organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3-Acetyl­phen­yl)-2-(2-oxidonaph­thalen-1-yl)diazen-1-ium

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Département de Chimie, Université Mentouri de Constantine 1, 25000 Constantine, Algeria
*Correspondence e-mail: bougueriahassiba@gmail.com

(Received 19 May 2013; accepted 30 May 2013; online 8 June 2013)

The title compound, C18H14N2O2, crystallized with two independent zwitterion mol­ecules (A and B) in the asymmetric unit. They are both close to planar, the dihedral angle between the benzene ring and naphthalene ring system being 4.30 (9)° in A and 4.69 (9)° in B. Each mol­ecule has an E conformation with respect to the azo double bond. In each of the independent mol­ecules, an intra­molecular N—H⋯O hydrogen bond forms an S(6) ring motif. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming –AAA– and –BBB– chains parallel to one another and propagating along the a-axis direction. There are also ππ inter­actions between adjacent mol­ecules involving benzene and naphthalene rings [centroid–centroid distance of 3.626 (3) Å for adjacent A mol­ecules and 3.652 (3) Å for adjacent B mol­ecules].

Related literature

For general background to azo compounds and their use in dyes, pigments and advanced materials, see: Lee et al. (2004[Lee, S. H., Kim, J. Y., Ko, J., Lee, J. Y. & Kim, J. S. (2004). J. Org. Chem. 69, 2902-2905.]); Oueslati et al. (2004[Oueslati, F., Dumazet-Bonnamour, I. & Lamartine, R. (2004). New J. Chem. 28, 1575-1578.]). Many azo compounds have been synthesized by diazo­tization and diazo coupling reactions, see: Wang et al. (2003[Wang, M., Funabiki, K. & Matsui, M. (2003). Dyes Pigm. 57, 77-86.]). For a related structure, see: Rãdulescu et al. (2006[Rãdulescu, C., Hossu, A. M. & Ionitã, I. (2006). Dyes Pigm. 71, 123-129.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14N2O2

  • Mr = 290.31

  • Orthorhombic, P c a 21

  • a = 15.965 (5) Å

  • b = 5.807 (5) Å

  • c = 30.185 (5) Å

  • V = 2798 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.26 × 0.22 × 0.17 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.830, Tmax = 0.985

  • 13123 measured reflections

  • 5097 independent reflections

  • 4621 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.120

  • S = 1.03

  • 5097 reflections

  • 399 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N13—H13⋯O1 0.86 1.91 2.580 (3) 134
N43—H43⋯O31 0.86 1.90 2.575 (3) 134
C15—H15⋯O22i 0.93 2.36 3.256 (4) 162
C45—H45⋯O52ii 0.93 2.36 3.256 (4) 162
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+1, z]; (ii) [x+{\script{1\over 2}}, -y+2, z].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The azo dyes are by far the most important clas of dyes, accounting for over 50% of all commercial dyes, and having been studied more than any other class. Azo dyes contain at least one azo group (–N=N–) but can contain two (diazo), three(triazo), or more rarely, four (tetrakisazo) or more (polyazo). The azo group is attached to two groups, of which at least one, but more usually both are aromatic. They exist in the trans form with the bond angle vis.120°, about the sp2 hybridized N atoms. Almost without exception, azo dyes are made by diazotization of a primary aromatic amine followed by coupling of the resultant diazonium salt with an electron-rich nucleophile (Wang et al., 2003). We report herein on the crystal structure of the title compound, obtained through the diazotization of 3-acetoaniline followed by a coupling reaction with 2-naphthol.

The molecular structures of the two independent molecules (A and B) of the title compound are shown in Fig. 1. In both molecules the hydrogen atom of the OH group has been transfered to the N atom in the azo group to form a zwitterion. There are no significant differences in their structures. The dihedral angle between the benzene ring and naphthalene ring system is 4.30 (9) ° in A and 4.69 (9) ° in the B. Each molecule has an E conformation with respect to the azo double bond. The torsion angle C11—N12—N13—C14 being 179.7 (2) ° in A, while in B the corresponding torsion angle C41–N42–N43–C44 is 179.2 (2)°. An intramolecular N—H···O hydrogen bond exists in each molecule (Table 1), forming an S(6) ring motif.

In the crystal, molecules are linked via C—H···O hydrogen bonds forming –A—A—A– and –B—B—B– chains parallel to one another and propagating along the a axis direction. There are also π-π interactions between adjacent molecules involving benzene and naphthalene rings: Cg1···Cg3i = 3.626 (3) Å for adjacent A molecules [Cg1 and Cg3 are the centroids of the C2—C5/C10/C11 and C5—C10 rings; symmetry code: (i) x, y - 1, z] and Cg5···Cg7i = 3.652 (3) Å for adjacent B molecules [Cg5 and Cg7 are the centroids of the C32—C35/C40/C41 and C44—C49 rings; symmetry code: (i) x, y - 1, z].

