organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-[(1R,2R,4R)-2-Meth­­oxy-1,7,7-tri­methylbi­cyclo­[2.2.1]hept-2-yl]-1H-tetra­zole

aInstitut für Organische Chemie und Chemische Biologie, Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany
*Correspondence e-mail: bats@chemie.uni-frankfurt.de

(Received 15 May 2013; accepted 28 May 2013; online 8 June 2013)

The title compound, C12H20N4O, undergoes a phase transition on cooling. The room-temperature structure is tetra­gonal (P43212, Z′ = 1), with the meth­oxy­bornyl group being extremely disordered. Below 213 K the structure is ortho­rhom­bic (P212121, Z′ = 2), with ordered mol­ecules. The two independent mol­ecules (A and B) have very similar conformations; significant differences only occur for the torsion angles about the Cborn­yl—Ctetra­zole bonds. The independent mol­ecules are approximately related by the pseudo-symmetry relation: xB = −1/4 + yA, yB = 3/4 - xA and zB = 1/4 + zA. In the crystal, mol­ecules are connected by N—H⋯N hydrogen bonds between the tetra­zole groups, forming a pseudo-43 helix parallel to the c-axis direction. The crystal studied was a merohedral twin with a refined twin fraction value of 0.231 (2).

Related literature

For the chemical background and synthesis of the title compound, see: Schell & Engels (1997[Schell, P. & Engels, J. W. (1997). Nucleosides Nucleotides, 16, 769-772.], 1998[Schell, P. & Engels, J. W. (1998). Tetrahedron Lett. 39, 8629-8632.]). For related structures, see: Ohno et al. (1999[Ohno, Y., Akutsu, Y., Arai, M., Tamura, M. & Matsunaga, T. (1999). Acta Cryst. C55, 1014-1016.]).

[Scheme 1]

Experimental

Crystal data
  • C12H20N4O

  • Mr = 236.32

  • Orthorhombic, P 21 21 21

  • a = 13.298 (3) Å

  • b = 13.608 (4) Å

  • c = 14.356 (3) Å

  • V = 2597.9 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 194 K

  • 0.65 × 0.24 × 0.20 mm

Data collection
  • Siemens SMART 1K CCD diffractometer

  • 31860 measured reflections

  • 3283 independent reflections

  • 2259 reflections with I > 2σ(I)

  • Rint = 0.109

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.138

  • S = 1.08

  • 3283 reflections

  • 322 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N7 0.88 (1) 2.09 (3) 2.850 (6) 144 (5)
N5—H5C⋯N3i 0.88 (1) 2.02 (2) 2.857 (6) 160 (5)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound has been prepared as a chiral catalyst for the diastereoselective synthesis of dinucleoside methylphosphonates (Schell & Engels, 1997; Schell & Engels, 1998). An initial crystal structure determination of the title compound at room temperature revealed a tetragonal unit cell with a = b = 13.452 (2) Å, c = 14.642 (2) Å and space group P43212. There is one molecule in the asymmetric unit, but the atoms, especially of the methoxybornyl group show very large displacement parameters. The average Ueq values of the non-H atoms is 0.080 Å2 for the tetrazole group, 0.136 Å2 for the bornyl group and 0.243 Å2 for the methoxy group. Thus the molecule is heavily disordered. On cooling the crystal, weak incommensurate reflections were observed in the temperature range 223 - 213 K, while below 213 K an orthorhombic unit cell with space group P212121 was found. Herein, we report on the crystal structure of the orthorhombic phase measured at 194 K.

The asymmetric unit contains two independent molecules, A and B (Figs. 1 and 2). The only significant difference between the molecules is found for the torsion angles about the Cbornyl—Ctetrazole bond [e.g. corresponding torsion angles C2—C1—C11—N4: -5.0 (7)° and C14—C13—C23—N8: -21.9 (7)°]. The methoxy group is in the exo-position and the tetrazole group in the endo-position with respect to the bicyclo[2.2.1]heptane group. The tetrazole rings are planar (r.m.s. deviations: 0.004 Å for molecule A and 0.005 Å for molecule B). The C—N bond distances in the tetrazole rings range from 1.318 (6) - 1.352 (6) Å and the N—N bond distances from 1.315 (6) - 1.353 (6) Å, thus showing a considerable degree of delocalization of the double bonds in the ring. Resonance has also been reported for tetrazole rings in other crystal structures (Ohno et al., 1999).

The phase transition from the room temperature P43212 structure to the low temperature P212121 structure results in the doubling of the number of molecules in the asymmetric unit from Z'=1 to Z'=2. Thus the two molecules, A and B, are expected to be related by tetragonal pseudo-symmetry. A close inspection of the fractional coordinates shows the molecules to be approximately related by the pseudo-relation: xB = -1/4 + yA, yB = 3/4 - xA and zB = 1/4 + zA. This is a symmetry element of a 43 screw-axis.

In the crystal, molecules are connected by N—H···N hydrogen bonds (Table 1 and Fig. 3) to form a helix along the pseudo-43 screw-axis parallel to the c axis direction. There are no short intermolecular contacts between neighboring helices, the shortest contact has a H···N distance of 2.71 Å. Thus the crystal habit is a [001] needle.

Related literature top

For the chemical background and synthesis of the title compound, see: Schell & Engels (1997, 1998). For related structures, see: Ohno et al. (1999).

Experimental top

The synthesis of the title compound, starting from (+)-camphor, has been reported by Schell & Engels (1997). The final product was recrystallized from tetrachloromethane/n-hexane (1:1), resulting in colourless needles.

Refinement top

Friedel opposites were merged. C-bound H atoms were positioned geometrically and treated as riding: C—H = 0.98 - 1.00 Å, with Uiso(H)=1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms. N-bound H atoms were located from a difference Fourier synthesis. Their fractional coordinates were refined using a N—H bond length constraint of 0.88 (1) Å with Uiso(H) = 1.2Ueq(N). The crystal was found to be twinned. The twin relations are: htwin = k, ktwin = -h and ltwin = l. Reflections were integrated using a large profile width. Thus the observed intensities contain the contributions of both the main and the twin reflections. Refinement of the twin fraction resulted in the value 0.231 (2).

Structure description top

The title compound has been prepared as a chiral catalyst for the diastereoselective synthesis of dinucleoside methylphosphonates (Schell & Engels, 1997; Schell & Engels, 1998). An initial crystal structure determination of the title compound at room temperature revealed a tetragonal unit cell with a = b = 13.452 (2) Å, c = 14.642 (2) Å and space group P43212. There is one molecule in the asymmetric unit, but the atoms, especially of the methoxybornyl group show very large displacement parameters. The average Ueq values of the non-H atoms is 0.080 Å2 for the tetrazole group, 0.136 Å2 for the bornyl group and 0.243 Å2 for the methoxy group. Thus the molecule is heavily disordered. On cooling the crystal, weak incommensurate reflections were observed in the temperature range 223 - 213 K, while below 213 K an orthorhombic unit cell with space group P212121 was found. Herein, we report on the crystal structure of the orthorhombic phase measured at 194 K.

The asymmetric unit contains two independent molecules, A and B (Figs. 1 and 2). The only significant difference between the molecules is found for the torsion angles about the Cbornyl—Ctetrazole bond [e.g. corresponding torsion angles C2—C1—C11—N4: -5.0 (7)° and C14—C13—C23—N8: -21.9 (7)°]. The methoxy group is in the exo-position and the tetrazole group in the endo-position with respect to the bicyclo[2.2.1]heptane group. The tetrazole rings are planar (r.m.s. deviations: 0.004 Å for molecule A and 0.005 Å for molecule B). The C—N bond distances in the tetrazole rings range from 1.318 (6) - 1.352 (6) Å and the N—N bond distances from 1.315 (6) - 1.353 (6) Å, thus showing a considerable degree of delocalization of the double bonds in the ring. Resonance has also been reported for tetrazole rings in other crystal structures (Ohno et al., 1999).

The phase transition from the room temperature P43212 structure to the low temperature P212121 structure results in the doubling of the number of molecules in the asymmetric unit from Z'=1 to Z'=2. Thus the two molecules, A and B, are expected to be related by tetragonal pseudo-symmetry. A close inspection of the fractional coordinates shows the molecules to be approximately related by the pseudo-relation: xB = -1/4 + yA, yB = 3/4 - xA and zB = 1/4 + zA. This is a symmetry element of a 43 screw-axis.

In the crystal, molecules are connected by N—H···N hydrogen bonds (Table 1 and Fig. 3) to form a helix along the pseudo-43 screw-axis parallel to the c axis direction. There are no short intermolecular contacts between neighboring helices, the shortest contact has a H···N distance of 2.71 Å. Thus the crystal habit is a [001] needle.

For the chemical background and synthesis of the title compound, see: Schell & Engels (1997, 1998). For related structures, see: Ohno et al. (1999).

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SMART (Siemens, 1995); data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of molecule A, showing the atom-labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The structure of molecule B, showing the atom-labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. A view along the c axis of the helical structure of the title compound [the C-bound H atoms have been omitted for clarity; hydrogen bonds are shown as dashed lines; see Table 1 for details; symmetry codes: (i) -x+1/2, -y+1, z+1/2; (ii) -x+1/2, -y+1, z-1/2].
5-[(1R,2R,4R)-2-Methoxy-1,7,7-trimethylbicyclo[2.2.1]hept-2-yl]-1H-tetrazole top
Crystal data top
C12H20N4ODx = 1.208 Mg m3
Mr = 236.32Melting point: 446 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 76 reflections
a = 13.298 (3) Åθ = 3–23°
b = 13.608 (4) ŵ = 0.08 mm1
c = 14.356 (3) ÅT = 194 K
V = 2597.9 (11) Å3Rod, colourless
Z = 80.65 × 0.24 × 0.20 mm
F(000) = 1024
Data collection top
Siemens SMART 1K CCD
diffractometer
2259 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.109
Graphite monochromatorθmax = 27.5°, θmin = 2.1°
ω scansh = 1716
31860 measured reflectionsk = 1717
3283 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.07P)2]
where P = (Fo2 + 2Fc2)/3
3283 reflections(Δ/σ)max < 0.001
322 parametersΔρmax = 0.20 e Å3
2 restraintsΔρmin = 0.21 e Å3
Crystal data top
C12H20N4OV = 2597.9 (11) Å3
Mr = 236.32Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 13.298 (3) ŵ = 0.08 mm1
b = 13.608 (4) ÅT = 194 K
c = 14.356 (3) Å0.65 × 0.24 × 0.20 mm
Data collection top
Siemens SMART 1K CCD
diffractometer
2259 reflections with I > 2σ(I)
31860 measured reflectionsRint = 0.109
3283 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0692 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.20 e Å3
3283 reflectionsΔρmin = 0.21 e Å3
322 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6305 (3)0.5594 (3)0.3157 (2)0.0447 (9)
O20.2964 (3)0.1694 (3)0.6297 (2)0.0489 (10)
N10.4154 (3)0.5552 (3)0.3153 (3)0.0345 (9)
H1A0.435 (4)0.502 (2)0.344 (3)0.041*
N20.3246 (3)0.5527 (3)0.2727 (3)0.0466 (11)
N30.3298 (3)0.6241 (3)0.2111 (3)0.0471 (11)
N40.4180 (4)0.6711 (4)0.2151 (3)0.0509 (12)
N50.3253 (3)0.3587 (3)0.5745 (2)0.0309 (9)
H5C0.269 (2)0.357 (4)0.606 (3)0.037*
N60.3365 (3)0.4372 (3)0.5209 (3)0.0413 (10)
N70.4046 (4)0.4110 (3)0.4588 (3)0.0456 (11)
N80.4374 (3)0.3188 (3)0.4730 (3)0.0426 (11)
C10.5766 (4)0.6494 (4)0.3131 (3)0.0364 (11)
C20.6290 (4)0.7309 (5)0.2547 (4)0.0547 (16)
H2A0.69210.70630.22660.066*
H2B0.58430.75510.20460.066*
C30.6506 (5)0.8127 (4)0.3267 (5)0.0589 (16)
H3A0.70190.86170.30590.071*
C40.5507 (5)0.8572 (5)0.3526 (7)0.085 (2)
H4A0.50940.87050.29660.102*
H4B0.55960.91910.38790.102*
C50.5031 (4)0.7775 (4)0.4133 (5)0.0591 (17)
H5A0.49080.80200.47720.071*
H5B0.43860.75480.38640.071*
C60.5800 (4)0.6954 (4)0.4136 (3)0.0419 (12)
C70.6814 (4)0.7541 (4)0.4126 (4)0.0443 (13)
C80.7776 (4)0.6940 (4)0.4010 (4)0.0526 (14)
H8A0.83550.73840.39710.079*
H8B0.77330.65470.34390.079*
H8C0.78580.65020.45470.079*
C90.6968 (5)0.8181 (5)0.5005 (5)0.0683 (19)
H9A0.74940.86700.48860.102*
H9B0.71700.77620.55280.102*
H9C0.63380.85170.51590.102*
C100.5666 (5)0.6200 (5)0.4921 (3)0.0581 (18)
H10A0.58340.65060.55190.087*
H10B0.61120.56390.48120.087*
H10C0.49660.59750.49330.087*
C110.4718 (4)0.6263 (4)0.2813 (3)0.0358 (11)
C120.6516 (5)0.5179 (5)0.2245 (4)0.0641 (17)
H12A0.59050.51960.18640.096*
H12B0.67400.44970.23160.096*
H12C0.70450.55630.19410.096*
C130.3936 (3)0.1902 (4)0.5947 (3)0.0337 (11)
C140.4411 (5)0.1082 (4)0.5341 (4)0.0549 (16)
H14A0.39390.05250.52650.066*
H14B0.45930.13370.47170.066*
C150.5344 (5)0.0766 (4)0.5875 (4)0.0558 (16)
H15A0.56030.01020.56960.067*
C160.6124 (5)0.1578 (5)0.5818 (4)0.0659 (18)
H16A0.62090.18110.51690.079*
H16B0.67820.13550.60600.079*
C170.5673 (4)0.2382 (4)0.6436 (4)0.0456 (13)
H17A0.55440.29880.60740.055*
H17B0.61270.25390.69620.055*
C180.4685 (3)0.1927 (4)0.6786 (3)0.0317 (10)
C190.4982 (4)0.0841 (4)0.6911 (3)0.0399 (12)
C200.4155 (5)0.0138 (4)0.7167 (4)0.0573 (15)
H20A0.39240.02770.78020.086*
H20B0.44080.05380.71340.086*
H20C0.35920.02160.67320.086*
C210.5845 (5)0.0671 (5)0.7623 (4)0.0567 (15)
H21A0.55730.06950.82570.085*
H21B0.63550.11850.75480.085*
H21C0.61510.00270.75120.085*
C220.4253 (5)0.2447 (4)0.7636 (3)0.0468 (14)
H22A0.47560.24550.81350.070*
H22B0.36520.20970.78510.070*
H22C0.40730.31230.74700.070*
C230.3845 (3)0.2864 (4)0.5473 (3)0.0300 (10)
C240.2217 (5)0.1422 (5)0.5634 (5)0.080 (2)
H24A0.23650.17350.50340.121*
H24B0.15550.16390.58530.121*
H24C0.22160.07070.55570.121*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.056 (2)0.054 (2)0.0242 (15)0.0130 (18)0.0103 (15)0.0055 (16)
O20.044 (2)0.051 (2)0.052 (2)0.0146 (18)0.0080 (17)0.0216 (18)
N10.035 (2)0.035 (2)0.033 (2)0.002 (2)0.0031 (18)0.0015 (18)
N20.046 (3)0.053 (3)0.041 (2)0.002 (2)0.002 (2)0.001 (2)
N30.046 (3)0.053 (3)0.042 (2)0.000 (2)0.004 (2)0.010 (2)
N40.049 (3)0.066 (3)0.038 (2)0.001 (2)0.008 (2)0.025 (2)
N50.035 (2)0.029 (2)0.0285 (19)0.0009 (19)0.0028 (17)0.0040 (18)
N60.052 (3)0.033 (2)0.039 (2)0.002 (2)0.005 (2)0.007 (2)
N70.065 (3)0.042 (3)0.029 (2)0.012 (2)0.003 (2)0.0046 (19)
N80.060 (3)0.044 (3)0.0239 (19)0.002 (2)0.0066 (19)0.0010 (19)
C10.039 (3)0.046 (3)0.024 (2)0.003 (2)0.002 (2)0.006 (2)
C20.044 (3)0.070 (4)0.049 (3)0.001 (3)0.000 (3)0.029 (3)
C30.050 (4)0.040 (3)0.087 (4)0.005 (3)0.006 (3)0.020 (3)
C40.058 (4)0.047 (4)0.150 (7)0.003 (3)0.005 (4)0.012 (4)
C50.044 (3)0.051 (4)0.082 (4)0.006 (3)0.020 (3)0.011 (3)
C60.058 (3)0.038 (3)0.030 (2)0.014 (3)0.011 (2)0.006 (2)
C70.053 (3)0.034 (3)0.046 (3)0.007 (3)0.001 (3)0.001 (2)
C80.061 (4)0.047 (3)0.050 (3)0.004 (3)0.005 (3)0.000 (3)
C90.072 (4)0.047 (4)0.086 (5)0.014 (3)0.009 (4)0.026 (3)
C100.087 (5)0.067 (4)0.021 (2)0.022 (3)0.001 (3)0.002 (2)
C110.036 (3)0.037 (3)0.034 (2)0.001 (2)0.008 (2)0.004 (2)
C120.062 (4)0.088 (5)0.042 (3)0.010 (4)0.001 (3)0.029 (3)
C130.036 (3)0.034 (3)0.032 (2)0.011 (2)0.008 (2)0.000 (2)
C140.091 (5)0.040 (3)0.034 (3)0.008 (3)0.008 (3)0.008 (2)
C150.078 (4)0.048 (3)0.042 (3)0.026 (3)0.007 (3)0.009 (3)
C160.051 (4)0.087 (5)0.060 (3)0.013 (4)0.021 (3)0.009 (4)
C170.041 (3)0.047 (3)0.049 (3)0.005 (3)0.008 (2)0.007 (2)
C180.033 (2)0.038 (3)0.025 (2)0.005 (2)0.0033 (19)0.001 (2)
C190.038 (3)0.043 (3)0.038 (3)0.010 (2)0.003 (2)0.001 (2)
C200.066 (4)0.046 (3)0.061 (3)0.014 (3)0.021 (3)0.017 (3)
C210.053 (3)0.053 (4)0.063 (4)0.003 (3)0.012 (3)0.008 (3)
C220.069 (4)0.053 (3)0.018 (2)0.017 (3)0.004 (2)0.002 (2)
C230.038 (3)0.035 (3)0.0172 (19)0.005 (2)0.0053 (18)0.0019 (19)
C240.071 (5)0.072 (5)0.099 (5)0.034 (4)0.044 (4)0.023 (4)
Geometric parameters (Å, º) top
O1—C11.420 (6)C9—H9B0.9800
O1—C121.453 (6)C9—H9C0.9800
O2—C131.416 (6)C10—H10A0.9800
O2—C241.425 (7)C10—H10B0.9800
N1—C111.318 (6)C10—H10C0.9800
N1—N21.353 (6)C12—H12A0.9800
N1—H1A0.877 (10)C12—H12B0.9800
N2—N31.315 (6)C12—H12C0.9800
N3—N41.337 (6)C13—C231.479 (7)
N4—C111.337 (6)C13—C141.549 (7)
N5—C231.320 (6)C13—C181.564 (6)
N5—N61.325 (5)C14—C151.520 (8)
N5—H5C0.879 (10)C14—H14A0.9900
N6—N71.319 (6)C14—H14B0.9900
N7—N81.344 (6)C15—C161.518 (9)
N8—C231.352 (6)C15—C191.567 (7)
C1—C111.499 (7)C15—H15A1.0000
C1—C21.555 (7)C16—C171.530 (8)
C1—C61.574 (7)C16—H16A0.9900
C2—C31.546 (9)C16—H16B0.9900
C2—H2A0.9900C17—C181.537 (7)
C2—H2B0.9900C17—H17A0.9900
C3—C41.507 (9)C17—H17B0.9900
C3—C71.524 (8)C18—C221.523 (7)
C3—H3A1.0000C18—C191.540 (7)
C4—C51.529 (9)C19—C201.504 (7)
C4—H4A0.9900C19—C211.554 (7)
C4—H4B0.9900C20—H20A0.9800
C5—C61.515 (8)C20—H20B0.9800
C5—H5A0.9900C20—H20C0.9800
C5—H5B0.9900C21—H21A0.9800
C6—C101.534 (7)C21—H21B0.9800
C6—C71.567 (7)C21—H21C0.9800
C7—C81.527 (8)C22—H22A0.9800
C7—C91.548 (8)C22—H22B0.9800
C8—H8A0.9800C22—H22C0.9800
C8—H8B0.9800C24—H24A0.9800
C8—H8C0.9800C24—H24B0.9800
C9—H9A0.9800C24—H24C0.9800
C1—O1—C12114.1 (4)N4—C11—C1128.2 (4)
C13—O2—C24116.8 (4)O1—C12—H12A109.5
C11—N1—N2111.1 (4)O1—C12—H12B109.5
C11—N1—H1A128 (3)H12A—C12—H12B109.5
N2—N1—H1A117 (3)O1—C12—H12C109.5
N3—N2—N1103.8 (4)H12A—C12—H12C109.5
N2—N3—N4111.8 (4)H12B—C12—H12C109.5
N3—N4—C11106.3 (4)O2—C13—C23105.4 (4)
C23—N5—N6111.3 (4)O2—C13—C14115.3 (4)
C23—N5—H5C130 (3)C23—C13—C14114.4 (4)
N6—N5—H5C114 (3)O2—C13—C18108.2 (4)
N7—N6—N5104.5 (4)C23—C13—C18112.8 (4)
N6—N7—N8111.9 (4)C14—C13—C18100.9 (4)
N7—N8—C23104.8 (4)C15—C14—C13104.7 (4)
O1—C1—C11107.2 (4)C15—C14—H14A110.8
O1—C1—C2113.8 (4)C13—C14—H14A110.8
C11—C1—C2113.7 (4)C15—C14—H14B110.8
O1—C1—C6107.7 (4)C13—C14—H14B110.8
C11—C1—C6113.0 (4)H14A—C14—H14B108.9
C2—C1—C6101.3 (4)C16—C15—C14108.9 (5)
C3—C2—C1103.7 (4)C16—C15—C19102.3 (5)
C3—C2—H2A111.0C14—C15—C19102.1 (4)
C1—C2—H2A111.0C16—C15—H15A114.1
C3—C2—H2B111.0C14—C15—H15A114.1
C1—C2—H2B111.0C19—C15—H15A114.1
H2A—C2—H2B109.0C15—C16—C17102.8 (4)
C4—C3—C7104.4 (6)C15—C16—H16A111.2
C4—C3—C2106.9 (6)C17—C16—H16A111.2
C7—C3—C2102.3 (4)C15—C16—H16B111.2
C4—C3—H3A114.0C17—C16—H16B111.2
C7—C3—H3A114.0H16A—C16—H16B109.1
C2—C3—H3A114.0C16—C17—C18103.7 (4)
C3—C4—C5102.7 (5)C16—C17—H17A111.0
C3—C4—H4A111.2C18—C17—H17A111.0
C5—C4—H4A111.2C16—C17—H17B111.0
C3—C4—H4B111.2C18—C17—H17B111.0
C5—C4—H4B111.2H17A—C17—H17B109.0
H4A—C4—H4B109.1C22—C18—C17113.4 (4)
C6—C5—C4104.2 (5)C22—C18—C19116.7 (4)
C6—C5—H5A110.9C17—C18—C19101.8 (4)
C4—C5—H5A110.9C22—C18—C13112.8 (4)
C6—C5—H5B110.9C17—C18—C13107.5 (4)
C4—C5—H5B110.9C19—C18—C13103.5 (4)
H5A—C5—H5B108.9C20—C19—C18116.8 (4)
C5—C6—C10114.6 (5)C20—C19—C21106.6 (4)
C5—C6—C7101.9 (4)C18—C19—C21114.1 (4)
C10—C6—C7116.6 (5)C20—C19—C15114.5 (5)
C5—C6—C1105.7 (5)C18—C19—C1591.8 (4)
C10—C6—C1113.9 (4)C21—C19—C15112.8 (4)
C7—C6—C1102.7 (4)C19—C20—H20A109.5
C3—C7—C8114.7 (5)C19—C20—H20B109.5
C3—C7—C9113.6 (4)H20A—C20—H20B109.5
C8—C7—C9106.2 (5)C19—C20—H20C109.5
C3—C7—C692.5 (4)H20A—C20—H20C109.5
C8—C7—C6116.6 (4)H20B—C20—H20C109.5
C9—C7—C6113.2 (5)C19—C21—H21A109.5
C7—C8—H8A109.5C19—C21—H21B109.5
C7—C8—H8B109.5H21A—C21—H21B109.5
H8A—C8—H8B109.5C19—C21—H21C109.5
C7—C8—H8C109.5H21A—C21—H21C109.5
H8A—C8—H8C109.5H21B—C21—H21C109.5
H8B—C8—H8C109.5C18—C22—H22A109.5
C7—C9—H9A109.5C18—C22—H22B109.5
C7—C9—H9B109.5H22A—C22—H22B109.5
H9A—C9—H9B109.5C18—C22—H22C109.5
C7—C9—H9C109.5H22A—C22—H22C109.5
H9A—C9—H9C109.5H22B—C22—H22C109.5
H9B—C9—H9C109.5N5—C23—N8107.5 (4)
C6—C10—H10A109.5N5—C23—C13125.0 (4)
C6—C10—H10B109.5N8—C23—C13127.5 (5)
H10A—C10—H10B109.5O2—C24—H24A109.5
C6—C10—H10C109.5O2—C24—H24B109.5
H10A—C10—H10C109.5H24A—C24—H24B109.5
H10B—C10—H10C109.5O2—C24—H24C109.5
N1—C11—N4107.0 (4)H24A—C24—H24C109.5
N1—C11—C1124.8 (4)H24B—C24—H24C109.5
C11—N1—N2—N30.9 (5)O1—C1—C11—N4131.7 (5)
N1—N2—N3—N41.2 (5)C2—C1—C11—N45.0 (7)
N2—N3—N4—C111.1 (6)C6—C1—C11—N4109.8 (6)
C23—N5—N6—N70.4 (5)C24—O2—C13—C2372.8 (5)
N5—N6—N7—N81.1 (5)C24—O2—C13—C1454.3 (6)
N6—N7—N8—C231.3 (5)C24—O2—C13—C18166.3 (5)
C12—O1—C1—C1170.1 (5)O2—C13—C14—C15117.3 (5)
C12—O1—C1—C256.6 (6)C23—C13—C14—C15120.3 (5)
C12—O1—C1—C6168.1 (4)C18—C13—C14—C151.1 (5)
O1—C1—C2—C3117.8 (5)C13—C14—C15—C1671.0 (5)
C11—C1—C2—C3119.0 (5)C13—C14—C15—C1936.7 (6)
C6—C1—C2—C32.5 (6)C14—C15—C16—C1770.9 (6)
C1—C2—C3—C470.5 (6)C19—C15—C16—C1736.6 (5)
C1—C2—C3—C738.9 (6)C15—C16—C17—C180.6 (5)
C7—C3—C4—C534.8 (7)C16—C17—C18—C22162.5 (4)
C2—C3—C4—C573.1 (7)C16—C17—C18—C1936.3 (5)
C3—C4—C5—C61.2 (7)C16—C17—C18—C1372.1 (5)
C4—C5—C6—C10162.2 (5)O2—C13—C18—C2241.4 (6)
C4—C5—C6—C735.4 (6)C23—C13—C18—C2274.7 (5)
C4—C5—C6—C171.6 (6)C14—C13—C18—C22162.8 (4)
O1—C1—C6—C5167.4 (4)O2—C13—C18—C17167.2 (4)
C11—C1—C6—C549.1 (5)C23—C13—C18—C1751.0 (5)
C2—C1—C6—C572.9 (5)C14—C13—C18—C1771.4 (5)
O1—C1—C6—C1040.7 (6)O2—C13—C18—C1985.6 (4)
C11—C1—C6—C1077.5 (6)C23—C13—C18—C19158.3 (4)
C2—C1—C6—C10160.5 (5)C14—C13—C18—C1935.8 (5)
O1—C1—C6—C786.2 (4)C22—C18—C19—C2061.6 (6)
C11—C1—C6—C7155.5 (4)C17—C18—C19—C20174.3 (4)
C2—C1—C6—C733.5 (5)C13—C18—C19—C2062.9 (5)
C4—C3—C7—C8175.1 (5)C22—C18—C19—C2163.6 (6)
C2—C3—C7—C863.8 (6)C17—C18—C19—C2160.4 (5)
C4—C3—C7—C962.5 (7)C13—C18—C19—C21171.9 (4)
C2—C3—C7—C9173.8 (5)C22—C18—C19—C15179.6 (5)
C4—C3—C7—C654.2 (5)C17—C18—C19—C1555.6 (4)
C2—C3—C7—C657.1 (5)C13—C18—C19—C1555.9 (4)
C5—C6—C7—C353.7 (5)C16—C15—C19—C20177.4 (5)
C10—C6—C7—C3179.2 (5)C14—C15—C19—C2064.7 (6)
C1—C6—C7—C355.6 (5)C16—C15—C19—C1856.7 (5)
C5—C6—C7—C8173.1 (5)C14—C15—C19—C1856.0 (5)
C10—C6—C7—C861.5 (6)C16—C15—C19—C2160.5 (6)
C1—C6—C7—C863.7 (6)C14—C15—C19—C21173.2 (5)
C5—C6—C7—C963.3 (6)N6—N5—C23—N80.4 (5)
C10—C6—C7—C962.2 (6)N6—N5—C23—C13177.2 (4)
C1—C6—C7—C9172.6 (5)N7—N8—C23—N51.0 (5)
N2—N1—C11—N40.3 (5)N7—N8—C23—C13177.7 (4)
N2—N1—C11—C1179.9 (4)O2—C13—C23—N534.3 (6)
N3—N4—C11—N10.4 (5)C14—C13—C23—N5162.0 (4)
N3—N4—C11—C1179.4 (5)C18—C13—C23—N583.5 (6)
O1—C1—C11—N148.0 (6)O2—C13—C23—N8149.5 (4)
C2—C1—C11—N1174.8 (5)C14—C13—C23—N821.9 (7)
C6—C1—C11—N170.4 (6)C18—C13—C23—N892.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N70.88 (1)2.09 (3)2.850 (6)144 (5)
N5—H5C···N3i0.88 (1)2.02 (2)2.857 (6)160 (5)
Symmetry code: (i) x+1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H20N4O
Mr236.32
Crystal system, space groupOrthorhombic, P212121
Temperature (K)194
a, b, c (Å)13.298 (3), 13.608 (4), 14.356 (3)
V3)2597.9 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.65 × 0.24 × 0.20
Data collection
DiffractometerSiemens SMART 1K CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
31860, 3283, 2259
Rint0.109
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.138, 1.08
No. of reflections3283
No. of parameters322
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N70.877 (10)2.09 (3)2.850 (6)144 (5)
N5—H5C···N3i0.879 (10)2.02 (2)2.857 (6)160 (5)
Symmetry code: (i) x+1/2, y+1, z+1/2.
 

References

First citationOhno, Y., Akutsu, Y., Arai, M., Tamura, M. & Matsunaga, T. (1999). Acta Cryst. C55, 1014–1016.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSchell, P. & Engels, J. W. (1997). Nucleosides Nucleotides, 16, 769–772.  CrossRef CAS Google Scholar
First citationSchell, P. & Engels, J. W. (1998). Tetrahedron Lett. 39, 8629–8632.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds