metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3-Acetyl-4-methyl-1H-pyrazol-1-ide-5-carboxyl­ato)bis­­(1,10-phenanthroline)nickel(II) 3.5-hydrate

aDepartment of Chemistry, Kiev National Taras Shevchenko University, Volodymyrska Street 64, 01601 Kiev, Ukraine, bFaculty of Chemistry, University of Wrocław, F. Joliot-Curie Street 14, 50-383 Wrocław, Poland, and cDepartment of Chemistry, Kyiv National University of Construction and Architecture, Povitroflotsky Avenue 31, 03680 Kiev, Ukraine
*Correspondence e-mail: tiskenderov@ukr.net

(Received 14 June 2013; accepted 21 June 2013; online 26 June 2013)

The title compound, [Ni(C7H6N2O3)(C12H8N2)2]·3.5H2O, crystallizes as a neutral mononuclear complex with 3.5 solvent water mol­ecules. One of the water mol­ecules lies on an inversion centre, so that its H atoms are disordered over two sites. The coordination environment of NiII has a slightly distorted octa­hedral geometry, which is formed by one O and five N atoms belonging to the N,O-chelating pyrazol-1-ide-5-carboxyl­ate and two N,N′-chelating phenanthroline mol­ecules. In the crystal, O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds involving the solvent water mol­ecules and pyrazole-5-carboxyl­ate ligands form layers parallel to the ab plane. These layers are linked further via weak ππ inter­actions between two adjacent phenanthroline mol­ecules, with centroid-to-centroid distances in the range 3.886 (2)–4.018 (1) Å, together with C—H⋯π contacts, forming a three-dimensional network.

Related literature

The work presented here continues studies of complexes based on pyrazolate ligands with transition metals, see: Klingele et al. (2009[Klingele, J., Dechert, S. & Meyer, F. (2009). Coord. Chem. Rev. 253, 2698-2741.]); Malinkin et al. (2009[Malinkin, S., Penkova, L., Pavlenko, V. A., Haukka, M. & Fritsky, I. O. (2009). Acta Cryst. E65, m1247-m1248.], 2012a[Malinkin, S., Penkova, L., Moroz, Y. S., Haukka, M., Maciag, A., Gumienna-Kontecka, E., Pavlova, S., Nordlander, E., Fritsky, I. O. & Pavlenko, V. A. (2012a). Eur. J. Inorg. Chem. pp. 1639-1649.],b[Malinkin, S. O., Penkova, L., Moroz, Y. S., Bon, V., Gumienna-Kontecka, E., Pekhnyo, V. I., Meyer, F. & Fritsky, I. O. (2012b). Polyhedron, 37, 77-84.],c[Malinkin, S. O., Moroz, Y. S., Penkova, L., Haukka, M., Szebesczyk, A., Gumienna-Kontecka, E., Pavlenko, V. A., Nordlander, E., Meyer, F. & Fritsky, I. O. (2012c). Inorg. Chim. Acta, 392, 322-330.]); Ng et al. (2011[Ng, G. K.-Y., Ziller, J. W. & Borovik, A. S. (2011). Inorg. Chem. 50, 7922-7924.]); Penkova et al. (2008[Penkova, L., Demeshko, S., Haukka, M., Pavlenko, V. A., Meyer, F. & Fritsky, I. O. (2008). Z. Anorg. Allg. Chem. 634, 2428-2436.], 2009[Penkova, L. V., Maciag, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozlowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960-6971.]); Meyer & Pritzkow (2000[Meyer, F. & Pritzkow, H. (2000). Angew. Chem. Int. Ed. 39, 2112-2115.]); Bauer-Siebenlist et al. (2005[Bauer-Siebenlist, B., Dechert, S. & Meyer, F. (2005). Chem. Eur. J. 11, 5343-5352.]); Świątek-Kozłowska et al. (2000[Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064-4068.]). For related structures, see: Zhong et al. (2009[Zhong, F., Ying, S., Liu, J., Duan, D., Shi, T. & Wang, Q. (2009). Chem. Res. Appl. 21, 385-391.]); Zheng et al. (2009[Zheng, Z.-B., Wu, R.-T., Li, J.-K. & Sun, Y.-F. (2009). J. Mol. Struct. 928, 78-84.]); Bouchene et al. (2013[Bouchene, R., Khadri, A., Bouacida, S., Berrah, F. & Merazig, H. (2013). Acta Cryst. E69, m309-m310.]); Fang & Wang (2010[Fang, Z. & Wang, J. (2010). Acta Cryst. E66, m1285.]); Fritsky et al. (2004[Fritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Y. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746-3752.], 2006[Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125-4127.]); Kanderal et al. (2005[Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428-1437.]); Moroz et al. (2010[Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750-4752.]). For the starting material, see: Sachse et al. (2008[Sachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800-806.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C7H6N2O3)(C12H8N2)2]·3.5H2O

  • Mr = 648.29

  • Triclinic, [P \overline 1]

  • a = 9.865 (3) Å

  • b = 11.659 (4) Å

  • c = 13.561 (5) Å

  • α = 91.91 (3)°

  • β = 98.85 (3)°

  • γ = 105.20 (4)°

  • V = 1482.8 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 170 K

  • 0.23 × 0.18 × 0.11 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: numerical (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.857, Tmax = 0.929

  • 12624 measured reflections

  • 6830 independent reflections

  • 3040 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.153

  • S = 0.85

  • 6830 reflections

  • 405 parameters

  • 13 restraints

  • H-atom parameters constrained

  • Δρmax = 1.12 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Selected bond lengths (Å)

N1—Ni1 2.041 (4)
N3—Ni1 2.085 (4)
N4—Ni1 2.080 (4)
N5—Ni1 2.078 (3)
N6—Ni1 2.093 (4)
O2—Ni1 2.066 (3)

Table 2
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the N1/N2/C2/C3/C4 pyrazole ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O3 0.95 2.31 3.088 (6) 139
O4—H4B⋯N2i 0.94 2.01 2.906 (6) 157
O5—H5A⋯O4ii 0.86 2.02 2.875 (6) 172
O5—H5B⋯O1 0.90 2.00 2.787 (5) 145
O6—H6D⋯O5 0.87 2.05 2.895 (6) 163
O6—H6E⋯O2 0.88 1.98 2.827 (5) 163
O7—H7D⋯O3 0.89 2.16 2.964 (4) 150
O7—H7E⋯O4 0.89 2.02 2.821 (5) 149
C12—H12⋯Cg1iii 0.93 2.77 3.646 (6) 158
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y+2, -z+2; (iii) -x+1, -y+1, -z+1.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The bridging nature of pyrazolate provides the possibility to bring metal ions into close proximity, which results in arrays with interesting magnetic and catalytic properties (Klingele et al., 2009; Malinkin et al., 2012b; Ng et al., 2011). Therefore, research focused on pyrazolate complexes with higher nuclearity is of special interest in the field of supramolecular and bioinorganic chemistry (Penkova et al., 2008, 2009; Meyer & Pritzkow, 2000; Bauer-Siebenlist et al., 2005). Mononuclear pyrazolate-based complexes bearing non-coordinated donor groups can potentially be used as building blocks for the synthesis of discrete clusters as well as extended frameworks that offer a wide range of possible applications. On the other hand, phenanthroline is often used in the synthesis of discrete polynuclear complexes in order to prevent formation of coordination polymers by blocking a certain number of vacant sites in the coordination sphere of a metal ion (Fritsky et al., 2004, 2006). Herein we report the synthesis and crystal structure of the title compound, (I), as a continuation of our earlier work devoted to complexes based on non-symmetrical pyrazole ligands (Penkova et al., 2008; Malinkin et al., 2012a,b), in particular, 3-acetyl-4-methyl-1H-pyrazole-5 carboxylic acid (Malinkin et al., 2009, 2012c).

As shown in Figure 1, the NiII ion is coordinated by one pyrazolate ligand via N,O-chelating groups and two N,N-chelating phenanthroline molecules forming a slightly distorted octahedral coordination environment. The Ni—Npz, Ni—Nphen and Ni—O distances are consistent with the reported data for related complexes (Fang & Wang, 2010; Zheng et al., 2009; Zhong et al., 2009; Bouchene et al., 2013).

The coordinated pyrazolate ligand exhibits C—C, C—N, N—N bond lengths which are normal for bridging pyrazolate rings (Penkova et al., 2008; Malinkin et al., 2012a,b; Świątek-Kozłowska et al., 2000). The C—O bond lengths in the deprotonated carboxylic groups differs significantly (1.239 (2) and 1.292 (2) Å) which is typical for monodentate coordinated carboxylates (Malinkin et al., 2012a,b). Also the C—N and C—C bond lengths in the phenanthroline ligand are similar to those separations observed in other 2-substituted pyridine derivatives (Kanderal et al., 2005; Moroz et al., 2010).

In the crystal packing the complex molecules are associated via intermolecular hydrogen bonds (Table 1) that involve O—H and N—H interactions between the donor atoms of pyrazolate ligand and solvate water molecules forming layers which are parallel to the xy plane (Fig. 2). In addition layers are stabilized by a weak ππ interactions between phenanthroline moieties with intercentroid distances of 4.018 (1) Å. Further complex species are united into three-dimensional motif through a ππ interactions found between two adjacent phenanthroline molecules belonging to the different layers (intercentroid distances 3.886 (2) and 3.950 (2) Å) and a C—H(phenanthroline)···π(pyrazole) contacts (the shortest H—centroid separation is around 2.77 Å).

Related literature top

The work presented here continues studies of complexes based on pyrazolate ligands with transition metals, see: Klingele et al. (2009); Malinkin et al. (2009, 2012a,b,c); Ng et al. (2011); Penkova et al. (2008, 2009); Meyer & Pritzkow (2000); Bauer-Siebenlist et al. (2005); Świątek-Kozłowska et al. (2000). For related structures, see: Zhong et al. (2009); Zheng et al. (2009); Bouchene et al. (2013); Fang & Wang (2010); Fritsky et al. (2004, 2006); Kanderal et al. (2005); Moroz et al. (2010). For the starting material, see: Sachse et al. (2008).