Related literature top

For general background to azo compounds and their use in dyes, pigments and advanced materials, see: Lee et al. (2004); Oueslati et al. (2004). Many azo compounds have been synthesized by diazotization and diazo coupling reactions, see: Wang et al. (2003). For a related structure, see: Rãdulescu et al. (2006).

Experimental top

The title compound was synthesized according to the literature procedure used for the synthesis of other aromatic azo-compounds (Wang et al., 2003). Red prisms of the compound were obtained by slow evaporation at room temperature of a H2O/THF (1/1 v/v) solution of the title compound.

Refinement top

The NH H atoms were located in difference Fourier maps. In the final cycles of refinement they and the C-bound H atoms were included in calculated positions and treated as riding atoms: N—H = 0.86 Å, C—H = 0.93 and 0.96 Å for CH and CH3 H atoms, respectively, with Uiso(H)= 1.5Ueq(C-methyl) and = 1.2Ueq(N,C) for other H atoms.

Structure description top

The azo dyes are by far the most important clas of dyes, accounting for over 50% of all commercial dyes, and having been studied more than any other class. Azo dyes contain at least one azo group (–N=N–) but can contain two (diazo), three(triazo), or more rarely, four (tetrakisazo) or more (polyazo). The azo group is attached to two groups, of which at least one, but more usually both are aromatic. They exist in the trans form with the bond angle vis.120°, about the sp2 hybridized N atoms. Almost without exception, azo dyes are made by diazotization of a primary aromatic amine followed by coupling of the resultant diazonium salt with an electron-rich nucleophile (Wang et al., 2003). We report herein on the crystal structure of the title compound, obtained through the diazotization of 3-acetoaniline followed by a coupling reaction with 2-naphthol.

The molecular structures of the two independent molecules (A and B) of the title compound are shown in Fig. 1. In both molecules the hydrogen atom of the OH group has been transfered to the N atom in the azo group to form a zwitterion. There are no significant differences in their structures. The dihedral angle between the benzene ring and naphthalene ring system is 4.30 (9) ° in A and 4.69 (9) ° in the B. Each molecule has an E conformation with respect to the azo double bond. The torsion angle C11—N12—N13—C14 being 179.7 (2) ° in A, while in B the corresponding torsion angle C41–N42–N43–C44 is 179.2 (2)°. An intramolecular N—H···O hydrogen bond exists in each molecule (Table 1), forming an S(6) ring motif.

In the crystal, molecules are linked via C—H···O hydrogen bonds forming –A—A—A– and –B—B—B– chains parallel to one another and propagating along the a axis direction. There are also π-π interactions between adjacent molecules involving benzene and naphthalene rings: Cg1···Cg3i = 3.626 (3) Å for adjacent A molecules [Cg1 and Cg3 are the centroids of the C2—C5/C10/C11 and C5—C10 rings; symmetry code: (i) x, y - 1, z] and Cg5···Cg7i = 3.652 (3) Å for adjacent B molecules [Cg5 and Cg7 are the centroids of the C32—C35/C40/C41 and C44—C49 rings; symmetry code: (i) x, y - 1, z].

For general background to azo compounds and their use in dyes, pigments and advanced materials, see: Lee et al. (2004); Oueslati et al. (2004). Many azo compounds have been synthesized by diazotization and diazo coupling reactions, see: Wang et al. (2003). For a related structure, see: Rãdulescu et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the two independent molecules (A and B) of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular N—H···O hydrogen bonds are shown as dashed lines (see Table 1 for details).
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound. The N—H···O and C—H···O hydrogen bonds are shown as dashed lines (see Table 1 for details).
1-(3-Acetylphenyl)-2-(2-oxidonaphthalen-1-yl)diazen-1-ium top
Crystal data top
C18H14N2O2F(000) = 1216
Mr = 290.31Dx = 1.378 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 8593 reflections
a = 15.965 (5) Åθ = 2.7–27.5°
b = 5.807 (5) ŵ = 0.09 mm1
c = 30.185 (5) ÅT = 150 K
V = 2798 (3) Å3Prism, red
Z = 80.26 × 0.22 × 0.17 mm
Data collection top
Bruker APEXII
diffractometer
5097 independent reflections
Radiation source: fine-focus sealed tube4621 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
CCD rotation images, thin slices scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 2017
Tmin = 0.830, Tmax = 0.985k = 67
13123 measured reflectionsl = 3923
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.076P)2 + 0.6139P]
where P = (Fo2 + 2Fc2)/3
5097 reflections(Δ/σ)max < 0.001
399 parametersΔρmax = 0.24 e Å3
1 restraintΔρmin = 0.22 e Å3
Crystal data top
C18H14N2O2V = 2798 (3) Å3
Mr = 290.31Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 15.965 (5) ŵ = 0.09 mm1
b = 5.807 (5) ÅT = 150 K
c = 30.185 (5) Å0.26 × 0.22 × 0.17 mm
Data collection top
Bruker APEXII
diffractometer
5097 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
4621 reflections with I > 2σ(I)
Tmin = 0.830, Tmax = 0.985Rint = 0.028
13123 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.120H-atom parameters constrained
S = 1.03Δρmax = 0.24 e Å3
5097 reflectionsΔρmin = 0.22 e Å3
399 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.88455 (10)0.0348 (3)0.91871 (6)0.0302 (5)
O220.46944 (10)0.5866 (3)0.85810 (8)0.0412 (7)
N120.71060 (12)0.1448 (3)0.91349 (6)0.0196 (5)
N130.76073 (11)0.2825 (3)0.89137 (6)0.0205 (5)
C20.83087 (14)0.0922 (4)0.93640 (8)0.0221 (6)
C30.85443 (15)0.3073 (4)0.95777 (8)0.0257 (7)
C40.79693 (15)0.4408 (4)0.97746 (9)0.0244 (7)
C50.70855 (14)0.3830 (4)0.97893 (7)0.0214 (6)
C60.65146 (16)0.5256 (4)1.00018 (8)0.0266 (7)
C70.56723 (16)0.4703 (4)1.00171 (9)0.0296 (7)
C80.53960 (15)0.2689 (4)0.98130 (9)0.0279 (7)
C90.59476 (15)0.1250 (4)0.95991 (8)0.0237 (6)
C100.68068 (14)0.1781 (4)0.95840 (7)0.0186 (6)
C110.74111 (14)0.0333 (4)0.93559 (8)0.0199 (6)
C140.72637 (14)0.4698 (4)0.86804 (8)0.0183 (6)
C150.78104 (13)0.6187 (4)0.84599 (8)0.0214 (6)
C160.74934 (15)0.8061 (4)0.82347 (8)0.0228 (7)
C170.66327 (14)0.8496 (4)0.82345 (8)0.0224 (6)
C180.60908 (13)0.7014 (4)0.84491 (8)0.0191 (6)
C190.64032 (13)0.5082 (4)0.86734 (8)0.0195 (6)
C200.51564 (14)0.7373 (4)0.84465 (8)0.0251 (6)
C210.48199 (16)0.9589 (5)0.82685 (10)0.0382 (9)
O310.93956 (10)0.5296 (3)0.64568 (7)0.0307 (5)
O520.52562 (10)1.0856 (3)0.70523 (8)0.0406 (6)
N420.76561 (11)0.6405 (3)0.65143 (7)0.0201 (5)
N430.81623 (11)0.7766 (3)0.67337 (6)0.0214 (5)
C320.88584 (14)0.4026 (4)0.62827 (8)0.0229 (6)
C330.90840 (15)0.1882 (4)0.60672 (8)0.0254 (7)
C340.85114 (15)0.0550 (4)0.58701 (8)0.0258 (7)
C350.76317 (15)0.1131 (4)0.58568 (8)0.0213 (6)
C360.70485 (16)0.0288 (4)0.56436 (9)0.0277 (7)
C370.62120 (17)0.0288 (5)0.56317 (9)0.0304 (8)
C380.59387 (15)0.2310 (4)0.58362 (9)0.0290 (7)
C390.64969 (14)0.3723 (4)0.60486 (8)0.0238 (7)
C400.73576 (14)0.3193 (4)0.60642 (8)0.0210 (6)
C410.79672 (14)0.4629 (4)0.62934 (8)0.0192 (6)
C440.78179 (14)0.9636 (4)0.69705 (7)0.0194 (6)
C450.83625 (14)1.1076 (4)0.72006 (8)0.0226 (6)
C460.80436 (15)1.2942 (4)0.74318 (8)0.0244 (7)
C470.71858 (15)1.3399 (4)0.74312 (8)0.0236 (7)
C480.66479 (14)1.1958 (4)0.71987 (7)0.0208 (6)
C490.69584 (13)1.0051 (4)0.69702 (8)0.0202 (6)
C500.57227 (15)1.2340 (4)0.71913 (9)0.0258 (7)
C510.53792 (18)1.4575 (5)0.73668 (11)0.0427 (9)
H30.910300.352900.957800.0310*
H40.814500.576800.990800.0290*
H60.670100.660301.013600.0320*
H70.529500.566401.016200.0360*
H80.483000.231200.982200.0330*
H90.575100.008400.946400.0280*
H130.813900.258500.891200.0250*
H150.838400.591600.846500.0260*
H160.785400.903900.808300.0270*
H170.642400.978700.808900.0270*
H190.604000.407100.881600.0230*
H21A0.422500.964300.831300.0570*
H21B0.494100.969300.795800.0570*
H21C0.507801.085600.842100.0570*
H330.964200.142200.606600.0300*
H340.868700.080900.573600.0310*
H360.722900.163900.550800.0330*
H370.583100.066600.548800.0370*
H380.537400.270100.582800.0350*
H390.630400.505700.618500.0290*
H430.869400.752500.673300.0260*
H450.893601.078900.719900.0270*
H460.840501.389800.758900.0290*
H470.697501.465900.758500.0280*
H490.659600.907000.682000.0240*
H51A0.478001.457100.734200.0640*
H51B0.560401.583300.719800.0640*
H51C0.553501.474700.767200.0640*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0210 (8)0.0295 (9)0.0401 (10)0.0016 (7)0.0002 (8)0.0022 (8)
O220.0175 (8)0.0353 (10)0.0707 (15)0.0053 (7)0.0001 (9)0.0051 (10)
N120.0225 (9)0.0152 (8)0.0211 (9)0.0013 (7)0.0015 (8)0.0018 (7)
N130.0177 (9)0.0172 (8)0.0266 (10)0.0001 (7)0.0003 (8)0.0001 (8)
C20.0202 (11)0.0211 (10)0.0250 (12)0.0014 (9)0.0047 (9)0.0037 (10)
C30.0225 (11)0.0243 (11)0.0304 (13)0.0067 (9)0.0079 (10)0.0060 (10)
C40.0276 (12)0.0204 (11)0.0252 (13)0.0072 (10)0.0093 (10)0.0006 (9)
C50.0285 (12)0.0176 (10)0.0181 (11)0.0010 (9)0.0042 (9)0.0027 (9)
C60.0331 (13)0.0217 (11)0.0251 (12)0.0008 (10)0.0053 (10)0.0023 (10)
C70.0312 (13)0.0289 (12)0.0287 (13)0.0090 (10)0.0001 (10)0.0058 (11)
C80.0211 (10)0.0292 (11)0.0333 (13)0.0021 (10)0.0004 (10)0.0014 (10)
C90.0252 (11)0.0216 (10)0.0243 (11)0.0017 (9)0.0004 (9)0.0004 (10)
C100.0212 (11)0.0171 (10)0.0175 (10)0.0024 (9)0.0032 (9)0.0044 (9)
C110.0223 (10)0.0162 (10)0.0212 (11)0.0022 (8)0.0025 (9)0.0031 (9)
C140.0197 (11)0.0153 (9)0.0198 (11)0.0009 (8)0.0024 (9)0.0031 (9)
C150.0158 (10)0.0228 (10)0.0255 (11)0.0005 (8)0.0010 (9)0.0045 (9)
C160.0229 (11)0.0212 (11)0.0243 (12)0.0050 (9)0.0019 (10)0.0012 (10)
C170.0268 (11)0.0189 (10)0.0215 (11)0.0013 (9)0.0030 (10)0.0001 (9)
C180.0140 (10)0.0217 (10)0.0216 (11)0.0012 (8)0.0016 (9)0.0024 (9)
C190.0172 (10)0.0172 (9)0.0241 (11)0.0030 (8)0.0005 (9)0.0024 (8)
C200.0178 (10)0.0304 (11)0.0272 (12)0.0008 (9)0.0006 (9)0.0027 (11)
C210.0233 (12)0.0479 (16)0.0433 (17)0.0109 (12)0.0039 (11)0.0118 (13)
O310.0209 (8)0.0282 (8)0.0431 (11)0.0002 (7)0.0030 (8)0.0024 (8)
O520.0210 (9)0.0365 (10)0.0644 (14)0.0070 (8)0.0033 (9)0.0079 (10)
N420.0232 (9)0.0151 (8)0.0221 (9)0.0016 (7)0.0019 (8)0.0022 (8)
N430.0192 (9)0.0184 (8)0.0266 (10)0.0016 (7)0.0022 (8)0.0012 (8)
C320.0222 (10)0.0210 (10)0.0254 (12)0.0023 (9)0.0037 (9)0.0052 (9)
C330.0216 (11)0.0241 (11)0.0305 (13)0.0067 (9)0.0057 (10)0.0021 (10)
C340.0317 (12)0.0191 (10)0.0265 (12)0.0074 (10)0.0090 (10)0.0012 (9)
C350.0244 (12)0.0182 (10)0.0212 (11)0.0021 (9)0.0062 (9)0.0021 (10)
C360.0375 (14)0.0197 (11)0.0258 (12)0.0011 (10)0.0059 (10)0.0031 (10)
C370.0320 (13)0.0283 (12)0.0310 (14)0.0043 (11)0.0030 (11)0.0041 (11)
C380.0251 (12)0.0312 (12)0.0308 (13)0.0004 (10)0.0019 (11)0.0018 (11)
C390.0214 (11)0.0221 (11)0.0279 (12)0.0020 (9)0.0032 (10)0.0042 (10)
C400.0257 (12)0.0167 (10)0.0207 (11)0.0021 (9)0.0045 (9)0.0019 (9)
C410.0195 (10)0.0167 (10)0.0213 (12)0.0024 (8)0.0041 (9)0.0040 (9)
C440.0219 (10)0.0169 (9)0.0194 (11)0.0009 (8)0.0040 (9)0.0023 (9)
C450.0174 (10)0.0245 (10)0.0260 (12)0.0010 (9)0.0006 (9)0.0005 (9)
C460.0226 (11)0.0239 (11)0.0266 (12)0.0047 (9)0.0029 (9)0.0033 (10)
C470.0246 (12)0.0204 (10)0.0257 (12)0.0014 (9)0.0029 (10)0.0033 (10)
C480.0216 (11)0.0207 (10)0.0200 (11)0.0006 (9)0.0034 (9)0.0023 (9)
C490.0207 (11)0.0175 (9)0.0224 (12)0.0025 (8)0.0019 (9)0.0001 (9)
C500.0204 (12)0.0296 (12)0.0274 (13)0.0010 (10)0.0045 (10)0.0001 (11)
C510.0296 (13)0.0503 (16)0.0483 (19)0.0136 (13)0.0070 (13)0.0217 (14)
Geometric parameters (Å, º) top
O1—C21.250 (3)C16—H160.9300
O22—C201.214 (3)C17—H170.9300
O31—C321.247 (3)C19—H190.9300
O52—C501.214 (3)C21—H21B0.9600
N12—C111.324 (3)C21—H21C0.9600
N12—N131.314 (3)C21—H21A0.9600
N13—C141.407 (3)C32—C331.450 (4)
N13—H130.8600C32—C411.466 (3)
N42—N431.310 (3)C33—C341.337 (4)
N42—C411.325 (3)C34—C351.445 (4)
N43—C441.412 (3)C35—C401.420 (4)
N43—H430.8600C35—C361.400 (4)
C2—C111.474 (3)C36—C371.377 (4)
C2—C31.455 (4)C37—C381.397 (4)
C3—C41.341 (4)C38—C391.371 (4)
C4—C51.451 (4)C39—C401.409 (3)
C5—C101.413 (3)C40—C411.456 (3)
C5—C61.389 (4)C44—C451.392 (3)
C6—C71.383 (4)C44—C491.393 (3)
C7—C81.394 (4)C45—C461.386 (4)
C8—C91.375 (4)C46—C471.395 (4)
C9—C101.407 (3)C47—C481.389 (3)
C10—C111.453 (3)C48—C501.494 (4)
C14—C191.392 (3)C48—C491.396 (3)
C14—C151.397 (3)C50—C511.505 (4)
C15—C161.379 (4)C33—H330.9300
C16—C171.397 (3)C34—H340.9300
C17—C181.382 (3)C36—H360.9300
C18—C191.402 (3)C37—H370.9300
C18—C201.506 (3)C38—H380.9300
C20—C211.494 (4)C39—H390.9300
C3—H30.9300C45—H450.9300
C4—H40.9300C46—H460.9300
C6—H60.9300C47—H470.9300
C7—H70.9300C49—H490.9300
C8—H80.9300C51—H51A0.9600
C9—H90.9300C51—H51B0.9600
C15—H150.9300C51—H51C0.9600
O1···N122.854 (4)C41···C46vii3.575 (5)
O1···N132.580 (3)C41···C44vii3.555 (4)
O1···C20i3.336 (4)C44···C40vi3.506 (4)
O1···O22i3.165 (4)C44···C41vi3.555 (4)
O1···C8ii3.398 (4)C44···C34vi3.541 (4)
O1···C21i3.180 (4)C44···C35vi3.485 (4)
O22···C15iii3.256 (4)C45···C32vi3.352 (4)
O22···O1iii3.165 (4)C45···C41vi3.486 (5)
O31···N422.856 (3)C45···O52iv3.256 (4)
O31···N432.575 (3)C46···C41vi3.575 (5)
O31···C50iv3.360 (4)C47···N42vi3.357 (4)
O31···C51iv3.165 (5)C49···C39vi3.582 (5)
O31···O52iv3.180 (4)C49···C35vi3.584 (5)
O31···C38i3.393 (4)C49···C40vi3.349 (4)
O52···C45v3.256 (4)C50···O31v3.360 (4)
O52···O31v3.180 (4)C51···O31v3.165 (5)
O1···H21Ai2.7100C2···H132.4700
O1···H8ii2.7300C4···H36viii2.7500
O1···H131.9100C5···H36viii2.7400
O22···H192.4900C7···H3xiii3.0100
O22···H15iii2.3600C8···H3xiii3.1000
O22···H13iii2.8200C15···H46vii3.0900
O31···H431.9000C15···H47vii3.0900
O31···H38i2.7200C16···H21Aiv3.0800
O31···H51Aiv2.7400C16···H47vii2.9000
O52···H45v2.3600C17···H21C2.8900
O52···H21B2.8600C17···H21B2.9100
O52···H492.4800C17···H47vii3.0200
O52···H43v2.8300C18···H51Cvii2.8300
N12···O12.854 (4)C20···H51Cvii2.8600
N12···C4vi3.379 (4)C21···H172.6200
N12···C5vi3.380 (4)C32···H432.4600
N12···C17vii3.301 (4)C34···H6xi2.7900
N12···C6vi3.377 (4)C35···H6xi2.7600
N12···C16vii3.411 (4)C37···H33x3.0000
N13···C4vi3.110 (4)C38···H33x3.0800
N13···C5vi3.384 (4)C45···H163.0300
N13···O12.580 (3)C46···H163.0200
N13···C16vii3.448 (4)C47···H51C2.8400
N42···C47vii3.357 (4)C47···H51B2.9800
N42···O312.856 (3)C48···H172.9900
N42···C36vi3.397 (4)C50···H21B3.0500
N42···C35vi3.387 (4)C51···H472.6300
N42···C34vi3.382 (4)H3···C7xiv3.0100
N43···C35vi3.397 (4)H3···C8xiv3.1000
N43···O312.575 (3)H4···H62.4500
N43···C34vi3.118 (4)H6···H42.4500
N12···H92.5100H6···C34ix2.7900
N12···H192.4800H6···C35ix2.7600
N42···H392.5000H8···O1x2.7300
N42···H492.4700H9···N122.5100
C2···C15vii3.301 (4)H13···C22.4700
C3···C15vii3.598 (5)H13···H152.3900
C4···N13vii3.110 (4)H13···O22i2.8200
C4···C14vii3.528 (5)H13···O11.9100
C4···N12vii3.379 (4)H15···H132.3900
C4···C36viii3.550 (5)H15···O22i2.3600
C5···N13vii3.384 (4)H16···C463.0200
C5···N12vii3.380 (4)H16···H21Aiv2.4200
C5···C36viii3.577 (5)H16···C453.0300
C5···C14vii3.466 (4)H17···C212.6200
C5···C19vii3.596 (4)H17···C482.9900
C6···C35ix3.595 (5)H17···H21B2.4000
C6···N12vii3.377 (4)H17···H21C2.4500
C6···C34ix3.578 (5)H19···O222.4900
C8···O1x3.398 (4)H19···N122.4800
C9···C19vii3.588 (5)H21A···O1iii2.7100
C10···C19vii3.360 (4)H21A···H16v2.4200
C10···C14vii3.486 (4)H21A···C16v3.0800
C11···C14vii3.541 (5)H21B···C172.9100
C11···C16vii3.513 (5)H21B···C503.0500
C11···C15vii3.436 (4)H21B···O522.8600
C14···C4vi3.528 (5)H21B···H172.4000
C14···C5vi3.466 (4)H21C···C172.8900
C14···C11vi3.541 (5)H21C···H172.4500
C14···C10vi3.486 (4)H33···C37ii3.0000
C15···C3vi3.598 (5)H33···C38ii3.0800
C15···O22i3.256 (4)H34···H362.4700
C15···C2vi3.301 (4)H36···H342.4700
C15···C11vi3.436 (4)H36···C4xii2.7500
C16···N13vi3.448 (4)H36···C5xii2.7400
C16···C11vi3.513 (5)H38···O31iii2.7200
C16···N12vi3.411 (4)H39···N422.5000
C17···N12vi3.301 (4)H43···O311.9000
C19···C5vi3.596 (4)H43···C322.4600
C19···C10vi3.360 (4)H43···H452.3900
C19···C9vi3.588 (5)H43···O52iv2.8300
C20···O1iii3.336 (4)H45···H432.3900
C21···O1iii3.180 (4)H45···O52iv2.3600
C32···C45vii3.352 (4)H46···C15vi3.0900
C34···N42vii3.382 (4)H46···H51Axv2.4800
C34···C6xi3.578 (5)H47···C15vi3.0900
C34···N43vii3.118 (4)H47···C16vi2.9000
C34···C44vii3.541 (4)H47···C17vi3.0200
C35···C44vii3.485 (4)H47···C512.6300
C35···C6xi3.595 (5)H47···H51B2.5700
C35···N43vii3.397 (4)H47···H51C2.3100
C35···N42vii3.387 (4)H49···O522.4800
C35···C49vii3.584 (5)H49···N422.4700
C36···N42vii3.397 (4)H51A···O31v2.7400
C36···C5xii3.577 (5)H51A···H46xvi2.4800
C36···C4xii3.550 (5)H51B···C472.9800
C38···O31iii3.393 (4)H51B···H472.5700
C39···C49vii3.582 (5)H51C···C18vi2.8300
C40···C49vii3.349 (4)H51C···C20vi2.8600
C40···C44vii3.506 (4)H51C···C472.8400
C41···C45vii3.486 (5)H51C···H472.3100
N13—N12—C11120.50 (19)H21A—C21—H21B110.00
N12—N13—C14119.17 (18)C20—C21—H21A109.00
N12—N13—H13120.00C20—C21—H21B109.00
C14—N13—H13120.00C20—C21—H21C109.00
N43—N42—C41119.53 (18)C33—C32—C41117.1 (2)
N42—N43—C44118.67 (17)O31—C32—C41121.1 (2)
N42—N43—H43121.00O31—C32—C33121.7 (2)
C44—N43—H43121.00C32—C33—C34121.8 (2)
O1—C2—C11121.5 (2)C33—C34—C35122.8 (2)
O1—C2—C3121.2 (2)C34—C35—C36121.5 (2)
C3—C2—C11117.3 (2)C34—C35—C40119.0 (2)
C2—C3—C4121.1 (2)C36—C35—C40119.6 (2)
C3—C4—C5123.1 (2)C35—C36—C37120.9 (2)
C4—C5—C6121.0 (2)C36—C37—C38119.7 (2)
C6—C5—C10119.9 (2)C37—C38—C39120.5 (2)
C4—C5—C10119.2 (2)C38—C39—C40121.3 (2)
C5—C6—C7121.0 (2)C35—C40—C39118.0 (2)
C6—C7—C8119.2 (2)C35—C40—C41119.1 (2)
C7—C8—C9121.0 (2)C39—C40—C41122.9 (2)
C8—C9—C10120.4 (2)N42—C41—C32124.1 (2)
C5—C10—C9118.5 (2)C32—C41—C40120.1 (2)
C5—C10—C11119.1 (2)N42—C41—C40115.7 (2)
C9—C10—C11122.4 (2)N43—C44—C49121.1 (2)
C2—C11—C10120.2 (2)C45—C44—C49120.8 (2)
N12—C11—C2123.2 (2)N43—C44—C45118.1 (2)
N12—C11—C10116.5 (2)C44—C45—C46119.4 (2)
C15—C14—C19120.7 (2)C45—C46—C47120.6 (2)
N13—C14—C19121.1 (2)C46—C47—C48119.5 (2)
N13—C14—C15118.24 (19)C49—C48—C50117.5 (2)
C14—C15—C16119.6 (2)C47—C48—C49120.5 (2)
C15—C16—C17120.3 (2)C47—C48—C50122.0 (2)
C16—C17—C18120.2 (2)C44—C49—C48119.1 (2)
C19—C18—C20117.8 (2)C48—C50—C51118.9 (2)
C17—C18—C20122.1 (2)O52—C50—C48120.4 (2)
C17—C18—C19120.1 (2)O52—C50—C51120.7 (2)
C14—C19—C18119.1 (2)C32—C33—H33119.00
C18—C20—C21118.5 (2)C34—C33—H33119.00
O22—C20—C18120.0 (2)C33—C34—H34119.00
O22—C20—C21121.5 (2)C35—C34—H34119.00
C4—C3—H3119.00C35—C36—H36119.00
C2—C3—H3120.00C37—C36—H36120.00
C3—C4—H4118.00C36—C37—H37120.00
C5—C4—H4118.00C38—C37—H37120.00
C5—C6—H6120.00C37—C38—H38120.00
C7—C6—H6119.00C39—C38—H38120.00
C6—C7—H7120.00C38—C39—H39119.00
C8—C7—H7120.00C40—C39—H39119.00
C9—C8—H8120.00C44—C45—H45120.00
C7—C8—H8119.00C46—C45—H45120.00
C8—C9—H9120.00C45—C46—H46120.00
C10—C9—H9120.00C47—C46—H46120.00
C16—C15—H15120.00C46—C47—H47120.00
C14—C15—H15120.00C48—C47—H47120.00
C17—C16—H16120.00C44—C49—H49120.00
C15—C16—H16120.00C48—C49—H49120.00
C18—C17—H17120.00C50—C51—H51A109.00
C16—C17—H17120.00C50—C51—H51B109.00
C14—C19—H19120.00C50—C51—H51C109.00
C18—C19—H19120.00H51A—C51—H51B109.00
H21A—C21—H21C109.00H51A—C51—H51C109.00
H21B—C21—H21C109.00H51B—C51—H51C109.00
C11—N12—N13—C14179.7 (2)C19—C18—C20—C21171.1 (2)
N13—N12—C11—C21.2 (3)C17—C18—C19—C140.7 (4)
N13—N12—C11—C10178.94 (19)C20—C18—C19—C14179.8 (2)
N12—N13—C14—C15177.8 (2)C17—C18—C20—O22169.1 (2)
N12—N13—C14—C191.3 (3)C17—C18—C20—C219.9 (4)
C41—N42—N43—C44179.4 (2)O31—C32—C33—C34178.2 (2)
N43—N42—C41—C321.3 (3)C41—C32—C33—C342.7 (3)
N43—N42—C41—C40179.2 (2)O31—C32—C41—N426.0 (4)
N42—N43—C44—C45179.7 (2)O31—C32—C41—C40176.2 (2)
N42—N43—C44—C490.5 (3)C33—C32—C41—N42173.1 (2)
C3—C2—C11—C104.6 (3)C33—C32—C41—C404.7 (3)
O1—C2—C11—N125.5 (4)C32—C33—C34—C350.1 (4)
O1—C2—C3—C4178.7 (2)C33—C34—C35—C36179.3 (2)
C11—C2—C3—C42.7 (4)C33—C34—C35—C400.5 (4)
O1—C2—C11—C10176.8 (2)C34—C35—C36—C37179.8 (2)
C3—C2—C11—N12173.1 (2)C40—C35—C36—C370.1 (4)
C2—C3—C4—C50.1 (4)C34—C35—C40—C39179.8 (2)
C3—C4—C5—C6179.3 (2)C34—C35—C40—C411.5 (3)
C3—C4—C5—C100.7 (4)C36—C35—C40—C390.4 (3)
C4—C5—C10—C111.3 (3)C36—C35—C40—C41178.7 (2)
C4—C5—C6—C7179.8 (2)C35—C36—C37—C380.2 (4)
C6—C5—C10—C90.4 (3)C36—C37—C38—C390.0 (4)
C6—C5—C10—C11178.8 (2)C37—C38—C39—C400.5 (4)
C10—C5—C6—C70.1 (3)C38—C39—C40—C350.7 (4)
C4—C5—C10—C9179.7 (2)C38—C39—C40—C41178.9 (2)
C5—C6—C7—C80.4 (4)C35—C40—C41—N42173.8 (2)
C6—C7—C8—C90.2 (4)C35—C40—C41—C324.2 (3)
C7—C8—C9—C100.3 (4)C39—C40—C41—N424.4 (3)
C8—C9—C10—C50.6 (3)C39—C40—C41—C32177.7 (2)
C8—C9—C10—C11179.0 (2)N43—C44—C45—C46179.2 (2)
C5—C10—C11—C23.9 (3)C49—C44—C45—C460.0 (3)
C9—C10—C11—N124.5 (3)N43—C44—C49—C48178.2 (2)
C5—C10—C11—N12173.9 (2)C45—C44—C49—C481.0 (3)
C9—C10—C11—C2177.7 (2)C44—C45—C46—C470.7 (4)
N13—C14—C15—C16178.9 (2)C45—C46—C47—C480.4 (4)
C19—C14—C15—C160.3 (4)C46—C47—C48—C490.6 (3)
C15—C14—C19—C181.3 (4)C46—C47—C48—C50179.1 (2)
N13—C14—C19—C18177.9 (2)C47—C48—C49—C441.3 (3)
C14—C15—C16—C171.3 (4)C50—C48—C49—C44179.9 (2)
C15—C16—C17—C181.9 (4)C47—C48—C50—O52167.2 (3)
C16—C17—C18—C190.9 (4)C47—C48—C50—C5111.7 (4)
C16—C17—C18—C20178.2 (2)C49—C48—C50—O5211.3 (4)
C19—C18—C20—O2210.0 (4)C49—C48—C50—C51169.8 (2)
Symmetry codes: (i) x+1/2, y+1, z; (ii) x+1/2, y, z; (iii) x1/2, y+1, z; (iv) x+1/2, y+2, z; (v) x1/2, y+2, z; (vi) x, y+1, z; (vii) x, y1, z; (viii) x+3/2, y, z+1/2; (ix) x+3/2, y1, z+1/2; (x) x1/2, y, z; (xi) x+3/2, y+1, z1/2; (xii) x+3/2, y, z1/2; (xiii) x1/2, y1, z; (xiv) x+1/2, y1, z; (xv) x+1/2, y+3, z; (xvi) x1/2, y+3, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13···O10.861.912.580 (3)134
N43—H43···O310.861.902.575 (3)134
C15—H15···O22i0.932.363.256 (4)162
C45—H45···O52iv0.932.363.256 (4)162
Symmetry codes: (i) x+1/2, y+1, z; (iv) x+1/2, y+2, z.

Experimental details

Crystal data
Chemical formulaC18H14N2O2
Mr290.31
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)150
a, b, c (Å)15.965 (5), 5.807 (5), 30.185 (5)
V3)2798 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.26 × 0.22 × 0.17
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.830, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
13123, 5097, 4621
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.120, 1.03
No. of reflections5097
No. of parameters399
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.22

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13···O10.861.912.580 (3)134
N43—H43···O310.861.902.575 (3)134
C15—H15···O22i0.932.363.256 (4)162
C45—H45···O52ii0.932.363.256 (4)162
Symmetry codes: (i) x+1/2, y+1, z; (ii) x+1/2, y+2, z.
 

Acknowledgements

We thank all researchers of the CHEMS Research Unit of the University of Constantine, Algeria, for the valuable assistance they have provided us throughout the realisation of this work. We also thank Dr. L. Ouahab, Director of Research at the Laboratory UMR LCSIM 6511, CNRS, Rennes I (France), for his valuable collaboration in the data collection and analysis.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLee, S. H., Kim, J. Y., Ko, J., Lee, J. Y. & Kim, J. S. (2004). J. Org. Chem. 69, 2902–2905.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOueslati, F., Dumazet-Bonnamour, I. & Lamartine, R. (2004). New J. Chem. 28, 1575–1578.  Web of Science CrossRef CAS Google Scholar
First citationRãdulescu, C., Hossu, A. M. & Ionitã, I. (2006). Dyes Pigm. 71, 123–129.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, M., Funabiki, K. & Matsui, M. (2003). Dyes Pigm. 57, 77–86.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds