organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 8′′-chloro-1′-methyl-2,12′′-dioxo-12′′H-di­spiro­[indoline-3,2′-pyrrolidine- 3′,6′′-indolo[2,1-b]quinazoline]-4′-carboxyl­ate

aDepartment of Physics, S.M.K. Fomra Institute of Technology, Thaiyur, Chennai 603 103, India, bOrganic Chemistry Division, CSIR Central Leather Research Institute, Adyar, Chennai 600 020, India, and cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: a_sp59@yahoo.in

(Received 7 May 2013; accepted 1 June 2013; online 8 June 2013)

In the title compound, C29H23ClN4O4, the quinazoline-indole system and the indolin-2-one system are each essentially planar, with maximum deviations from their mean planes of 0.150 (2) and 0.072 (2) Å, respectively. The central pyrrolidine ring adopts a twisted conformation on the C—C bond involving the spiro C atoms. Its mean plane forms dihedral angles of 83.37 (9) and 86.56 (8)°, respectively, with the indole rings of the indolin-2-one and quinazoline-indole systems. In the crystal, mol­ecules are linked via pairs of N—H⋯O hydrogen bonds, forming inversion dimers. The dimers are linked via C—H⋯O hydrogen bonds, forming chains propagating along [001].

Related literature

For quinazoline structures, see: Li & Feng (2009[Li, M.-J. & Feng, C.-J. (2009). Acta Cryst. E65, o2145.]); Li et al. (2010[Li, D.-L., Wu, Y., Wang, Q., He, G. & Yu, L.-T. (2010). Acta Cryst. E66, o447.]); Priya et al. (2011a[Priya, M. G. R., Srinivasan, T., Girija, K., Chandran, N. R. & Velmurugan, D. (2011a). Acta Cryst. E67, o2310.]). For the biological activity of quinazoline derivatives, see: Wolfe et al. (1990[Wolfe, J. F., Rathman, T. L., Sleevi, M. C., Campbell, J. S. A. & Greenwood, T. D. (1990). J. Med. Chem. 33, 161-166.]); Tereshima et al. (1995[Tereshima, K., Shimamura, H., Kawase, A., Tanaka, Y., Tanimura, T., Ishizuka, Y. & Sato, M. (1995). Chem. Pharm. Bull. 45, 2021-2023.]); Pandeya et al. (1999[Pandeya, S. N., Sriram, D., Nath, G. & Declera, E. (1999). Pharm. Acta Helv. 74, 11-17.]); Priya et al. (2011b[Priya, M. G. R., Zulykama, Y., Girija, K., Murugesh, S. & Perumal, P. T. (2011b). Indian J. Chem. Sect. B, 50, 98-102.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C29H23ClN4O4

  • Mr = 526.96

  • Triclinic, [P \overline 1]

  • a = 8.9341 (9) Å

  • b = 11.7697 (12) Å

  • c = 13.3828 (14) Å

  • α = 72.776 (5)°

  • β = 89.574 (5)°

  • γ = 74.995 (5)°

  • V = 1294.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker. (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]) Tmin = 0.945, Tmax = 0.963

  • 16756 measured reflections

  • 6722 independent reflections

  • 5191 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.161

  • S = 1.04

  • 6722 reflections

  • 346 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O4i 0.86 1.98 2.808 (2) 160
C20—H20C⋯O1ii 0.96 2.53 3.369 (6) 146
Symmetry codes: (i) -x+1, -y, -z; (ii) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker. (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); cell refinement: SAINT (Bruker, 2008[Bruker. (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Quinazolines are an important class of fused heterocycles with a wide range of biological activities such as anticancer (Wolfe et al., 1990), anti-inflammatory (Tereshima et al., 1995), and anti-HIV (Pandeya et al., 1999). In addition, quinazolines exhibit antibacterial and anti-fungal activities (Priya et al., 2011b).

In view of their importance and in continuation of our work on the crystal structure analysis of pyrrolidine and quinazoline derivatives, we report herein on the crystal structure of the title compound.

The molecular structure of the title molecule is illustrated in Fig. 1. The quinazoline-indole systems (N1/N2/C1-C15) and indolin-2-one system (N4/C22-C29), are essentially planar, with maximum deviations of 0.150 (2) Å for atom C1 and 0.072 (2) Å for atom C22 in the respective systems.

The central pyrrolidine ring (N3/C7/C16/C17/C22) is twisted on bond C7-C22 with puckering parameters of q2 = 0.4458 (2)Å, φ = 314.2 (2)° (Cremer & Pople, 1975). The mean plane of this ring forms dihedral angles of 83.37 (9) and 86.56 (8)° with the two indole rings (N4/C22-C29) and (N2/C1-C8), respectively. This clearly shows that the central pyrrolidine ring system and the two indole rings are almost perpendicular to one another.

In the crystal, molecules are linked via pairs of N-H···O hydrogen bonds forming inversion dimers. The dimers are linked via C-H···O hydrogen bonds forming chains propagating along the c axis direction. (Table 1).

Related literature top

For quinazoline structures, see: Li & Feng (2009); Li et al. (2010); Priya et al. (2011a). For the biological activity of quinazoline derivatives, see: Wolfe et al. (1990); Tereshima et al. (1995); Pandeya et al. (1999); Priya et al. (2011b). For ring conformations, see: Cremer & Pople (1975).

Experimental top

Isatin (0.25 mmol) , sarcosine (0.3 mmol), (E)-ethyl 2-(8-chloro-12-oxoindolo[2,1-b]quinazolin-6(12H)-ylidene)acetate (0.25 mmol) in ethanol were refluxed for 120 min. The progress of the reaction was followed by TLC. After completion, the solvent was removed under reduced pressure and the resulting crude product was subjected to column chromatography eluted with n-hexane/EtOAc (8.5:1.5). The product was recrystallised from ethanol. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of the solution of the title compound in ethanol at room temperature.

Refinement top

All the H atoms were fixed geometrically and allowed to ride on their parent C atoms: N-H = 0.86 Å, C—H = 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(N,C) for other H atoms. The positions of the methyl hydrogens were optimized rotationally.

Structure description top

Quinazolines are an important class of fused heterocycles with a wide range of biological activities such as anticancer (Wolfe et al., 1990), anti-inflammatory (Tereshima et al., 1995), and anti-HIV (Pandeya et al., 1999). In addition, quinazolines exhibit antibacterial and anti-fungal activities (Priya et al., 2011b).

In view of their importance and in continuation of our work on the crystal structure analysis of pyrrolidine and quinazoline derivatives, we report herein on the crystal structure of the title compound.

The molecular structure of the title molecule is illustrated in Fig. 1. The quinazoline-indole systems (N1/N2/C1-C15) and indolin-2-one system (N4/C22-C29), are essentially planar, with maximum deviations of 0.150 (2) Å for atom C1 and 0.072 (2) Å for atom C22 in the respective systems.

The central pyrrolidine ring (N3/C7/C16/C17/C22) is twisted on bond C7-C22 with puckering parameters of q2 = 0.4458 (2)Å, φ = 314.2 (2)° (Cremer & Pople, 1975). The mean plane of this ring forms dihedral angles of 83.37 (9) and 86.56 (8)° with the two indole rings (N4/C22-C29) and (N2/C1-C8), respectively. This clearly shows that the central pyrrolidine ring system and the two indole rings are almost perpendicular to one another.

In the crystal, molecules are linked via pairs of N-H···O hydrogen bonds forming inversion dimers. The dimers are linked via C-H···O hydrogen bonds forming chains propagating along the c axis direction. (Table 1).

For quinazoline structures, see: Li & Feng (2009); Li et al. (2010); Priya et al. (2011a). For the biological activity of quinazoline derivatives, see: Wolfe et al. (1990); Tereshima et al. (1995); Pandeya et al. (1999); Priya et al. (2011b). For ring conformations, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound, showing the N-H···O and C-H···O hydrogen bonds as dashed lines.
Ethyl 8''-chloro-1'-methyl-2,12''-dioxo-12''H-dispiro[indoline-3,2'-pyrrolidine-3',6''-indolo[2,1-b]quinazoline]-4'-carboxylate top
Crystal data top
C29H23ClN4O4Z = 2
Mr = 526.96F(000) = 548
Triclinic, P1Dx = 1.352 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9341 (9) ÅCell parameters from 6722 reflections
b = 11.7697 (12) Åθ = 1.6–29.7°
c = 13.3828 (14) ŵ = 0.19 mm1
α = 72.776 (5)°T = 293 K
β = 89.574 (5)°Block, colourless
γ = 74.995 (5)°0.30 × 0.25 × 0.20 mm
V = 1294.6 (2) Å3
Data collection top
Bruker SMART APEXII area-detector
diffractometer
6722 independent reflections
Radiation source: fine-focus sealed tube5191 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and φ scansθmax = 29.7°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.945, Tmax = 0.963k = 1616
16756 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0796P)2 + 0.4319P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
6722 reflectionsΔρmax = 0.59 e Å3
346 parametersΔρmin = 0.50 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.022 (3)
Crystal data top
C29H23ClN4O4γ = 74.995 (5)°
Mr = 526.96V = 1294.6 (2) Å3
Triclinic, P1Z = 2
a = 8.9341 (9) ÅMo Kα radiation
b = 11.7697 (12) ŵ = 0.19 mm1
c = 13.3828 (14) ÅT = 293 K
α = 72.776 (5)°0.30 × 0.25 × 0.20 mm
β = 89.574 (5)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
6722 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5191 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.963Rint = 0.028
16756 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.04Δρmax = 0.59 e Å3
6722 reflectionsΔρmin = 0.50 e Å3
346 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0433 (2)0.42790 (17)0.28795 (14)0.0474 (4)
C20.1275 (2)0.3468 (2)0.33683 (17)0.0592 (5)
H20.21810.37490.36710.071*
C30.0777 (2)0.2237 (2)0.34100 (18)0.0587 (5)
H30.13310.16790.37400.070*
C40.0570 (2)0.18699 (16)0.29445 (13)0.0429 (4)
C50.13927 (18)0.26916 (15)0.24246 (12)0.0364 (3)
C60.08974 (19)0.39168 (15)0.23894 (13)0.0411 (4)
H60.14390.44790.20480.049*
C70.28025 (17)0.20187 (13)0.19999 (12)0.0340 (3)
C80.27475 (18)0.06884 (14)0.24454 (12)0.0361 (3)
C90.0961 (3)0.04311 (19)0.33813 (18)0.0591 (5)
C100.2124 (3)0.15153 (17)0.32853 (15)0.0529 (5)
C110.3470 (2)0.13953 (15)0.27742 (13)0.0445 (4)
C120.4550 (3)0.24456 (18)0.26869 (17)0.0568 (5)
H120.54430.23710.23410.068*
C130.4304 (3)0.3585 (2)0.3106 (2)0.0713 (7)
H130.50350.42830.30490.086*
C140.2976 (4)0.3709 (2)0.3616 (2)0.0799 (8)
H140.28220.44900.38990.096*
C150.1884 (3)0.2690 (2)0.3706 (2)0.0730 (7)
H150.09890.27790.40440.088*
C160.43389 (18)0.22977 (15)0.22466 (14)0.0402 (3)
H160.52020.15960.22260.048*
C170.4423 (2)0.34102 (17)0.13268 (15)0.0472 (4)
H17A0.43130.41330.15580.057*
H17B0.54080.32450.10150.057*
C180.4471 (2)0.24906 (17)0.32997 (15)0.0485 (4)
C190.4183 (4)0.1643 (3)0.51159 (19)0.0871 (9)
H19A0.45400.08150.56010.104*
H19B0.49090.21020.51960.104*
C200.2652 (5)0.2240 (6)0.5358 (3)0.147 (2)
H20A0.23100.30650.48860.220*
H20B0.26950.22680.60670.220*
H20C0.19360.17820.52810.220*
C210.3407 (2)0.41556 (18)0.05185 (15)0.0536 (5)
H21A0.43630.36730.06840.080*
H21B0.34740.49830.06190.080*
H21C0.25660.41730.09700.080*
C220.27177 (17)0.24447 (13)0.07722 (12)0.0336 (3)
C230.38921 (18)0.14670 (14)0.03777 (13)0.0387 (3)
C240.12036 (17)0.24951 (14)0.02419 (12)0.0353 (3)
C250.02790 (19)0.32460 (17)0.01850 (14)0.0446 (4)
H250.04800.38770.04930.054*
C260.1467 (2)0.3041 (2)0.03426 (17)0.0563 (5)
H260.24740.35410.03870.068*
C270.1176 (2)0.2107 (2)0.08016 (17)0.0598 (5)
H270.19950.19730.11340.072*
C280.0317 (2)0.13666 (18)0.07758 (16)0.0526 (4)
H280.05200.07480.10970.063*
C290.14840 (19)0.15821 (15)0.02564 (13)0.0397 (3)
N10.37705 (16)0.02506 (12)0.23485 (11)0.0415 (3)
N20.13797 (17)0.06638 (13)0.29362 (12)0.0436 (3)
N30.31307 (16)0.36062 (12)0.05689 (11)0.0391 (3)
N40.30806 (16)0.10001 (13)0.01648 (12)0.0442 (3)
H40.34910.04150.04250.053*
O10.0250 (3)0.04254 (17)0.37966 (19)0.0995 (7)
O20.4841 (2)0.33332 (18)0.34553 (14)0.0815 (5)
O30.4134 (2)0.15839 (14)0.40408 (11)0.0665 (4)
O40.53071 (13)0.12214 (12)0.05120 (11)0.0489 (3)
Cl10.10529 (7)0.58059 (5)0.28817 (5)0.0708 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0454 (9)0.0461 (10)0.0500 (9)0.0007 (7)0.0045 (7)0.0236 (8)
C20.0483 (10)0.0634 (13)0.0642 (12)0.0046 (9)0.0200 (9)0.0265 (10)
C30.0527 (11)0.0557 (11)0.0689 (12)0.0159 (9)0.0245 (9)0.0201 (9)
C40.0429 (9)0.0403 (9)0.0457 (9)0.0095 (7)0.0066 (7)0.0149 (7)
C50.0353 (7)0.0385 (8)0.0375 (7)0.0075 (6)0.0037 (6)0.0165 (6)
C60.0409 (8)0.0396 (8)0.0444 (8)0.0061 (7)0.0052 (6)0.0192 (7)
C70.0311 (7)0.0305 (7)0.0425 (8)0.0064 (6)0.0032 (6)0.0159 (6)
C80.0373 (7)0.0334 (8)0.0384 (7)0.0089 (6)0.0011 (6)0.0126 (6)
C90.0665 (12)0.0476 (11)0.0668 (13)0.0257 (9)0.0176 (10)0.0143 (9)
C100.0693 (12)0.0378 (9)0.0529 (10)0.0189 (8)0.0002 (9)0.0120 (7)
C110.0527 (10)0.0350 (8)0.0450 (9)0.0100 (7)0.0102 (7)0.0124 (7)
C120.0604 (11)0.0400 (10)0.0674 (12)0.0052 (8)0.0116 (9)0.0190 (8)
C130.0839 (16)0.0370 (10)0.0862 (16)0.0048 (10)0.0139 (13)0.0183 (10)
C140.111 (2)0.0353 (11)0.0895 (17)0.0228 (12)0.0025 (15)0.0101 (10)
C150.0948 (18)0.0485 (12)0.0788 (15)0.0326 (12)0.0131 (13)0.0128 (10)
C160.0326 (7)0.0389 (8)0.0545 (9)0.0075 (6)0.0012 (6)0.0238 (7)
C170.0425 (9)0.0467 (9)0.0632 (11)0.0206 (7)0.0100 (8)0.0253 (8)
C180.0416 (9)0.0480 (10)0.0598 (11)0.0068 (7)0.0062 (7)0.0264 (8)
C190.121 (2)0.0858 (18)0.0492 (12)0.0113 (16)0.0141 (13)0.0274 (12)
C200.112 (3)0.275 (6)0.101 (3)0.081 (4)0.033 (2)0.102 (3)
C210.0618 (11)0.0452 (10)0.0564 (11)0.0203 (9)0.0184 (9)0.0143 (8)
C220.0305 (7)0.0305 (7)0.0419 (8)0.0063 (5)0.0063 (5)0.0160 (6)
C230.0360 (8)0.0351 (8)0.0468 (8)0.0059 (6)0.0074 (6)0.0186 (6)
C240.0336 (7)0.0335 (7)0.0383 (7)0.0068 (6)0.0029 (6)0.0122 (6)
C250.0372 (8)0.0463 (9)0.0495 (9)0.0040 (7)0.0027 (7)0.0197 (7)
C260.0345 (8)0.0670 (13)0.0640 (12)0.0025 (8)0.0044 (8)0.0244 (10)
C270.0472 (10)0.0687 (13)0.0668 (12)0.0156 (9)0.0106 (9)0.0255 (10)
C280.0538 (10)0.0503 (10)0.0594 (11)0.0121 (8)0.0059 (8)0.0268 (8)
C290.0401 (8)0.0360 (8)0.0429 (8)0.0072 (6)0.0003 (6)0.0144 (6)
N10.0417 (7)0.0338 (7)0.0487 (8)0.0065 (6)0.0035 (6)0.0152 (6)
N20.0445 (8)0.0369 (7)0.0501 (8)0.0116 (6)0.0087 (6)0.0139 (6)
N30.0389 (7)0.0335 (7)0.0485 (7)0.0120 (5)0.0104 (5)0.0161 (5)
N40.0410 (7)0.0406 (8)0.0554 (8)0.0021 (6)0.0024 (6)0.0287 (6)
O10.0973 (14)0.0625 (11)0.1478 (19)0.0391 (10)0.0673 (13)0.0317 (11)
O20.1052 (14)0.0883 (12)0.0827 (11)0.0511 (11)0.0076 (10)0.0514 (10)
O30.0946 (12)0.0566 (9)0.0479 (8)0.0149 (8)0.0109 (7)0.0195 (6)
O40.0335 (6)0.0490 (7)0.0715 (8)0.0064 (5)0.0110 (5)0.0337 (6)
Cl10.0664 (3)0.0550 (3)0.0940 (4)0.0023 (2)0.0119 (3)0.0436 (3)
Geometric parameters (Å, º) top
C1—C21.378 (3)C17—N31.468 (2)
C1—C61.384 (2)C17—H17A0.9700
C1—Cl11.7390 (19)C17—H17B0.9700
C2—C31.385 (3)C18—O21.195 (2)
C2—H20.9300C18—O31.322 (2)
C3—C41.379 (3)C19—C201.449 (5)
C3—H30.9300C19—O31.462 (3)
C4—C51.386 (2)C19—H19A0.9700
C4—N21.420 (2)C19—H19B0.9700
C5—C61.381 (2)C20—H20A0.9600
C5—C71.509 (2)C20—H20B0.9600
C6—H60.9300C20—H20C0.9600
C7—C81.515 (2)C21—N31.455 (2)
C7—C161.551 (2)C21—H21A0.9600
C7—C221.566 (2)C21—H21B0.9600
C8—N11.278 (2)C21—H21C0.9600
C8—N21.386 (2)C22—N31.4555 (19)
C9—O11.212 (3)C22—C241.512 (2)
C9—N21.395 (2)C22—C231.559 (2)
C9—C101.460 (3)C23—O41.2237 (19)
C10—C111.398 (3)C23—N41.344 (2)
C10—C151.402 (3)C24—C251.377 (2)
C11—C121.392 (3)C24—C291.395 (2)
C11—N11.394 (2)C25—C261.388 (3)
C12—C131.367 (3)C25—H250.9300
C12—H120.9300C26—C271.379 (3)
C13—C141.383 (4)C26—H260.9300
C13—H130.9300C27—C281.386 (3)
C14—C151.372 (4)C27—H270.9300
C14—H140.9300C28—C291.374 (2)
C15—H150.9300C28—H280.9300
C16—C181.503 (2)C29—N41.402 (2)
C16—C171.527 (2)N4—H40.8600
C16—H160.9800
C2—C1—C6122.13 (17)O2—C18—O3124.37 (19)
C2—C1—Cl1119.09 (14)O2—C18—C16125.3 (2)
C6—C1—Cl1118.78 (15)O3—C18—C16110.28 (15)
C1—C2—C3120.27 (17)C20—C19—O3110.2 (2)
C1—C2—H2119.9C20—C19—H19A109.6
C3—C2—H2119.9O3—C19—H19A109.6
C4—C3—C2117.58 (18)C20—C19—H19B109.6
C4—C3—H3121.2O3—C19—H19B109.6
C2—C3—H3121.2H19A—C19—H19B108.1
C3—C4—C5122.23 (17)C19—C20—H20A109.5
C3—C4—N2128.84 (17)C19—C20—H20B109.5
C5—C4—N2108.87 (14)H20A—C20—H20B109.5
C6—C5—C4120.00 (15)C19—C20—H20C109.5
C6—C5—C7130.09 (14)H20A—C20—H20C109.5
C4—C5—C7109.87 (14)H20B—C20—H20C109.5
C5—C6—C1117.73 (16)N3—C21—H21A109.5
C5—C6—H6121.1N3—C21—H21B109.5
C1—C6—H6121.1H21A—C21—H21B109.5
C5—C7—C8101.82 (12)N3—C21—H21C109.5
C5—C7—C16114.53 (12)H21A—C21—H21C109.5
C8—C7—C16116.11 (12)H21B—C21—H21C109.5
C5—C7—C22112.56 (12)N3—C22—C24116.72 (13)
C8—C7—C22111.93 (12)N3—C22—C23113.52 (12)
C16—C7—C22100.39 (12)C24—C22—C23101.29 (12)
N1—C8—N2125.77 (15)N3—C22—C7100.51 (11)
N1—C8—C7125.36 (14)C24—C22—C7115.11 (12)
N2—C8—C7108.82 (13)C23—C22—C7110.10 (12)
O1—C9—N2121.0 (2)O4—C23—N4126.97 (15)
O1—C9—C10126.37 (19)O4—C23—C22124.83 (14)
N2—C9—C10112.66 (17)N4—C23—C22108.14 (13)
C11—C10—C15119.5 (2)C25—C24—C29119.60 (15)
C11—C10—C9120.78 (16)C25—C24—C22131.85 (15)
C15—C10—C9119.7 (2)C29—C24—C22108.54 (13)
C12—C11—N1118.71 (18)C24—C25—C26118.58 (17)
C12—C11—C10119.41 (17)C24—C25—H25120.7
N1—C11—C10121.88 (16)C26—C25—H25120.7
C13—C12—C11120.3 (2)C27—C26—C25120.98 (17)
C13—C12—H12119.8C27—C26—H26119.5
C11—C12—H12119.8C25—C26—H26119.5
C12—C13—C14120.5 (2)C26—C27—C28121.07 (17)
C12—C13—H13119.8C26—C27—H27119.5
C14—C13—H13119.8C28—C27—H27119.5
C15—C14—C13120.5 (2)C29—C28—C27117.41 (18)
C15—C14—H14119.7C29—C28—H28121.3
C13—C14—H14119.7C27—C28—H28121.3
C14—C15—C10119.7 (2)C28—C29—C24122.30 (16)
C14—C15—H15120.2C28—C29—N4127.95 (16)
C10—C15—H15120.2C24—C29—N4109.72 (14)
C18—C16—C17113.67 (14)C8—N1—C11116.60 (15)
C18—C16—C7114.51 (14)C8—N2—C9122.30 (15)
C17—C16—C7104.53 (13)C8—N2—C4110.19 (13)
C18—C16—H16107.9C9—N2—C4127.47 (16)
C17—C16—H16107.9C21—N3—C22114.39 (13)
C7—C16—H16107.9C21—N3—C17114.30 (14)
N3—C17—C16105.79 (12)C22—N3—C17107.73 (13)
N3—C17—H17A110.6C23—N4—C29111.88 (13)
C16—C17—H17A110.6C23—N4—H4124.1
N3—C17—H17B110.6C29—N4—H4124.1
C16—C17—H17B110.6C18—O3—C19117.25 (19)
H17A—C17—H17B108.7
C6—C1—C2—C32.0 (3)C5—C7—C22—C23162.07 (12)
Cl1—C1—C2—C3177.74 (17)C8—C7—C22—C2348.09 (16)
C1—C2—C3—C40.3 (3)C16—C7—C22—C2375.70 (14)
C2—C3—C4—C51.7 (3)N3—C22—C23—O445.3 (2)
C2—C3—C4—N2175.36 (19)C24—C22—C23—O4171.30 (16)
C3—C4—C5—C62.1 (3)C7—C22—C23—O466.4 (2)
N2—C4—C5—C6175.50 (14)N3—C22—C23—N4131.88 (14)
C3—C4—C5—C7179.89 (17)C24—C22—C23—N45.93 (16)
N2—C4—C5—C72.50 (19)C7—C22—C23—N4116.34 (14)
C4—C5—C6—C10.4 (2)N3—C22—C24—C2550.0 (2)
C7—C5—C6—C1177.96 (16)C23—C22—C24—C25173.76 (17)
C2—C1—C6—C51.6 (3)C7—C22—C24—C2567.5 (2)
Cl1—C1—C6—C5178.12 (12)N3—C22—C24—C29129.99 (14)
C6—C5—C7—C8172.28 (16)C23—C22—C24—C296.19 (16)
C4—C5—C7—C85.45 (16)C7—C22—C24—C29112.53 (15)
C6—C5—C7—C1646.1 (2)C29—C24—C25—C262.1 (3)
C4—C5—C7—C16131.60 (15)C22—C24—C25—C26177.94 (17)
C6—C5—C7—C2267.7 (2)C24—C25—C26—C270.0 (3)
C4—C5—C7—C22114.56 (15)C25—C26—C27—C281.8 (4)
C5—C7—C8—N1175.82 (15)C26—C27—C28—C291.4 (3)
C16—C7—C8—N150.7 (2)C27—C28—C29—C240.8 (3)
C22—C7—C8—N163.73 (19)C27—C28—C29—N4176.79 (19)
C5—C7—C8—N26.56 (16)C25—C24—C29—C282.5 (3)
C16—C7—C8—N2131.66 (14)C22—C24—C29—C28177.49 (16)
C22—C7—C8—N2113.89 (14)C25—C24—C29—N4175.40 (15)
O1—C9—C10—C11179.2 (2)C22—C24—C29—N44.56 (19)
N2—C9—C10—C111.1 (3)N2—C8—N1—C110.2 (2)
O1—C9—C10—C150.5 (4)C7—C8—N1—C11177.04 (14)
N2—C9—C10—C15179.20 (19)C12—C11—N1—C8179.91 (15)
C15—C10—C11—C120.3 (3)C10—C11—N1—C80.2 (2)
C9—C10—C11—C12179.39 (18)N1—C8—N2—C90.7 (3)
C15—C10—C11—N1179.57 (18)C7—C8—N2—C9176.92 (16)
C9—C10—C11—N10.8 (3)N1—C8—N2—C4176.85 (15)
N1—C11—C12—C13179.18 (18)C7—C8—N2—C45.54 (18)
C10—C11—C12—C130.7 (3)O1—C9—N2—C8179.2 (2)
C11—C12—C13—C140.5 (4)C10—C9—N2—C81.1 (3)
C12—C13—C14—C150.1 (4)O1—C9—N2—C43.7 (4)
C13—C14—C15—C100.5 (4)C10—C9—N2—C4176.00 (17)
C11—C10—C15—C140.3 (4)C3—C4—N2—C8175.45 (19)
C9—C10—C15—C14180.0 (2)C5—C4—N2—C81.95 (19)
C5—C7—C16—C1835.44 (19)C3—C4—N2—C91.9 (3)
C8—C7—C16—C1882.88 (17)C5—C4—N2—C9179.32 (18)
C22—C7—C16—C18156.27 (14)C24—C22—N3—C2164.33 (18)
C5—C7—C16—C1789.58 (16)C23—C22—N3—C2152.94 (19)
C8—C7—C16—C17152.10 (14)C7—C22—N3—C21170.46 (13)
C22—C7—C16—C1731.25 (15)C24—C22—N3—C17167.41 (13)
C18—C16—C17—N3132.70 (14)C23—C22—N3—C1775.32 (16)
C7—C16—C17—N37.14 (17)C7—C22—N3—C1742.19 (15)
C17—C16—C18—O211.0 (3)C16—C17—N3—C21150.84 (14)
C7—C16—C18—O2131.0 (2)C16—C17—N3—C2222.53 (17)
C17—C16—C18—O3169.66 (15)O4—C23—N4—C29173.51 (17)
C7—C16—C18—O349.6 (2)C22—C23—N4—C293.64 (19)
C5—C7—C22—N377.92 (14)C28—C29—N4—C23178.30 (18)
C8—C7—C22—N3168.10 (12)C24—C29—N4—C230.5 (2)
C16—C7—C22—N344.31 (13)O2—C18—O3—C191.6 (3)
C5—C7—C22—C2448.38 (17)C16—C18—O3—C19179.00 (19)
C8—C7—C22—C2465.60 (16)C20—C19—O3—C1893.5 (4)
C16—C7—C22—C24170.61 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O4i0.861.982.808 (2)160
C20—H20C···O1ii0.962.533.369 (6)146
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC29H23ClN4O4
Mr526.96
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.9341 (9), 11.7697 (12), 13.3828 (14)
α, β, γ (°)72.776 (5), 89.574 (5), 74.995 (5)
V3)1294.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.945, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
16756, 6722, 5191
Rint0.028
(sin θ/λ)max1)0.697
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.161, 1.04
No. of reflections6722
No. of parameters346
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.50

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O4i0.861.982.808 (2)160
C20—H20C···O1ii0.962.533.369 (6)146
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and BioPhysics, University of Madras, Chennai, India, for the data collection.

References

First citationBruker. (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLi, M.-J. & Feng, C.-J. (2009). Acta Cryst. E65, o2145.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, D.-L., Wu, Y., Wang, Q., He, G. & Yu, L.-T. (2010). Acta Cryst. E66, o447.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & Declera, E. (1999). Pharm. Acta Helv. 74, 11–17.  CrossRef PubMed CAS Google Scholar
First citationPriya, M. G. R., Srinivasan, T., Girija, K., Chandran, N. R. & Velmurugan, D. (2011a). Acta Cryst. E67, o2310.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPriya, M. G. R., Zulykama, Y., Girija, K., Murugesh, S. & Perumal, P. T. (2011b). Indian J. Chem. Sect. B, 50, 98–102.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTereshima, K., Shimamura, H., Kawase, A., Tanaka, Y., Tanimura, T., Ishizuka, Y. & Sato, M. (1995). Chem. Pharm. Bull. 45, 2021–2023.  Google Scholar
First citationWolfe, J. F., Rathman, T. L., Sleevi, M. C., Campbell, J. S. A. & Greenwood, T. D. (1990). J. Med. Chem. 33, 161–166.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds