 K |
β = 98.85 (3)° | Block, light green |
γ = 105.20 (4)° | 0.23 × 0.18 × 0.11 mm |
V = 1482.8 (9) Å3 |
Nonius KappaCCD diffractometer | 6830 independent reflections |
Radiation source: fine-focus sealed tube | 3040 reflections with I > 2σ(I) |
Horizontally mounted graphite crystal monochromator | Rint = 0.070 |
Detector resolution: 9 pixels mm-1 | θmax = 28.6°, θmin = 3.0° |
φ scans and ω scans with κ offset | h = −12→12 |
Absorption correction: numerical (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | k = −15→15 |
Tmin = 0.857, Tmax = 0.929 | l = −18→18 |
12624 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.062 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.153 | H-atom parameters constrained |
S = 0.85 | w = 1/[σ2(Fo2) + (0.0675P)2] where P = (Fo2 + 2Fc2)/3 |
6830 reflections | (Δ/σ)max = 0.001 |
405 parameters | Δρmax = 1.12 e Å−3 |
13 restraints | Δρmin = −0.59 e Å−3 |
[Ni(C7H6N2O3)(C12H8N2)2]·3.5H2O | γ = 105.20 (4)° |
Mr = 648.29 | V = 1482.8 (9) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.865 (3) Å | Mo Kα radiation |
b = 11.659 (4) Å | µ = 0.71 mm−1 |
c = 13.561 (5) Å | T = 170 K |
α = 91.91 (3)° | 0.23 × 0.18 × 0.11 mm |
β = 98.85 (3)° |
Nonius KappaCCD diffractometer | 6830 independent reflections |
Absorption correction: numerical (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | 3040 reflections with I > 2σ(I) |
Tmin = 0.857, Tmax = 0.929 | Rint = 0.070 |
12624 measured reflections |
R[F2 > 2σ(F2)] = 0.062 | 13 restraints |
wR(F2) = 0.153 | H-atom parameters constrained |
S = 0.85 | Δρmax = 1.12 e Å−3 |
6830 reflections | Δρmin = −0.59 e Å−3 |
405 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1 | 0.6503 (4) | 0.6632 (3) | 0.7897 (2) | 0.0294 (9) | |
N2 | 0.5838 (4) | 0.5594 (3) | 0.8208 (2) | 0.0322 (10) | |
N3 | 0.7221 (4) | 0.6920 (3) | 0.5843 (3) | 0.0331 (10) | |
N4 | 0.8913 (4) | 0.5870 (3) | 0.6988 (2) | 0.0303 (9) | |
N5 | 0.9485 (4) | 0.7889 (3) | 0.8732 (2) | 0.0293 (9) | |
N6 | 1.0125 (4) | 0.8544 (3) | 0.6950 (2) | 0.0299 (9) | |
O1 | 0.5691 (4) | 0.9471 (3) | 0.7919 (2) | 0.0416 (9) | |
O2 | 0.7478 (3) | 0.8848 (3) | 0.7411 (2) | 0.0318 (8) | |
O3 | 0.2663 (4) | 0.4867 (3) | 0.9303 (3) | 0.0518 (10) | |
Ni1 | 0.82850 (7) | 0.73904 (5) | 0.73104 (4) | 0.0312 (2) | |
C1 | 0.6312 (6) | 0.8686 (4) | 0.7797 (3) | 0.0316 (12) | |
C2 | 0.5759 (5) | 0.7458 (4) | 0.8088 (3) | 0.0315 (11) | |
C3 | 0.4603 (5) | 0.6920 (4) | 0.8544 (3) | 0.0332 (12) | |
C4 | 0.4690 (5) | 0.5759 (4) | 0.8588 (3) | 0.0287 (11) | |
C5 | 0.3683 (6) | 0.4731 (4) | 0.8924 (3) | 0.0365 (13) | |
C6 | 0.3883 (6) | 0.3506 (4) | 0.8784 (4) | 0.0508 (15) | |
H6A | 0.4691 | 0.3442 | 0.9250 | 0.076* | |
H6B | 0.4038 | 0.3372 | 0.8113 | 0.076* | |
H6C | 0.3045 | 0.2922 | 0.8898 | 0.076* | |
C7 | 0.3526 (5) | 0.7476 (4) | 0.8889 (4) | 0.0431 (13) | |
H7A | 0.3621 | 0.7487 | 0.9605 | 0.065* | |
H7B | 0.2584 | 0.7018 | 0.8592 | 0.065* | |
H7C | 0.3686 | 0.8277 | 0.8691 | 0.065* | |
C8 | 0.6363 (5) | 0.7446 (4) | 0.5314 (3) | 0.0383 (13) | |
H8 | 0.6268 | 0.8159 | 0.5584 | 0.046* | |
C9 | 0.5574 (5) | 0.6988 (5) | 0.4354 (3) | 0.0458 (14) | |
H9 | 0.4957 | 0.7376 | 0.4009 | 0.055* | |
C10 | 0.5754 (6) | 0.5954 (5) | 0.3951 (3) | 0.0482 (16) | |
H10 | 0.5254 | 0.5635 | 0.3321 | 0.058* | |
C11 | 0.6679 (5) | 0.5375 (4) | 0.4475 (3) | 0.0382 (13) | |
C12 | 0.6942 (6) | 0.4303 (5) | 0.4122 (4) | 0.0501 (16) | |
H12 | 0.6486 | 0.3956 | 0.3489 | 0.060* | |
C13 | 0.7818 (6) | 0.3779 (4) | 0.4666 (4) | 0.0483 (15) | |
H13 | 0.7965 | 0.3083 | 0.4404 | 0.058* | |
C14 | 0.8553 (6) | 0.4280 (4) | 0.5668 (3) | 0.0404 (14) | |
C15 | 0.9472 (6) | 0.3781 (4) | 0.6280 (4) | 0.0462 (14) | |
H15 | 0.9663 | 0.3088 | 0.6052 | 0.055* | |
C16 | 1.0106 (5) | 0.4308 (4) | 0.7228 (4) | 0.0425 (13) | |
H16 | 1.0728 | 0.3985 | 0.7644 | 0.051* | |
C17 | 0.9775 (5) | 0.5347 (4) | 0.7536 (4) | 0.0382 (13) | |
H17 | 1.0194 | 0.5697 | 0.8174 | 0.046* | |
C18 | 0.7407 (5) | 0.5897 (4) | 0.5443 (3) | 0.0318 (12) | |
C19 | 0.8312 (5) | 0.5333 (4) | 0.6038 (3) | 0.0329 (12) | |
C20 | 0.9158 (5) | 0.7544 (4) | 0.9607 (3) | 0.0348 (12) | |
H20 | 0.8343 | 0.6925 | 0.9614 | 0.042* | |
C21 | 1.0000 (5) | 0.8078 (4) | 1.0528 (3) | 0.0360 (12) | |
H21 | 0.9734 | 0.7815 | 1.1128 | 0.043* | |
C22 | 1.1195 (5) | 0.8975 (4) | 1.0534 (3) | 0.0331 (12) | |
H22 | 1.1747 | 0.9339 | 1.1138 | 0.040* | |
C23 | 1.1596 (5) | 0.9353 (4) | 0.9623 (3) | 0.0299 (11) | |
C24 | 1.2904 (5) | 1.0252 (4) | 0.9547 (3) | 0.0367 (12) | |
H24 | 1.3502 | 1.0638 | 1.0128 | 0.044* | |
C25 | 1.3267 (5) | 1.0535 (4) | 0.8642 (3) | 0.0390 (13) | |
H25 | 1.4124 | 1.1094 | 0.8612 | 0.047* | |
C26 | 1.2346 (5) | 0.9984 (4) | 0.7734 (3) | 0.0333 (12) | |
C27 | 1.2673 (6) | 1.0234 (4) | 0.6772 (3) | 0.0456 (14) | |
H27 | 1.3521 | 1.0784 | 0.6704 | 0.055* | |
C28 | 1.1733 (6) | 0.9662 (4) | 0.5937 (4) | 0.0477 (15) | |
H28 | 1.1940 | 0.9816 | 0.5300 | 0.057* | |
C29 | 1.0464 (5) | 0.8846 (4) | 0.6058 (3) | 0.0373 (12) | |
H29 | 0.9819 | 0.8492 | 0.5487 | 0.045* | |
C30 | 1.0704 (5) | 0.8775 (3) | 0.8739 (3) | 0.0240 (10) | |
C31 | 1.1071 (5) | 0.9121 (4) | 0.7786 (3) | 0.0284 (11) | |
O4 | 0.2548 (5) | 0.6130 (4) | 1.1314 (3) | 0.0849 (15) | |
H4A | 0.3056 | 0.6009 | 1.0797 | 0.127* | |
H4B | 0.2955 | 0.5559 | 1.1627 | 0.127* | |
O5 | 0.6423 (4) | 1.1780 (3) | 0.7310 (3) | 0.0707 (13) | |
H5A | 0.6793 | 1.2428 | 0.7689 | 0.106* | |
H5B | 0.5979 | 1.1190 | 0.7654 | 0.106* | |
O6 | 0.8621 (6) | 1.0978 (3) | 0.6534 (3) | 0.1067 (19) | |
H6D | 0.8036 | 1.1361 | 0.6718 | 0.160* | |
H6E | 0.8406 | 1.0267 | 0.6755 | 0.160* | |
O7 | 0.0000 | 0.5000 | 1.0000 | 0.383 (10) | |
H7D | 0.0556 | 0.4810 | 0.9600 | 0.575* | 0.50 |
H7E | 0.0563 | 0.5411 | 1.0543 | 0.575* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.040 (2) | 0.0185 (19) | 0.0159 (17) | −0.0093 (18) | −0.0078 (16) | −0.0005 (14) |
N2 | 0.046 (3) | 0.020 (2) | 0.0188 (18) | −0.0036 (19) | −0.0079 (18) | 0.0005 (15) |
N3 | 0.043 (3) | 0.023 (2) | 0.027 (2) | −0.0004 (19) | 0.0018 (19) | 0.0016 (16) |
N4 | 0.041 (3) | 0.021 (2) | 0.0210 (18) | −0.0037 (18) | 0.0042 (17) | 0.0008 (15) |
N5 | 0.040 (3) | 0.0186 (19) | 0.0217 (18) | −0.0043 (17) | 0.0037 (17) | −0.0003 (15) |
N6 | 0.040 (2) | 0.023 (2) | 0.0198 (18) | 0.0001 (18) | −0.0009 (17) | −0.0015 (15) |
O1 | 0.054 (2) | 0.0216 (18) | 0.045 (2) | 0.0063 (17) | 0.0017 (17) | 0.0011 (14) |
O2 | 0.035 (2) | 0.0276 (18) | 0.0281 (17) | 0.0016 (15) | 0.0052 (15) | 0.0003 (13) |
O3 | 0.054 (3) | 0.043 (2) | 0.053 (2) | −0.0003 (19) | 0.015 (2) | 0.0153 (17) |
Ni1 | 0.0433 (4) | 0.0227 (3) | 0.0173 (3) | −0.0043 (3) | −0.0027 (2) | −0.0026 (2) |
C1 | 0.045 (3) | 0.023 (3) | 0.021 (2) | 0.005 (2) | −0.004 (2) | 0.0005 (19) |
C2 | 0.042 (3) | 0.023 (2) | 0.023 (2) | 0.003 (2) | −0.004 (2) | −0.0050 (18) |
C3 | 0.043 (3) | 0.025 (3) | 0.022 (2) | 0.001 (2) | −0.009 (2) | 0.0006 (19) |
C4 | 0.032 (3) | 0.024 (2) | 0.026 (2) | 0.004 (2) | −0.002 (2) | −0.0038 (18) |
C5 | 0.044 (3) | 0.032 (3) | 0.026 (2) | 0.001 (2) | 0.001 (2) | 0.007 (2) |
C6 | 0.068 (4) | 0.026 (3) | 0.044 (3) | −0.012 (3) | 0.008 (3) | 0.003 (2) |
C7 | 0.048 (3) | 0.029 (3) | 0.051 (3) | 0.007 (3) | 0.008 (3) | 0.007 (2) |
C8 | 0.046 (3) | 0.034 (3) | 0.027 (2) | −0.004 (2) | 0.007 (2) | 0.003 (2) |
C9 | 0.047 (3) | 0.048 (3) | 0.028 (2) | −0.007 (3) | −0.004 (2) | 0.005 (2) |
C10 | 0.053 (4) | 0.053 (3) | 0.018 (2) | −0.018 (3) | −0.002 (2) | 0.001 (2) |
C11 | 0.045 (3) | 0.036 (3) | 0.022 (2) | −0.010 (2) | 0.007 (2) | −0.005 (2) |
C12 | 0.060 (4) | 0.043 (3) | 0.031 (3) | −0.016 (3) | 0.010 (3) | −0.012 (2) |
C13 | 0.062 (4) | 0.031 (3) | 0.041 (3) | −0.014 (3) | 0.023 (3) | −0.011 (2) |
C14 | 0.054 (4) | 0.029 (3) | 0.032 (3) | −0.004 (3) | 0.016 (3) | −0.002 (2) |
C15 | 0.051 (4) | 0.027 (3) | 0.056 (3) | −0.004 (3) | 0.025 (3) | −0.004 (2) |
C16 | 0.046 (3) | 0.033 (3) | 0.051 (3) | 0.011 (3) | 0.014 (3) | 0.009 (2) |
C17 | 0.042 (3) | 0.030 (3) | 0.036 (3) | 0.000 (2) | 0.005 (2) | 0.002 (2) |
C18 | 0.040 (3) | 0.025 (2) | 0.022 (2) | −0.008 (2) | 0.005 (2) | −0.0001 (19) |
C19 | 0.039 (3) | 0.025 (2) | 0.028 (2) | −0.008 (2) | 0.014 (2) | −0.0038 (19) |
C20 | 0.041 (3) | 0.030 (3) | 0.023 (2) | −0.006 (2) | −0.003 (2) | 0.0000 (19) |
C21 | 0.047 (3) | 0.029 (3) | 0.024 (2) | 0.000 (2) | 0.001 (2) | −0.0022 (19) |
C22 | 0.042 (3) | 0.028 (3) | 0.022 (2) | 0.005 (2) | −0.006 (2) | −0.0061 (19) |
C23 | 0.037 (3) | 0.020 (2) | 0.027 (2) | 0.004 (2) | −0.001 (2) | −0.0056 (18) |
C24 | 0.040 (3) | 0.024 (2) | 0.036 (3) | −0.005 (2) | −0.001 (2) | −0.006 (2) |
C25 | 0.043 (3) | 0.021 (2) | 0.044 (3) | −0.003 (2) | 0.002 (2) | −0.002 (2) |
C26 | 0.041 (3) | 0.023 (2) | 0.030 (2) | −0.002 (2) | 0.005 (2) | 0.0035 (19) |
C27 | 0.051 (4) | 0.035 (3) | 0.042 (3) | −0.006 (3) | 0.010 (3) | 0.004 (2) |
C28 | 0.059 (4) | 0.046 (3) | 0.030 (3) | −0.002 (3) | 0.010 (3) | 0.010 (2) |
C29 | 0.045 (3) | 0.037 (3) | 0.025 (2) | 0.002 (2) | 0.007 (2) | 0.006 (2) |
C30 | 0.031 (3) | 0.015 (2) | 0.023 (2) | 0.0038 (19) | 0.0004 (19) | −0.0037 (17) |
C31 | 0.036 (3) | 0.018 (2) | 0.024 (2) | −0.001 (2) | 0.001 (2) | 0.0013 (17) |
O4 | 0.101 (4) | 0.065 (3) | 0.118 (4) | 0.042 (3) | 0.065 (3) | 0.054 (3) |
O5 | 0.067 (3) | 0.044 (2) | 0.093 (3) | 0.008 (2) | −0.002 (2) | 0.030 (2) |
O6 | 0.205 (6) | 0.043 (3) | 0.097 (3) | 0.033 (3) | 0.098 (4) | 0.027 (2) |
O7 | 0.51 (2) | 0.397 (17) | 0.303 (16) | 0.246 (16) | 0.044 (14) | 0.047 (13) |
N1—N2 | 1.333 (4) | C12—H12 | 0.9300 |
N1—Ni1 | 2.041 (4) | C12—C13 | 1.333 (7) |
N1—C2 | 1.394 (6) | C13—H13 | 0.9300 |
N2—C4 | 1.368 (6) | C13—C14 | 1.461 (6) |
N3—Ni1 | 2.085 (4) | C14—C15 | 1.387 (7) |
N3—C8 | 1.312 (6) | C14—C19 | 1.401 (6) |
N3—C18 | 1.361 (5) | C15—H15 | 0.9300 |
N4—Ni1 | 2.080 (4) | C15—C16 | 1.386 (7) |
N4—C17 | 1.324 (6) | C16—H16 | 0.9300 |
N4—C19 | 1.386 (5) | C16—C17 | 1.401 (6) |
N5—Ni1 | 2.078 (3) | C17—H17 | 0.9300 |
N5—C20 | 1.324 (5) | C18—C19 | 1.415 (7) |
N5—C30 | 1.363 (5) | C20—H20 | 0.9300 |
N6—Ni1 | 2.093 (4) | C20—C21 | 1.413 (5) |
N6—C29 | 1.337 (5) | C21—H21 | 0.9300 |
N6—C31 | 1.379 (5) | C21—C22 | 1.355 (6) |
O1—C1 | 1.247 (5) | C22—H22 | 0.9300 |
O2—Ni1 | 2.066 (3) | C22—C23 | 1.404 (6) |
O2—C1 | 1.308 (6) | C23—C24 | 1.453 (6) |
O3—C5 | 1.240 (6) | C23—C30 | 1.406 (5) |
C1—C2 | 1.482 (6) | C24—H24 | 0.9300 |
C2—C3 | 1.395 (6) | C24—C25 | 1.358 (6) |
C3—C4 | 1.382 (6) | C25—H25 | 0.9300 |
C3—C7 | 1.503 (7) | C25—C26 | 1.433 (6) |
C4—C5 | 1.477 (6) | C26—C27 | 1.413 (6) |
C5—C6 | 1.502 (7) | C26—C31 | 1.403 (6) |
C6—H6A | 0.9600 | C27—H27 | 0.9300 |
C6—H6B | 0.9600 | C27—C28 | 1.374 (6) |
C6—H6C | 0.9600 | C28—H28 | 0.9300 |
C7—H7A | 0.9600 | C28—C29 | 1.396 (6) |
C7—H7B | 0.9600 | C29—H29 | 0.9300 |
C7—H7C | 0.9600 | C30—C31 | 1.438 (6) |
C8—H8 | 0.9300 | O4—H4A | 0.9495 |
C8—C9 | 1.418 (6) | O4—H4B | 0.9445 |
C9—H9 | 0.9300 | O5—H5A | 0.8599 |
C9—C10 | 1.371 (7) | O5—H5B | 0.9001 |
C10—H10 | 0.9300 | O6—H6D | 0.8749 |
C10—C11 | 1.396 (7) | O6—H6E | 0.8751 |
C11—C12 | 1.424 (7) | O7—H7D | 0.8900 |
C11—C18 | 1.427 (5) | O7—H7E | 0.8900 |
N2—N1—Ni1 | 140.1 (3) | C10—C11—C12 | 125.1 (5) |
N2—N1—C2 | 107.9 (4) | C10—C11—C18 | 117.2 (5) |
C2—N1—Ni1 | 111.9 (3) | C12—C11—C18 | 117.7 (5) |
N1—N2—C4 | 107.4 (4) | C11—C12—H12 | 118.8 |
C8—N3—Ni1 | 127.8 (3) | C13—C12—C11 | 122.3 (5) |
C8—N3—C18 | 118.8 (4) | C13—C12—H12 | 118.8 |
C18—N3—Ni1 | 113.2 (3) | C12—C13—H13 | 119.4 |
C17—N4—Ni1 | 130.8 (3) | C12—C13—C14 | 121.2 (5) |
C17—N4—C19 | 116.1 (4) | C14—C13—H13 | 119.4 |
C19—N4—Ni1 | 113.1 (3) | C15—C14—C13 | 124.4 (5) |
C20—N5—Ni1 | 128.9 (3) | C15—C14—C19 | 117.7 (4) |
C20—N5—C30 | 117.7 (4) | C19—C14—C13 | 117.9 (5) |
C30—N5—Ni1 | 113.1 (3) | C14—C15—H15 | 119.8 |
C29—N6—Ni1 | 130.3 (3) | C16—C15—C14 | 120.4 (5) |
C29—N6—C31 | 117.0 (4) | C16—C15—H15 | 119.8 |
C31—N6—Ni1 | 112.6 (3) | C15—C16—H16 | 121.3 |
C1—O2—Ni1 | 116.3 (3) | C15—C16—C17 | 117.4 (5) |
N1—Ni1—N3 | 92.73 (14) | C17—C16—H16 | 121.3 |
N1—Ni1—N4 | 99.54 (15) | N4—C17—C16 | 125.1 (4) |
N1—Ni1—N5 | 91.36 (14) | N4—C17—H17 | 117.4 |
N1—Ni1—N6 | 165.31 (14) | C16—C17—H17 | 117.4 |
N1—Ni1—O2 | 80.47 (15) | N3—C18—C11 | 121.8 (5) |
N3—Ni1—N6 | 96.35 (14) | N3—C18—C19 | 117.6 (4) |
N4—Ni1—N3 | 79.56 (15) | C19—C18—C11 | 120.5 (4) |
N4—Ni1—N6 | 93.46 (15) | N4—C19—C14 | 123.1 (5) |
N5—Ni1—N3 | 175.80 (16) | N4—C19—C18 | 116.5 (4) |
N5—Ni1—N4 | 98.84 (15) | C14—C19—C18 | 120.4 (4) |
N5—Ni1—N6 | 79.83 (14) | N5—C20—H20 | 118.7 |
O2—Ni1—N3 | 91.62 (14) | N5—C20—C21 | 122.5 (4) |
O2—Ni1—N4 | 171.18 (13) | C21—C20—H20 | 118.7 |
O2—Ni1—N5 | 89.97 (13) | C20—C21—H21 | 120.1 |
O2—Ni1—N6 | 87.73 (14) | C22—C21—C20 | 119.7 (4) |
O1—C1—O2 | 124.6 (4) | C22—C21—H21 | 120.1 |
O1—C1—C2 | 121.4 (5) | C21—C22—H22 | 120.2 |
O2—C1—C2 | 114.0 (5) | C21—C22—C23 | 119.6 (4) |
N1—C2—C1 | 117.3 (4) | C23—C22—H22 | 120.2 |
N1—C2—C3 | 109.9 (4) | C22—C23—C24 | 123.8 (4) |
C3—C2—C1 | 132.8 (5) | C22—C23—C30 | 117.2 (4) |
C2—C3—C7 | 128.1 (4) | C30—C23—C24 | 118.8 (4) |
C4—C3—C2 | 102.8 (4) | C23—C24—H24 | 119.5 |
C4—C3—C7 | 129.1 (4) | C25—C24—C23 | 121.0 (4) |
N2—C4—C3 | 112.0 (4) | C25—C24—H24 | 119.5 |
N2—C4—C5 | 119.7 (4) | C24—C25—H25 | 119.6 |
C3—C4—C5 | 128.2 (5) | C24—C25—C26 | 120.9 (4) |
O3—C5—C4 | 120.8 (5) | C26—C25—H25 | 119.6 |
O3—C5—C6 | 119.8 (5) | C27—C26—C25 | 123.4 (4) |
C4—C5—C6 | 119.4 (5) | C31—C26—C25 | 119.3 (4) |
C5—C6—H6A | 109.5 | C31—C26—C27 | 117.3 (4) |
C5—C6—H6B | 109.5 | C26—C27—H27 | 120.1 |
C5—C6—H6C | 109.5 | C28—C27—C26 | 119.7 (5) |
H6A—C6—H6B | 109.5 | C28—C27—H27 | 120.1 |
H6A—C6—H6C | 109.5 | C27—C28—H28 | 120.5 |
H6B—C6—H6C | 109.5 | C27—C28—C29 | 119.1 (4) |
C3—C7—H7A | 109.5 | C29—C28—H28 | 120.5 |
C3—C7—H7B | 109.5 | N6—C29—C28 | 123.7 (4) |
C3—C7—H7C | 109.5 | N6—C29—H29 | 118.2 |
H7A—C7—H7B | 109.5 | C28—C29—H29 | 118.2 |
H7A—C7—H7C | 109.5 | N5—C30—C23 | 123.2 (4) |
H7B—C7—H7C | 109.5 | N5—C30—C31 | 117.3 (3) |
N3—C8—H8 | 118.2 | C23—C30—C31 | 119.5 (4) |
N3—C8—C9 | 123.6 (5) | N6—C31—C26 | 123.1 (4) |
C9—C8—H8 | 118.2 | N6—C31—C30 | 116.4 (4) |
C8—C9—H9 | 121.2 | C26—C31—C30 | 120.5 (4) |
C10—C9—C8 | 117.7 (5) | H4A—O4—H4B | 83.7 |
C10—C9—H9 | 121.2 | H5A—O5—H5B | 111.0 |
C9—C10—H10 | 119.6 | H6D—O6—H6E | 107.9 |
C9—C10—C11 | 120.8 (4) | H7D—O7—H7E | 107.6 |
C11—C10—H10 | 119.6 |
Cg is the centroid of the N1/N2/C2/C3/C4 pyrazole ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4A···O3 | 0.95 | 2.31 | 3.088 (6) | 139 |
O4—H4B···N2i | 0.94 | 2.01 | 2.906 (6) | 157 |
O5—H5A···O4ii | 0.86 | 2.02 | 2.875 (6) | 172 |
O5—H5B···O1 | 0.90 | 2.00 | 2.787 (5) | 145 |
O6—H6D···O5 | 0.87 | 2.05 | 2.895 (6) | 163 |
O6—H6E···O2 | 0.88 | 1.98 | 2.827 (5) | 163 |
O7—H7D···O3 | 0.89 | 2.16 | 2.964 (4) | 150 |
O7—H7E···O4 | 0.89 | 2.02 | 2.821 (5) | 149 |
C12—H12···Cg1iii | 0.93 | 2.77 | 3.646 (6) | 158 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y+2, −z+2; (iii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C7H6N2O3)(C12H8N2)2]·3.5H2O |
Mr | 648.29 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 170 |
a, b, c (Å) | 9.865 (3), 11.659 (4), 13.561 (5) |
α, β, γ (°) | 91.91 (3), 98.85 (3), 105.20 (4) |
V (Å3) | 1482.8 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.71 |
Crystal size (mm) | 0.23 × 0.18 × 0.11 |
Data collection | |
Diffractometer | Nonius KappaCCD |
Absorption correction | Numerical (DENZO/SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.857, 0.929 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12624, 6830, 3040 |
Rint | 0.070 |
(sin θ/λ)max (Å−1) | 0.672 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.062, 0.153, 0.85 |
No. of reflections | 6830 |
No. of parameters | 405 |
No. of restraints | 13 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.12, −0.59 |
Computer programs: COLLECT (Nonius, 2000), DENZO/SCALEPACK (Otwinowski & Minor, 1997), WinGX (Farrugia, 2012), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008).
N1—Ni1 | 2.041 (4) | N5—Ni1 | 2.078 (3) |
N3—Ni1 | 2.085 (4) | N6—Ni1 | 2.093 (4) |
N4—Ni1 | 2.080 (4) | O2—Ni1 | 2.066 (3) |
Cg is the centroid of the N1/N2/C2/C3/C4 pyrazole ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4A···O3 | 0.95 | 2.31 | 3.088 (6) | 138.7 |
O4—H4B···N2i | 0.94 | 2.01 | 2.906 (6) | 157.1 |
O5—H5A···O4ii | 0.86 | 2.02 | 2.875 (6) | 172.4 |
O5—H5B···O1 | 0.90 | 2.00 | 2.787 (5) | 144.9 |
O6—H6D···O5 | 0.87 | 2.05 | 2.895 (6) | 162.9 |
O6—H6E···O2 | 0.88 | 1.98 | 2.827 (5) | 162.6 |
O7—H7D···O3 | 0.89 | 2.16 | 2.964 (4) | 149.7 |
O7—H7E···O4 | 0.89 | 2.02 | 2.821 (5) | 149.1 |
C12—H12···Cg1iii | 0.93 | 2.77 | 3.646 (6) | 157.8 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y+2, −z+2; (iii) −x+1, −y+1, −z+1. |
Acknowledgements
The authors are grateful for financial support from the State Fund for Fundamental Research of Ukraine (grant No. F40.3/041) and the Swedish Institute (Visby Program).
References
Bauer-Siebenlist, B., Dechert, S. & Meyer, F. (2005). Chem. Eur. J. 11, 5343–5352. Web of Science PubMed CAS Google Scholar
Bouchene, R., Khadri, A., Bouacida, S., Berrah, F. & Merazig, H. (2013). Acta Cryst. E69, m309–m310. CSD CrossRef CAS IUCr Journals Google Scholar
Fang, Z. & Wang, J. (2010). Acta Cryst. E66, m1285. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127. Web of Science CSD CrossRef Google Scholar
Fritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Y. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746–3752. Web of Science CSD CrossRef CAS Google Scholar
Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437. Web of Science CrossRef PubMed Google Scholar
Klingele, J., Dechert, S. & Meyer, F. (2009). Coord. Chem. Rev. 253, 2698–2741. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Malinkin, S. O., Moroz, Y. S., Penkova, L., Haukka, M., Szebesczyk, A., Gumienna-Kontecka, E., Pavlenko, V. A., Nordlander, E., Meyer, F. & Fritsky, I. O. (2012c). Inorg. Chim. Acta, 392, 322–330. Web of Science CSD CrossRef CAS Google Scholar
Malinkin, S. O., Penkova, L., Moroz, Y. S., Bon, V., Gumienna-Kontecka, E., Pekhnyo, V. I., Meyer, F. & Fritsky, I. O. (2012b). Polyhedron, 37, 77–84. Web of Science CSD CrossRef CAS Google Scholar
Malinkin, S., Penkova, L., Moroz, Y. S., Haukka, M., Maciag, A., Gumienna-Kontecka, E., Pavlova, S., Nordlander, E., Fritsky, I. O. & Pavlenko, V. A. (2012a). Eur. J. Inorg. Chem. pp. 1639–1649. Web of Science CSD CrossRef Google Scholar
Malinkin, S., Penkova, L., Pavlenko, V. A., Haukka, M. & Fritsky, I. O. (2009). Acta Cryst. E65, m1247–m1248. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Meyer, F. & Pritzkow, H. (2000). Angew. Chem. Int. Ed. 39, 2112–2115. CrossRef CAS Google Scholar
Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750–4752. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ng, G. K.-Y., Ziller, J. W. & Borovik, A. S. (2011). Inorg. Chem. 50, 7922–7924. Web of Science CrossRef CAS PubMed Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Penkova, L., Demeshko, S., Haukka, M., Pavlenko, V. A., Meyer, F. & Fritsky, I. O. (2008). Z. Anorg. Allg. Chem. 634, 2428–2436. Web of Science CSD CrossRef CAS Google Scholar
Penkova, L. V., Maciag, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozlowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960–6971. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800–806. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068. Google Scholar
Zheng, Z.-B., Wu, R.-T., Li, J.-K. & Sun, Y.-F. (2009). J. Mol. Struct. 928, 78–84. Web of Science CSD CrossRef CAS Google Scholar
Zhong, F., Ying, S., Liu, J., Duan, D., Shi, T. & Wang, Q. (2009). Chem. Res. Appl. 21, 385–391. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The bridging nature of pyrazolate provides the possibility to bring metal ions into close proximity, which results in arrays with interesting magnetic and catalytic properties (Klingele et al., 2009; Malinkin et al., 2012b; Ng et al., 2011). Therefore, research focused on pyrazolate complexes with higher nuclearity is of special interest in the field of supramolecular and bioinorganic chemistry (Penkova et al., 2008, 2009; Meyer & Pritzkow, 2000; Bauer-Siebenlist et al., 2005). Mononuclear pyrazolate-based complexes bearing non-coordinated donor groups can potentially be used as building blocks for the synthesis of discrete clusters as well as extended frameworks that offer a wide range of possible applications. On the other hand, phenanthroline is often used in the synthesis of discrete polynuclear complexes in order to prevent formation of coordination polymers by blocking a certain number of vacant sites in the coordination sphere of a metal ion (Fritsky et al., 2004, 2006). Herein we report the synthesis and crystal structure of the title compound, (I), as a continuation of our earlier work devoted to complexes based on non-symmetrical pyrazole ligands (Penkova et al., 2008; Malinkin et al., 2012a,b), in particular, 3-acetyl-4-methyl-1H-pyrazole-5 carboxylic acid (Malinkin et al., 2009, 2012c).
As shown in Figure 1, the NiII ion is coordinated by one pyrazolate ligand via N,O-chelating groups and two N,N-chelating phenanthroline molecules forming a slightly distorted octahedral coordination environment. The Ni—Npz, Ni—Nphen and Ni—O distances are consistent with the reported data for related complexes (Fang & Wang, 2010; Zheng et al., 2009; Zhong et al., 2009; Bouchene et al., 2013).
The coordinated pyrazolate ligand exhibits C—C, C—N, N—N bond lengths which are normal for bridging pyrazolate rings (Penkova et al., 2008; Malinkin et al., 2012a,b; Świątek-Kozłowska et al., 2000). The C—O bond lengths in the deprotonated carboxylic groups differs significantly (1.239 (2) and 1.292 (2) Å) which is typical for monodentate coordinated carboxylates (Malinkin et al., 2012a,b). Also the C—N and C—C bond lengths in the phenanthroline ligand are similar to those separations observed in other 2-substituted pyridine derivatives (Kanderal et al., 2005; Moroz et al., 2010).
In the crystal packing the complex molecules are associated via intermolecular hydrogen bonds (Table 1) that involve O—H and N—H interactions between the donor atoms of pyrazolate ligand and solvate water molecules forming layers which are parallel to the xy plane (Fig. 2). In addition layers are stabilized by a weak π–π interactions between phenanthroline moieties with intercentroid distances of 4.018 (1) Å. Further complex species are united into three-dimensional motif through a π–π interactions found between two adjacent phenanthroline molecules belonging to the different layers (intercentroid distances 3.886 (2) and 3.950 (2) Å) and a C—H(phenanthroline)···π(pyrazole) contacts (the shortest H—centroid separation is around 2.77 Å).