Experimental top

The compound was prepared by addition of 4 ml of a methanolic solution containing 0.0360 g (0.2 mmol) of phenanthroline and 0.0366 g (0.1 mmol) Ni(ClO4)2.6H2O to a mixture containing 0.0167 g (0.1 mmol) L (Sachse et al., 2008) and 0.2 ml of aqueous NaOH solution (0.1 M) in 5 ml methanol.

Light-green crystals appeared after several days. Yield: 0.0227 g (35%). Elemental analysis calc. (%) for C31H29N6NiO6.5: C 57.38; H 4.47; N 12.96; found: C 57.22; H 4.30; N 13.05.

Refinement top

The OH and NH hydrogen atoms were located from the difference Fourier map, and their positional and isotropic thermal parameters were included into the further stages of refinement. The C—H hydrogen atoms were positioned geometrically and were constrained to ride on their parent atoms, with C—H = 0.95–0.97 Å, and Uiso = 1.2–1.5 Ueq(parent atom).

Large value of ratio Ueq(max)/Ueq(min) for O6 and O7 is caused by a slight disorder of the atoms. For this reason a command 'ISOR' was applied as a weak restraint.

Structure description top

The bridging nature of pyrazolate provides the possibility to bring metal ions into close proximity, which results in arrays with interesting magnetic and catalytic properties (Klingele et al., 2009; Malinkin et al., 2012b; Ng et al., 2011). Therefore, research focused on pyrazolate complexes with higher nuclearity is of special interest in the field of supramolecular and bioinorganic chemistry (Penkova et al., 2008, 2009; Meyer & Pritzkow, 2000; Bauer-Siebenlist et al., 2005). Mononuclear pyrazolate-based complexes bearing non-coordinated donor groups can potentially be used as building blocks for the synthesis of discrete clusters as well as extended frameworks that offer a wide range of possible applications. On the other hand, phenanthroline is often used in the synthesis of discrete polynuclear complexes in order to prevent formation of coordination polymers by blocking a certain number of vacant sites in the coordination sphere of a metal ion (Fritsky et al., 2004, 2006). Herein we report the synthesis and crystal structure of the title compound, (I), as a continuation of our earlier work devoted to complexes based on non-symmetrical pyrazole ligands (Penkova et al., 2008; Malinkin et al., 2012a,b), in particular, 3-acetyl-4-methyl-1H-pyrazole-5 carboxylic acid (Malinkin et al., 2009, 2012c).

As shown in Figure 1, the NiII ion is coordinated by one pyrazolate ligand via N,O-chelating groups and two N,N-chelating phenanthroline molecules forming a slightly distorted octahedral coordination environment. The Ni—Npz, Ni—Nphen and Ni—O distances are consistent with the reported data for related complexes (Fang & Wang, 2010; Zheng et al., 2009; Zhong et al., 2009; Bouchene et al., 2013).

The coordinated pyrazolate ligand exhibits C—C, C—N, N—N bond lengths which are normal for bridging pyrazolate rings (Penkova et al., 2008; Malinkin et al., 2012a,b; Świątek-Kozłowska et al., 2000). The C—O bond lengths in the deprotonated carboxylic groups differs significantly (1.239 (2) and 1.292 (2) Å) which is typical for monodentate coordinated carboxylates (Malinkin et al., 2012a,b). Also the C—N and C—C bond lengths in the phenanthroline ligand are similar to those separations observed in other 2-substituted pyridine derivatives (Kanderal et al., 2005; Moroz et al., 2010).

In the crystal packing the complex molecules are associated via intermolecular hydrogen bonds (Table 1) that involve O—H and N—H interactions between the donor atoms of pyrazolate ligand and solvate water molecules forming layers which are parallel to the xy plane (Fig. 2). In addition layers are stabilized by a weak ππ interactions between phenanthroline moieties with intercentroid distances of 4.018 (1) Å. Further complex species are united into three-dimensional motif through a ππ interactions found between two adjacent phenanthroline molecules belonging to the different layers (intercentroid distances 3.886 (2) and 3.950 (2) Å) and a C—H(phenanthroline)···π(pyrazole) contacts (the shortest H—centroid separation is around 2.77 Å).

The work presented here continues studies of complexes based on pyrazolate ligands with transition metals, see: Klingele et al. (2009); Malinkin et al. (2009, 2012a,b,c); Ng et al. (2011); Penkova et al. (2008, 2009); Meyer & Pritzkow (2000); Bauer-Siebenlist et al. (2005); Świątek-Kozłowska et al. (2000). For related structures, see: Zhong et al. (2009); Zheng et al. (2009); Bouchene et al. (2013); Fang & Wang (2010); Fritsky et al. (2004, 2006); Kanderal et al. (2005); Moroz et al. (2010). For the starting material, see: Sachse et al. (2008).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: WinGX (Farrugia, 2012); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 40% probability level.
[Figure 2] Fig. 2. A portion of the packing, viewed down the y axis. Intermolecular hydrogen bonds link the molecules into a two-dimensional network. Hydrogen bonds and π-interactions are shown as red and black dashed lines, respectively. [Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) -x + 1, -y + 2, -z + 2; (iii) -x + 1, -y + 1, -z + 1.]
(3-Acetyl-4-methyl-1H-pyrazol-1-ide-5-carboxylato)bis(1,10-phenanthroline)nickel(II) 3.5-hydrate top
Crystal data top
[Ni(C7H6N2O3)(C12H8N2)2]·3.5H2OZ = 2
Mr = 648.29F(000) = 674
Triclinic, P1Dx = 1.452 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.865 (3) ÅCell parameters from 11133 reflections
b = 11.659 (4) Åθ = 3.4–36.5°
c = 13.561 (5) ŵ = 0.71 mm1
α = 91.91 (3)°T = 170 K
β = 98.85 (3)°Block, light green
γ = 105.20 (4)°0.23 × 0.18 × 0.11 mm
V = 1482.8 (9) Å3
Data collection top
Nonius KappaCCD
diffractometer
6830 independent reflections
Radiation source: fine-focus sealed tube3040 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.070
Detector resolution: 9 pixels mm-1θmax = 28.6°, θmin = 3.0°
φ scans and ω scans with κ offseth = 1212
Absorption correction: numerical
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
k = 1515
Tmin = 0.857, Tmax = 0.929l = 1818
12624 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 0.85 w = 1/[σ2(Fo2) + (0.0675P)2]
where P = (Fo2 + 2Fc2)/3
6830 reflections(Δ/σ)max = 0.001
405 parametersΔρmax = 1.12 e Å3
13 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Ni(C7H6N2O3)(C12H8N2)2]·3.5H2Oγ = 105.20 (4)°
Mr = 648.29V = 1482.8 (9) Å3
Triclinic, P1Z = 2
a = 9.865 (3) ÅMo Kα radiation
b = 11.659 (4) ŵ = 0.71 mm1
c = 13.561 (5) ÅT = 170 K
α = 91.91 (3)°0.23 × 0.18 × 0.11 mm
β = 98.85 (3)°
Data collection top
Nonius KappaCCD
diffractometer
6830 independent reflections
Absorption correction: numerical
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
3040 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 0.929Rint = 0.070
12624 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06213 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 0.85Δρmax = 1.12 e Å3
6830 reflectionsΔρmin = 0.59 e Å3
405 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.6503 (4)0.6632 (3)0.7897 (2)0.0294 (9)
N20.5838 (4)0.5594 (3)0.8208 (2)0.0322 (10)
N30.7221 (4)0.6920 (3)0.5843 (3)0.0331 (10)
N40.8913 (4)0.5870 (3)0.6988 (2)0.0303 (9)
N50.9485 (4)0.7889 (3)0.8732 (2)0.0293 (9)
N61.0125 (4)0.8544 (3)0.6950 (2)0.0299 (9)
O10.5691 (4)0.9471 (3)0.7919 (2)0.0416 (9)
O20.7478 (3)0.8848 (3)0.7411 (2)0.0318 (8)
O30.2663 (4)0.4867 (3)0.9303 (3)0.0518 (10)
Ni10.82850 (7)0.73904 (5)0.73104 (4)0.0312 (2)
C10.6312 (6)0.8686 (4)0.7797 (3)0.0316 (12)
C20.5759 (5)0.7458 (4)0.8088 (3)0.0315 (11)
C30.4603 (5)0.6920 (4)0.8544 (3)0.0332 (12)
C40.4690 (5)0.5759 (4)0.8588 (3)0.0287 (11)
C50.3683 (6)0.4731 (4)0.8924 (3)0.0365 (13)
C60.3883 (6)0.3506 (4)0.8784 (4)0.0508 (15)
H6A0.46910.34420.92500.076*
H6B0.40380.33720.81130.076*
H6C0.30450.29220.88980.076*
C70.3526 (5)0.7476 (4)0.8889 (4)0.0431 (13)
H7A0.36210.74870.96050.065*
H7B0.25840.70180.85920.065*
H7C0.36860.82770.86910.065*
C80.6363 (5)0.7446 (4)0.5314 (3)0.0383 (13)
H80.62680.81590.55840.046*
C90.5574 (5)0.6988 (5)0.4354 (3)0.0458 (14)
H90.49570.73760.40090.055*
C100.5754 (6)0.5954 (5)0.3951 (3)0.0482 (16)
H100.52540.56350.33210.058*
C110.6679 (5)0.5375 (4)0.4475 (3)0.0382 (13)
C120.6942 (6)0.4303 (5)0.4122 (4)0.0501 (16)
H120.64860.39560.34890.060*
C130.7818 (6)0.3779 (4)0.4666 (4)0.0483 (15)
H130.79650.30830.44040.058*
C140.8553 (6)0.4280 (4)0.5668 (3)0.0404 (14)
C150.9472 (6)0.3781 (4)0.6280 (4)0.0462 (14)
H150.96630.30880.60520.055*
C161.0106 (5)0.4308 (4)0.7228 (4)0.0425 (13)
H161.07280.39850.76440.051*
C170.9775 (5)0.5347 (4)0.7536 (4)0.0382 (13)
H171.01940.56970.81740.046*
C180.7407 (5)0.5897 (4)0.5443 (3)0.0318 (12)
C190.8312 (5)0.5333 (4)0.6038 (3)0.0329 (12)
C200.9158 (5)0.7544 (4)0.9607 (3)0.0348 (12)
H200.83430.69250.96140.042*
C211.0000 (5)0.8078 (4)1.0528 (3)0.0360 (12)
H210.97340.78151.11280.043*
C221.1195 (5)0.8975 (4)1.0534 (3)0.0331 (12)
H221.17470.93391.11380.040*
C231.1596 (5)0.9353 (4)0.9623 (3)0.0299 (11)
C241.2904 (5)1.0252 (4)0.9547 (3)0.0367 (12)
H241.35021.06381.01280.044*
C251.3267 (5)1.0535 (4)0.8642 (3)0.0390 (13)
H251.41241.10940.86120.047*
C261.2346 (5)0.9984 (4)0.7734 (3)0.0333 (12)
C271.2673 (6)1.0234 (4)0.6772 (3)0.0456 (14)
H271.35211.07840.67040.055*
C281.1733 (6)0.9662 (4)0.5937 (4)0.0477 (15)
H281.19400.98160.53000.057*
C291.0464 (5)0.8846 (4)0.6058 (3)0.0373 (12)
H290.98190.84920.54870.045*
C301.0704 (5)0.8775 (3)0.8739 (3)0.0240 (10)
C311.1071 (5)0.9121 (4)0.7786 (3)0.0284 (11)
O40.2548 (5)0.6130 (4)1.1314 (3)0.0849 (15)
H4A0.30560.60091.07970.127*
H4B0.29550.55591.16270.127*
O50.6423 (4)1.1780 (3)0.7310 (3)0.0707 (13)
H5A0.67931.24280.76890.106*
H5B0.59791.11900.76540.106*
O60.8621 (6)1.0978 (3)0.6534 (3)0.1067 (19)
H6D0.80361.13610.67180.160*
H6E0.84061.02670.67550.160*
O70.00000.50001.00000.383 (10)
H7D0.05560.48100.96000.575*0.50
H7E0.05630.54111.05430.575*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.040 (2)0.0185 (19)0.0159 (17)0.0093 (18)0.0078 (16)0.0005 (14)
N20.046 (3)0.020 (2)0.0188 (18)0.0036 (19)0.0079 (18)0.0005 (15)
N30.043 (3)0.023 (2)0.027 (2)0.0004 (19)0.0018 (19)0.0016 (16)
N40.041 (3)0.021 (2)0.0210 (18)0.0037 (18)0.0042 (17)0.0008 (15)
N50.040 (3)0.0186 (19)0.0217 (18)0.0043 (17)0.0037 (17)0.0003 (15)
N60.040 (2)0.023 (2)0.0198 (18)0.0001 (18)0.0009 (17)0.0015 (15)
O10.054 (2)0.0216 (18)0.045 (2)0.0063 (17)0.0017 (17)0.0011 (14)
O20.035 (2)0.0276 (18)0.0281 (17)0.0016 (15)0.0052 (15)0.0003 (13)
O30.054 (3)0.043 (2)0.053 (2)0.0003 (19)0.015 (2)0.0153 (17)
Ni10.0433 (4)0.0227 (3)0.0173 (3)0.0043 (3)0.0027 (2)0.0026 (2)
C10.045 (3)0.023 (3)0.021 (2)0.005 (2)0.004 (2)0.0005 (19)
C20.042 (3)0.023 (2)0.023 (2)0.003 (2)0.004 (2)0.0050 (18)
C30.043 (3)0.025 (3)0.022 (2)0.001 (2)0.009 (2)0.0006 (19)
C40.032 (3)0.024 (2)0.026 (2)0.004 (2)0.002 (2)0.0038 (18)
C50.044 (3)0.032 (3)0.026 (2)0.001 (2)0.001 (2)0.007 (2)
C60.068 (4)0.026 (3)0.044 (3)0.012 (3)0.008 (3)0.003 (2)
C70.048 (3)0.029 (3)0.051 (3)0.007 (3)0.008 (3)0.007 (2)
C80.046 (3)0.034 (3)0.027 (2)0.004 (2)0.007 (2)0.003 (2)
C90.047 (3)0.048 (3)0.028 (2)0.007 (3)0.004 (2)0.005 (2)
C100.053 (4)0.053 (3)0.018 (2)0.018 (3)0.002 (2)0.001 (2)
C110.045 (3)0.036 (3)0.022 (2)0.010 (2)0.007 (2)0.005 (2)
C120.060 (4)0.043 (3)0.031 (3)0.016 (3)0.010 (3)0.012 (2)
C130.062 (4)0.031 (3)0.041 (3)0.014 (3)0.023 (3)0.011 (2)
C140.054 (4)0.029 (3)0.032 (3)0.004 (3)0.016 (3)0.002 (2)
C150.051 (4)0.027 (3)0.056 (3)0.004 (3)0.025 (3)0.004 (2)
C160.046 (3)0.033 (3)0.051 (3)0.011 (3)0.014 (3)0.009 (2)
C170.042 (3)0.030 (3)0.036 (3)0.000 (2)0.005 (2)0.002 (2)
C180.040 (3)0.025 (2)0.022 (2)0.008 (2)0.005 (2)0.0001 (19)
C190.039 (3)0.025 (2)0.028 (2)0.008 (2)0.014 (2)0.0038 (19)
C200.041 (3)0.030 (3)0.023 (2)0.006 (2)0.003 (2)0.0000 (19)
C210.047 (3)0.029 (3)0.024 (2)0.000 (2)0.001 (2)0.0022 (19)
C220.042 (3)0.028 (3)0.022 (2)0.005 (2)0.006 (2)0.0061 (19)
C230.037 (3)0.020 (2)0.027 (2)0.004 (2)0.001 (2)0.0056 (18)
C240.040 (3)0.024 (2)0.036 (3)0.005 (2)0.001 (2)0.006 (2)
C250.043 (3)0.021 (2)0.044 (3)0.003 (2)0.002 (2)0.002 (2)
C260.041 (3)0.023 (2)0.030 (2)0.002 (2)0.005 (2)0.0035 (19)
C270.051 (4)0.035 (3)0.042 (3)0.006 (3)0.010 (3)0.004 (2)
C280.059 (4)0.046 (3)0.030 (3)0.002 (3)0.010 (3)0.010 (2)
C290.045 (3)0.037 (3)0.025 (2)0.002 (2)0.007 (2)0.006 (2)
C300.031 (3)0.015 (2)0.023 (2)0.0038 (19)0.0004 (19)0.0037 (17)
C310.036 (3)0.018 (2)0.024 (2)0.001 (2)0.001 (2)0.0013 (17)
O40.101 (4)0.065 (3)0.118 (4)0.042 (3)0.065 (3)0.054 (3)
O50.067 (3)0.044 (2)0.093 (3)0.008 (2)0.002 (2)0.030 (2)
O60.205 (6)0.043 (3)0.097 (3)0.033 (3)0.098 (4)0.027 (2)
O70.51 (2)0.397 (17)0.303 (16)0.246 (16)0.044 (14)0.047 (13)
Geometric parameters (Å, º) top
N1—N21.333 (4)C12—H120.9300
N1—Ni12.041 (4)C12—C131.333 (7)
N1—C21.394 (6)C13—H130.9300
N2—C41.368 (6)C13—C141.461 (6)
N3—Ni12.085 (4)C14—C151.387 (7)
N3—C81.312 (6)C14—C191.401 (6)
N3—C181.361 (5)C15—H150.9300
N4—Ni12.080 (4)C15—C161.386 (7)
N4—C171.324 (6)C16—H160.9300
N4—C191.386 (5)C16—C171.401 (6)
N5—Ni12.078 (3)C17—H170.9300
N5—C201.324 (5)C18—C191.415 (7)
N5—C301.363 (5)C20—H200.9300
N6—Ni12.093 (4)C20—C211.413 (5)
N6—C291.337 (5)C21—H210.9300
N6—C311.379 (5)C21—C221.355 (6)
O1—C11.247 (5)C22—H220.9300
O2—Ni12.066 (3)C22—C231.404 (6)
O2—C11.308 (6)C23—C241.453 (6)
O3—C51.240 (6)C23—C301.406 (5)
C1—C21.482 (6)C24—H240.9300
C2—C31.395 (6)C24—C251.358 (6)
C3—C41.382 (6)C25—H250.9300
C3—C71.503 (7)C25—C261.433 (6)
C4—C51.477 (6)C26—C271.413 (6)
C5—C61.502 (7)C26—C311.403 (6)
C6—H6A0.9600C27—H270.9300
C6—H6B0.9600C27—C281.374 (6)
C6—H6C0.9600C28—H280.9300
C7—H7A0.9600C28—C291.396 (6)
C7—H7B0.9600C29—H290.9300
C7—H7C0.9600C30—C311.438 (6)
C8—H80.9300O4—H4A0.9495
C8—C91.418 (6)O4—H4B0.9445
C9—H90.9300O5—H5A0.8599
C9—C101.371 (7)O5—H5B0.9001
C10—H100.9300O6—H6D0.8749
C10—C111.396 (7)O6—H6E0.8751
C11—C121.424 (7)O7—H7D0.8900
C11—C181.427 (5)O7—H7E0.8900
N2—N1—Ni1140.1 (3)C10—C11—C12125.1 (5)
N2—N1—C2107.9 (4)C10—C11—C18117.2 (5)
C2—N1—Ni1111.9 (3)C12—C11—C18117.7 (5)
N1—N2—C4107.4 (4)C11—C12—H12118.8
C8—N3—Ni1127.8 (3)C13—C12—C11122.3 (5)
C8—N3—C18118.8 (4)C13—C12—H12118.8
C18—N3—Ni1113.2 (3)C12—C13—H13119.4
C17—N4—Ni1130.8 (3)C12—C13—C14121.2 (5)
C17—N4—C19116.1 (4)C14—C13—H13119.4
C19—N4—Ni1113.1 (3)C15—C14—C13124.4 (5)
C20—N5—Ni1128.9 (3)C15—C14—C19117.7 (4)
C20—N5—C30117.7 (4)C19—C14—C13117.9 (5)
C30—N5—Ni1113.1 (3)C14—C15—H15119.8
C29—N6—Ni1130.3 (3)C16—C15—C14120.4 (5)
C29—N6—C31117.0 (4)C16—C15—H15119.8
C31—N6—Ni1112.6 (3)C15—C16—H16121.3
C1—O2—Ni1116.3 (3)C15—C16—C17117.4 (5)
N1—Ni1—N392.73 (14)C17—C16—H16121.3
N1—Ni1—N499.54 (15)N4—C17—C16125.1 (4)
N1—Ni1—N591.36 (14)N4—C17—H17117.4
N1—Ni1—N6165.31 (14)C16—C17—H17117.4
N1—Ni1—O280.47 (15)N3—C18—C11121.8 (5)
N3—Ni1—N696.35 (14)N3—C18—C19117.6 (4)
N4—Ni1—N379.56 (15)C19—C18—C11120.5 (4)
N4—Ni1—N693.46 (15)N4—C19—C14123.1 (5)
N5—Ni1—N3175.80 (16)N4—C19—C18116.5 (4)
N5—Ni1—N498.84 (15)C14—C19—C18120.4 (4)
N5—Ni1—N679.83 (14)N5—C20—H20118.7
O2—Ni1—N391.62 (14)N5—C20—C21122.5 (4)
O2—Ni1—N4171.18 (13)C21—C20—H20118.7
O2—Ni1—N589.97 (13)C20—C21—H21120.1
O2—Ni1—N687.73 (14)C22—C21—C20119.7 (4)
O1—C1—O2124.6 (4)C22—C21—H21120.1
O1—C1—C2121.4 (5)C21—C22—H22120.2
O2—C1—C2114.0 (5)C21—C22—C23119.6 (4)
N1—C2—C1117.3 (4)C23—C22—H22120.2
N1—C2—C3109.9 (4)C22—C23—C24123.8 (4)
C3—C2—C1132.8 (5)C22—C23—C30117.2 (4)
C2—C3—C7128.1 (4)C30—C23—C24118.8 (4)
C4—C3—C2102.8 (4)C23—C24—H24119.5
C4—C3—C7129.1 (4)C25—C24—C23121.0 (4)
N2—C4—C3112.0 (4)C25—C24—H24119.5
N2—C4—C5119.7 (4)C24—C25—H25119.6
C3—C4—C5128.2 (5)C24—C25—C26120.9 (4)
O3—C5—C4120.8 (5)C26—C25—H25119.6
O3—C5—C6119.8 (5)C27—C26—C25123.4 (4)
C4—C5—C6119.4 (5)C31—C26—C25119.3 (4)
C5—C6—H6A109.5C31—C26—C27117.3 (4)
C5—C6—H6B109.5C26—C27—H27120.1
C5—C6—H6C109.5C28—C27—C26119.7 (5)
H6A—C6—H6B109.5C28—C27—H27120.1
H6A—C6—H6C109.5C27—C28—H28120.5
H6B—C6—H6C109.5C27—C28—C29119.1 (4)
C3—C7—H7A109.5C29—C28—H28120.5
C3—C7—H7B109.5N6—C29—C28123.7 (4)
C3—C7—H7C109.5N6—C29—H29118.2
H7A—C7—H7B109.5C28—C29—H29118.2
H7A—C7—H7C109.5N5—C30—C23123.2 (4)
H7B—C7—H7C109.5N5—C30—C31117.3 (3)
N3—C8—H8118.2C23—C30—C31119.5 (4)
N3—C8—C9123.6 (5)N6—C31—C26123.1 (4)
C9—C8—H8118.2N6—C31—C30116.4 (4)
C8—C9—H9121.2C26—C31—C30120.5 (4)
C10—C9—C8117.7 (5)H4A—O4—H4B83.7
C10—C9—H9121.2H5A—O5—H5B111.0
C9—C10—H10119.6H6D—O6—H6E107.9
C9—C10—C11120.8 (4)H7D—O7—H7E107.6
C11—C10—H10119.6
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N1/N2/C2/C3/C4 pyrazole ring.
D—H···AD—HH···AD···AD—H···A
O4—H4A···O30.952.313.088 (6)139
O4—H4B···N2i0.942.012.906 (6)157
O5—H5A···O4ii0.862.022.875 (6)172
O5—H5B···O10.902.002.787 (5)145
O6—H6D···O50.872.052.895 (6)163
O6—H6E···O20.881.982.827 (5)163
O7—H7D···O30.892.162.964 (4)150
O7—H7E···O40.892.022.821 (5)149
C12—H12···Cg1iii0.932.773.646 (6)158
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+2, z+2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C7H6N2O3)(C12H8N2)2]·3.5H2O
Mr648.29
Crystal system, space groupTriclinic, P1
Temperature (K)170
a, b, c (Å)9.865 (3), 11.659 (4), 13.561 (5)
α, β, γ (°)91.91 (3), 98.85 (3), 105.20 (4)
V3)1482.8 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.23 × 0.18 × 0.11
Data collection
DiffractometerNonius KappaCCD
Absorption correctionNumerical
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.857, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
12624, 6830, 3040
Rint0.070
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.153, 0.85
No. of reflections6830
No. of parameters405
No. of restraints13
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.12, 0.59

Computer programs: COLLECT (Nonius, 2000), DENZO/SCALEPACK (Otwinowski & Minor, 1997), WinGX (Farrugia, 2012), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008).

Selected bond lengths (Å) top
N1—Ni12.041 (4)N5—Ni12.078 (3)
N3—Ni12.085 (4)N6—Ni12.093 (4)
N4—Ni12.080 (4)O2—Ni12.066 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N1/N2/C2/C3/C4 pyrazole ring.
D—H···AD—HH···AD···AD—H···A
O4—H4A···O30.952.313.088 (6)138.7
O4—H4B···N2i0.942.012.906 (6)157.1
O5—H5A···O4ii0.862.022.875 (6)172.4
O5—H5B···O10.902.002.787 (5)144.9
O6—H6D···O50.872.052.895 (6)162.9
O6—H6E···O20.881.982.827 (5)162.6
O7—H7D···O30.892.162.964 (4)149.7
O7—H7E···O40.892.022.821 (5)149.1
C12—H12···Cg1iii0.932.773.646 (6)157.8
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+2, z+2; (iii) x+1, y+1, z+1.
 

Acknowledgements

The authors are grateful for financial support from the State Fund for Fundamental Research of Ukraine (grant No. F40.3/041) and the Swedish Institute (Visby Program).

References

First citationBauer-Siebenlist, B., Dechert, S. & Meyer, F. (2005). Chem. Eur. J. 11, 5343–5352.  Web of Science PubMed CAS Google Scholar
First citationBouchene, R., Khadri, A., Bouacida, S., Berrah, F. & Merazig, H. (2013). Acta Cryst. E69, m309–m310.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFang, Z. & Wang, J. (2010). Acta Cryst. E66, m1285.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127.  Web of Science CSD CrossRef Google Scholar
First citationFritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Y. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746–3752.  Web of Science CSD CrossRef CAS Google Scholar
First citationKanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437.  Web of Science CrossRef PubMed Google Scholar
First citationKlingele, J., Dechert, S. & Meyer, F. (2009). Coord. Chem. Rev. 253, 2698–2741.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMalinkin, S. O., Moroz, Y. S., Penkova, L., Haukka, M., Szebesczyk, A., Gumienna-Kontecka, E., Pavlenko, V. A., Nordlander, E., Meyer, F. & Fritsky, I. O. (2012c). Inorg. Chim. Acta, 392, 322–330.  Web of Science CSD CrossRef CAS Google Scholar
First citationMalinkin, S. O., Penkova, L., Moroz, Y. S., Bon, V., Gumienna-Kontecka, E., Pekhnyo, V. I., Meyer, F. & Fritsky, I. O. (2012b). Polyhedron, 37, 77–84.  Web of Science CSD CrossRef CAS Google Scholar
First citationMalinkin, S., Penkova, L., Moroz, Y. S., Haukka, M., Maciag, A., Gumienna-Kontecka, E., Pavlova, S., Nordlander, E., Fritsky, I. O. & Pavlenko, V. A. (2012a). Eur. J. Inorg. Chem. pp. 1639–1649.  Web of Science CSD CrossRef Google Scholar
First citationMalinkin, S., Penkova, L., Pavlenko, V. A., Haukka, M. & Fritsky, I. O. (2009). Acta Cryst. E65, m1247–m1248.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMeyer, F. & Pritzkow, H. (2000). Angew. Chem. Int. Ed. 39, 2112–2115.  CrossRef CAS Google Scholar
First citationMoroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750–4752.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNg, G. K.-Y., Ziller, J. W. & Borovik, A. S. (2011). Inorg. Chem. 50, 7922–7924.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPenkova, L., Demeshko, S., Haukka, M., Pavlenko, V. A., Meyer, F. & Fritsky, I. O. (2008). Z. Anorg. Allg. Chem. 634, 2428–2436.  Web of Science CSD CrossRef CAS Google Scholar
First citationPenkova, L. V., Maciag, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozlowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960–6971.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800–806.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationŚwiątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068.  Google Scholar
First citationZheng, Z.-B., Wu, R.-T., Li, J.-K. & Sun, Y.-F. (2009). J. Mol. Struct. 928, 78–84.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhong, F., Ying, S., Liu, J., Duan, D., Shi, T. & Wang, Q. (2009). Chem. Res. Appl. 21, 385–391.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds