organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-4-(naphthalen-2-yl)-3a-nitro-3,3a,4,9b-tetra­hydro-2H-spiro­[chromeno[3,4-c]pyrrole-1,3′-indolin]-2′-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 26 May 2013; accepted 3 June 2013; online 8 June 2013)

In the title compound, C29H23N3O4, the 2-methylpyrrolidine ring adopts a twist conformation on the N—C bond involving the spiro C atom, while the hydropyran ring adopts an envelope conformation with the methine C atom bonded to the O atom as the flap. The mean plane of the indoline-2-one ring system is almost perpendicular to the mean plane of the pyrrolidine ring, making a dihedral angle of 89.73 (8)°. The latter ring makes dihedral angles of 47.80 (8) with the naphthalene ring system and 32.38 (8)° with the hydropyran ring mean plane. There is an intra­molecular C-H⋯O hydrogen bond involving the indoline-2-one O atom. In the crystal, adjacent mol­ecules are linked via N—H⋯O hydrogen bonds, forming chains propagating along [100]. The chains are linked via weak C—H⋯O hydrogen bonds, forming two-dimensional networks, lying parallel to (101), and consolidated by C—H⋯π inter­actions.

Related literature

For the biological importance of 4H-chromene derivatives, see: Cai (2007[Cai, S. X. (2007). Recent Patents Anticancer Drug Discov. 2, 79-101.], 2008[Cai, S. X. (2008). Bioorg. Med. Chem. Lett. 18, 603-607.]); Cai et al. (2006[Cai, S. X., Drewe, J. & Kasibhatla, S. (2006). Curr. Med. Chem. 13, 2627-2644.]); Gabor (1988[Gabor, M. (1988). The Pharmacology of Benzopyrone Derivatives and Related Compounds, pp. 91-126. Budapest: Akademiai Kiado.]); Brooks (1998[Brooks, G. T. (1998). Pestic. Sci. 22, 41-50.]); Valenti et al. (1993[Valenti, P., Da Re, P., Rampa, A., Montanari, P., Carrara, M. & Cima, L. (1993). Anticancer Drug. Des. 8, 349-360.]); Hyana & Saimoto (1987[Hyana, T. & Saimoto, H. (1987). Jpn. Patent JP 621 812 768.]); Tang et al. (2007[Tang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437-o1438.]). For applications of indoline-2-one and its derivatives as precursors in the synthesis of pharmaceuticals, see: Colgan et al. (1996[Colgan, S. T., Haggan, G. R. & Reed, R. H. (1996). J. Pharm. Biomed. Anal. 14, 825-833.]).

[Scheme 1]

Experimental

Crystal data
  • C29H23N3O4

  • Mr = 477.50

  • Monoclinic, P 21 /n

  • a = 9.4359 (6) Å

  • b = 16.5086 (11) Å

  • c = 15.1964 (10) Å

  • β = 96.363 (4)°

  • V = 2352.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]) Tmin = 0.973, Tmax = 0.982

  • 22349 measured reflections

  • 5856 independent reflections

  • 3862 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.141

  • S = 1.03

  • 5856 reflections

  • 329 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C10–C14/C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O4 0.98 2.44 3.250 (2) 140
N3—H3A⋯O3i 0.87 (2) 2.52 (2) 3.220 (2) 138 (2)
C2—H2⋯O3ii 0.93 2.58 3.156 (2) 121
C3—H3⋯Cg1ii 0.93 2.57 3.473 (2) 164
Symmetry codes: (i) x-1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

4H-chromenes are biologically important compounds used as synthetic ligands in the design of drugs and discovery processes. They exhibit numerous biological and pharmacological properties, such as anti-viral, anti-fungal, antiinflammatory, anti- diabetic, cardionthonic, anti anaphylactic and anti-cancer (Cai, 2008, 2007; Cai et al., 2006; Gabor, 1988; Brooks, 1998; Valenti et al., 1993; Hyana & Saimoto, 1987; Tang et al., 2007). Indoline-2-one and its derivatives have been used as precursors to synthesis pharmaceuticals (Colgan et al., 1996). Continuing our interest in such compounds we have synthesized the title compound and report herein on its crystal structure.

In the title compound, Fig. 1, the pyrrole ring (N2/C7/C8/C20/C21) adopts a twist conformation on bond C21-N2, while the pyran ring (O1/C1/C6-C9) adopts a envelope conformation with atom C9 as the flap. The pyrrole ring (N2/C7/C8/C20/C21) mean plane makes a dihedral angle of 89.73 (8)° with the mean plane of the indoline-2-one ring system (N3/C21-C28), which shows that they are almost orthogonal to each other. The same pyrrole ring mean plane makes dihedral angles of 47.80 (8) Å with the naphthalene ring system (C10-C19) and 32.38 (8)° with the pyran ring mean plane (O1/C1/C6-C9), and the oxygen atom O4 attached to the pyrrole ring deviates by -0.0886 (2) Å. The nitro group (N1/O2/O3) is inclined to the mean plane of the pyrrole ring, to which it is attached, with a dihedral angle of 50.76 (19) °.

In the crystal, adjacent molecules are linked via N—H···O hydrogen bonds forming chains propagating along [100]; see Table 1 and Fig. 2. The chains are linked via weak C-H···O hydrogen bonds forming two-dimensional networks, lying parallel to (101), and consolidated by C-H···π interactions (Table 1).

Related literature top

For the biological importance of 4H-chromene derivatives, see: Cai (2007, 2008); Cai et al. (2006); Gabor (1988); Brooks (1998); Valenti et al. (1993); Hyana & Saimoto (1987); Tang et al. (2007). For applications of indoline-2-one and its derivatives as precursors in the synthesis of pharmaceuticals, see: Colgan et al. (1996).

Experimental top

To a solution of isatin (1 equiv) and sarcosine (1.4 equiv) in dry toluene, was added 2-(naphthalen-1-yl)-3-nitro-2H-chromene (1 equiv) under a nitrogen atmosphere. The reaction mixture was refluxed for 24h in a Dean-Stark apparatus to give the cycloadducts. After completion of the reaction as indicated by TLC, the solvent was evaporated under reduced pressure. The crude product was extracted with dichloromethane. The organic layer was dried with anhydrous sodium sulphate and concentrated in vacuo. The crude product obtained was purified by column chromatography using hexane/EtOAc (7:3) as eluent. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

The NH H atom was located in a difference Fourier map and refined with a distance restraint of N-H = 0.88 (1) Å with Uiso(H) = 1.2Ueq(N). The C-bound H atoms were placed in calculated positions and treated as riding atoms: C—H = 0.93 - 0.97 Å, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Structure description top

4H-chromenes are biologically important compounds used as synthetic ligands in the design of drugs and discovery processes. They exhibit numerous biological and pharmacological properties, such as anti-viral, anti-fungal, antiinflammatory, anti- diabetic, cardionthonic, anti anaphylactic and anti-cancer (Cai, 2008, 2007; Cai et al., 2006; Gabor, 1988; Brooks, 1998; Valenti et al., 1993; Hyana & Saimoto, 1987; Tang et al., 2007). Indoline-2-one and its derivatives have been used as precursors to synthesis pharmaceuticals (Colgan et al., 1996). Continuing our interest in such compounds we have synthesized the title compound and report herein on its crystal structure.

In the title compound, Fig. 1, the pyrrole ring (N2/C7/C8/C20/C21) adopts a twist conformation on bond C21-N2, while the pyran ring (O1/C1/C6-C9) adopts a envelope conformation with atom C9 as the flap. The pyrrole ring (N2/C7/C8/C20/C21) mean plane makes a dihedral angle of 89.73 (8)° with the mean plane of the indoline-2-one ring system (N3/C21-C28), which shows that they are almost orthogonal to each other. The same pyrrole ring mean plane makes dihedral angles of 47.80 (8) Å with the naphthalene ring system (C10-C19) and 32.38 (8)° with the pyran ring mean plane (O1/C1/C6-C9), and the oxygen atom O4 attached to the pyrrole ring deviates by -0.0886 (2) Å. The nitro group (N1/O2/O3) is inclined to the mean plane of the pyrrole ring, to which it is attached, with a dihedral angle of 50.76 (19) °.

In the crystal, adjacent molecules are linked via N—H···O hydrogen bonds forming chains propagating along [100]; see Table 1 and Fig. 2. The chains are linked via weak C-H···O hydrogen bonds forming two-dimensional networks, lying parallel to (101), and consolidated by C-H···π interactions (Table 1).

For the biological importance of 4H-chromene derivatives, see: Cai (2007, 2008); Cai et al. (2006); Gabor (1988); Brooks (1998); Valenti et al. (1993); Hyana & Saimoto (1987); Tang et al. (2007). For applications of indoline-2-one and its derivatives as precursors in the synthesis of pharmaceuticals, see: Colgan et al. (1996).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial view, ca. perpendicular to (110), of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines - see Table 1 for details; H-atoms not involved in hydrogen bonding have been omitted for clarity.
2-Methyl-4-(naphthalen-2-yl)-3a-nitro-3,3a,4,9b-tetrahydro-2H-spiro[chromeno[3,4-c]pyrrole-1,3'-indolin]-2'-one top
Crystal data top
C29H23N3O4F(000) = 1000
Mr = 477.50Dx = 1.348 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5856 reflections
a = 9.4359 (6) Åθ = 1.8–28.3°
b = 16.5086 (11) ŵ = 0.09 mm1
c = 15.1964 (10) ÅT = 293 K
β = 96.363 (4)°Block, colourless
V = 2352.6 (3) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5856 independent reflections
Radiation source: fine-focus sealed tube3862 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω and φ scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.973, Tmax = 0.982k = 2222
22349 measured reflectionsl = 1420
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0641P)2 + 0.4707P]
where P = (Fo2 + 2Fc2)/3
5856 reflections(Δ/σ)max < 0.001
329 parametersΔρmax = 0.27 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C29H23N3O4V = 2352.6 (3) Å3
Mr = 477.50Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.4359 (6) ŵ = 0.09 mm1
b = 16.5086 (11) ÅT = 293 K
c = 15.1964 (10) Å0.30 × 0.25 × 0.20 mm
β = 96.363 (4)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5856 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3862 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.982Rint = 0.035
22349 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.27 e Å3
5856 reflectionsΔρmin = 0.18 e Å3
329 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.48112 (16)0.19305 (10)0.41572 (11)0.0398 (4)
C20.44179 (19)0.19055 (11)0.32492 (11)0.0499 (4)
H20.47910.22790.28790.060*
C30.3479 (2)0.13283 (12)0.29034 (13)0.0568 (5)
H30.32040.13140.22970.068*
C40.29370 (19)0.07669 (13)0.34465 (13)0.0587 (5)
H40.23000.03750.32060.070*
C50.33401 (17)0.07866 (12)0.43511 (12)0.0510 (4)
H50.29860.03990.47140.061*
C60.42704 (15)0.13804 (10)0.47241 (11)0.0389 (4)
C70.47639 (14)0.13939 (9)0.57035 (10)0.0344 (3)
H70.53040.08930.58360.041*
C80.57755 (15)0.21006 (9)0.59985 (10)0.0336 (3)
C90.56344 (17)0.28055 (9)0.53218 (10)0.0379 (3)
H90.46690.30270.53120.046*
C100.66706 (18)0.34982 (10)0.55074 (10)0.0436 (4)
C110.8044 (2)0.34132 (13)0.53052 (12)0.0574 (5)
H110.83090.29360.50420.069*
C120.9055 (3)0.40300 (18)0.54864 (15)0.0809 (7)
H120.99880.39550.53590.097*
C130.8670 (3)0.47382 (17)0.58491 (16)0.0879 (9)
H130.93490.51420.59740.105*
C140.7272 (3)0.48697 (12)0.60376 (13)0.0698 (6)
C150.6841 (5)0.56123 (15)0.64053 (17)0.0970 (10)
H150.75120.60200.65310.116*
C160.5499 (5)0.57387 (15)0.65736 (19)0.1058 (11)
H160.52500.62310.68130.127*
C170.4470 (4)0.51399 (14)0.63942 (16)0.0844 (8)
H170.35370.52370.65070.101*
C180.4821 (3)0.44085 (11)0.60523 (13)0.0609 (5)
H180.41230.40130.59400.073*
C190.6225 (2)0.42464 (10)0.58675 (11)0.0506 (4)
C200.54002 (18)0.23565 (10)0.69127 (11)0.0446 (4)
H20A0.62500.23990.73320.054*
H20B0.49060.28730.68830.054*
C210.36114 (16)0.14308 (9)0.63575 (11)0.0403 (4)
C220.28572 (16)0.06403 (10)0.64729 (11)0.0430 (4)
C230.33684 (19)0.00967 (11)0.67741 (14)0.0554 (5)
H230.43290.01640.69740.066*
C240.2425 (2)0.07411 (12)0.67744 (16)0.0686 (6)
H240.27560.12450.69800.082*
C250.1010 (2)0.06438 (13)0.64754 (17)0.0713 (6)
H250.03970.10850.64740.086*
C260.0477 (2)0.00972 (14)0.61763 (16)0.0665 (6)
H260.04820.01640.59730.080*
C270.14211 (17)0.07308 (11)0.61905 (13)0.0525 (5)
C280.23476 (18)0.19965 (12)0.60220 (14)0.0554 (5)
C290.3701 (3)0.19088 (14)0.79120 (15)0.0748 (7)
H29A0.30390.23390.77480.112*
H29B0.43660.20800.84010.112*
H29C0.31920.14410.80810.112*
N10.72963 (13)0.17834 (8)0.60492 (9)0.0404 (3)
N20.44715 (15)0.17065 (8)0.71623 (9)0.0451 (3)
N30.11545 (15)0.15370 (11)0.59269 (13)0.0669 (5)
H3A0.0310 (14)0.1754 (13)0.5819 (15)0.080*
O10.57898 (12)0.25128 (7)0.44517 (7)0.0437 (3)
O20.75903 (12)0.13501 (8)0.54490 (9)0.0585 (4)
O30.81715 (14)0.20033 (10)0.66412 (10)0.0701 (4)
O40.24095 (15)0.27211 (9)0.58777 (12)0.0780 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0412 (8)0.0353 (8)0.0413 (9)0.0053 (7)0.0030 (6)0.0016 (7)
C20.0618 (11)0.0434 (10)0.0418 (9)0.0090 (8)0.0057 (8)0.0012 (8)
C30.0593 (11)0.0611 (12)0.0460 (10)0.0100 (10)0.0116 (8)0.0120 (9)
C40.0464 (9)0.0657 (13)0.0619 (12)0.0070 (9)0.0040 (8)0.0248 (10)
C50.0434 (8)0.0531 (11)0.0569 (11)0.0079 (8)0.0074 (8)0.0123 (9)
C60.0338 (7)0.0381 (8)0.0441 (9)0.0032 (6)0.0006 (6)0.0069 (7)
C70.0323 (7)0.0292 (7)0.0421 (8)0.0012 (6)0.0061 (6)0.0014 (6)
C80.0342 (7)0.0323 (7)0.0347 (7)0.0004 (6)0.0050 (6)0.0010 (6)
C90.0444 (8)0.0334 (8)0.0361 (8)0.0005 (6)0.0048 (6)0.0006 (6)
C100.0598 (10)0.0374 (9)0.0333 (8)0.0099 (8)0.0039 (7)0.0049 (7)
C110.0649 (11)0.0593 (12)0.0501 (10)0.0193 (9)0.0156 (9)0.0055 (9)
C120.0780 (14)0.098 (2)0.0683 (14)0.0452 (14)0.0160 (11)0.0106 (14)
C130.122 (2)0.0761 (17)0.0643 (14)0.0620 (17)0.0051 (14)0.0065 (13)
C140.1206 (19)0.0442 (11)0.0417 (10)0.0297 (12)0.0040 (11)0.0094 (9)
C150.182 (3)0.0418 (14)0.0624 (15)0.0313 (18)0.0059 (18)0.0028 (11)
C160.209 (4)0.0352 (13)0.0693 (17)0.0116 (19)0.004 (2)0.0054 (11)
C170.144 (2)0.0465 (13)0.0619 (14)0.0291 (14)0.0072 (14)0.0016 (11)
C180.0948 (15)0.0369 (10)0.0502 (11)0.0115 (10)0.0044 (10)0.0026 (8)
C190.0856 (13)0.0325 (9)0.0323 (8)0.0086 (9)0.0001 (8)0.0070 (7)
C200.0548 (9)0.0393 (9)0.0418 (9)0.0063 (7)0.0141 (7)0.0039 (7)
C210.0372 (7)0.0332 (8)0.0525 (10)0.0020 (6)0.0130 (7)0.0025 (7)
C220.0388 (8)0.0383 (9)0.0543 (10)0.0007 (7)0.0160 (7)0.0016 (7)
C230.0460 (9)0.0426 (10)0.0796 (13)0.0021 (8)0.0165 (9)0.0083 (9)
C240.0641 (12)0.0389 (10)0.1073 (18)0.0027 (9)0.0289 (12)0.0067 (11)
C250.0616 (12)0.0537 (13)0.1026 (18)0.0186 (10)0.0268 (12)0.0024 (12)
C260.0435 (9)0.0698 (15)0.0872 (15)0.0114 (9)0.0115 (9)0.0063 (12)
C270.0388 (8)0.0523 (11)0.0687 (12)0.0016 (8)0.0162 (8)0.0074 (9)
C280.0435 (9)0.0467 (10)0.0795 (13)0.0098 (8)0.0225 (9)0.0116 (10)
C290.0996 (16)0.0645 (13)0.0693 (13)0.0159 (12)0.0498 (12)0.0099 (11)
N10.0365 (6)0.0426 (8)0.0416 (7)0.0025 (6)0.0017 (6)0.0047 (6)
N20.0553 (8)0.0386 (8)0.0443 (8)0.0062 (6)0.0185 (6)0.0018 (6)
N30.0339 (7)0.0602 (11)0.1080 (14)0.0085 (7)0.0141 (8)0.0250 (10)
O10.0572 (7)0.0395 (6)0.0337 (6)0.0071 (5)0.0024 (5)0.0003 (5)
O20.0446 (6)0.0695 (9)0.0625 (8)0.0110 (6)0.0109 (6)0.0121 (7)
O30.0476 (7)0.0900 (11)0.0677 (9)0.0019 (7)0.0162 (6)0.0144 (8)
O40.0572 (8)0.0453 (8)0.1352 (14)0.0152 (6)0.0277 (8)0.0235 (8)
Geometric parameters (Å, º) top
C1—O11.3731 (19)C16—C171.391 (4)
C1—C61.387 (2)C16—H160.9300
C1—C21.389 (2)C17—C181.369 (3)
C2—C31.366 (3)C17—H170.9300
C2—H20.9300C18—C191.410 (3)
C3—C41.377 (3)C18—H180.9300
C3—H30.9300C20—N21.462 (2)
C4—C51.385 (3)C20—H20A0.9700
C4—H40.9300C20—H20B0.9700
C5—C61.394 (2)C21—N21.464 (2)
C5—H50.9300C21—C221.506 (2)
C6—C71.510 (2)C21—C281.555 (2)
C7—C81.542 (2)C22—C231.369 (2)
C7—C211.5535 (19)C22—C271.383 (2)
C7—H70.9800C23—C241.387 (3)
C8—N11.5215 (19)C23—H230.9300
C8—C201.531 (2)C24—C251.371 (3)
C8—C91.549 (2)C24—H240.9300
C9—O11.4304 (18)C25—C261.380 (3)
C9—C101.511 (2)C25—H250.9300
C9—H90.9800C26—C271.372 (3)
C10—C111.371 (3)C26—H260.9300
C10—C191.433 (2)C27—N31.405 (2)
C11—C121.402 (3)C28—O41.219 (2)
C11—H110.9300C28—N31.352 (2)
C12—C131.359 (4)C29—N21.456 (2)
C12—H120.9300C29—H29A0.9600
C13—C141.398 (4)C29—H29B0.9600
C13—H130.9300C29—H29C0.9600
C14—C151.425 (4)N1—O31.2077 (18)
C14—C191.430 (3)N1—O21.2151 (17)
C15—C161.336 (5)N3—H3A0.872 (9)
C15—H150.9300
O1—C1—C6122.43 (14)C18—C17—H17119.7
O1—C1—C2116.13 (15)C16—C17—H17119.7
C6—C1—C2121.41 (15)C17—C18—C19121.0 (2)
C3—C2—C1119.56 (18)C17—C18—H18119.5
C3—C2—H2120.2C19—C18—H18119.5
C1—C2—H2120.2C18—C19—C14118.22 (19)
C2—C3—C4120.48 (17)C18—C19—C10124.17 (17)
C2—C3—H3119.8C14—C19—C10117.60 (19)
C4—C3—H3119.8N2—C20—C8103.81 (12)
C3—C4—C5119.97 (17)N2—C20—H20A111.0
C3—C4—H4120.0C8—C20—H20A111.0
C5—C4—H4120.0N2—C20—H20B111.0
C4—C5—C6120.76 (18)C8—C20—H20B111.0
C4—C5—H5119.6H20A—C20—H20B109.0
C6—C5—H5119.6N2—C21—C22113.42 (14)
C1—C6—C5117.79 (15)N2—C21—C7100.61 (12)
C1—C6—C7120.54 (13)C22—C21—C7114.45 (13)
C5—C6—C7121.53 (15)N2—C21—C28114.91 (14)
C6—C7—C8114.27 (12)C22—C21—C28101.74 (13)
C6—C7—C21118.03 (12)C7—C21—C28112.30 (13)
C8—C7—C21103.83 (12)C23—C22—C27119.77 (16)
C6—C7—H7106.7C23—C22—C21130.97 (15)
C8—C7—H7106.7C27—C22—C21109.24 (15)
C21—C7—H7106.7C22—C23—C24118.64 (18)
N1—C8—C20111.16 (12)C22—C23—H23120.7
N1—C8—C7107.71 (12)C24—C23—H23120.7
C20—C8—C7105.94 (11)C25—C24—C23120.8 (2)
N1—C8—C9107.66 (11)C25—C24—H24119.6
C20—C8—C9112.57 (12)C23—C24—H24119.6
C7—C8—C9111.74 (12)C24—C25—C26121.22 (19)
O1—C9—C10107.32 (12)C24—C25—H25119.4
O1—C9—C8110.48 (12)C26—C25—H25119.4
C10—C9—C8116.01 (13)C27—C26—C25117.29 (18)
O1—C9—H9107.6C27—C26—H26121.4
C10—C9—H9107.6C25—C26—H26121.4
C8—C9—H9107.6C26—C27—C22122.29 (18)
C11—C10—C19119.88 (16)C26—C27—N3128.49 (17)
C11—C10—C9119.25 (16)C22—C27—N3109.22 (15)
C19—C10—C9120.85 (15)O4—C28—N3125.97 (17)
C10—C11—C12121.4 (2)O4—C28—C21126.73 (16)
C10—C11—H11119.3N3—C28—C21107.29 (15)
C12—C11—H11119.3N2—C29—H29A109.5
C13—C12—C11119.8 (2)N2—C29—H29B109.5
C13—C12—H12120.1H29A—C29—H29B109.5
C11—C12—H12120.1N2—C29—H29C109.5
C12—C13—C14121.2 (2)H29A—C29—H29C109.5
C12—C13—H13119.4H29B—C29—H29C109.5
C14—C13—H13119.4O3—N1—O2122.82 (14)
C13—C14—C15122.1 (2)O3—N1—C8119.83 (14)
C13—C14—C19120.0 (2)O2—N1—C8117.20 (13)
C15—C14—C19117.9 (3)C29—N2—C20113.58 (14)
C16—C15—C14121.8 (3)C29—N2—C21116.52 (15)
C16—C15—H15119.1C20—N2—C21107.71 (12)
C14—C15—H15119.1C28—N3—C27112.36 (15)
C15—C16—C17120.5 (3)C28—N3—H3A121.5 (15)
C15—C16—H16119.8C27—N3—H3A125.0 (15)
C17—C16—H16119.8C1—O1—C9113.80 (12)
C18—C17—C16120.6 (3)
O1—C1—C2—C3178.19 (15)C7—C8—C20—N211.54 (16)
C6—C1—C2—C30.0 (2)C9—C8—C20—N2133.94 (13)
C1—C2—C3—C40.8 (3)C6—C7—C21—N2161.75 (13)
C2—C3—C4—C50.2 (3)C8—C7—C21—N234.11 (14)
C3—C4—C5—C61.3 (3)C6—C7—C21—C2276.29 (18)
O1—C1—C6—C5176.63 (14)C8—C7—C21—C22156.07 (13)
C2—C1—C6—C51.5 (2)C6—C7—C21—C2839.06 (19)
O1—C1—C6—C70.9 (2)C8—C7—C21—C2888.58 (16)
C2—C1—C6—C7177.16 (14)N2—C21—C22—C2354.1 (2)
C4—C5—C6—C12.1 (2)C7—C21—C22—C2360.5 (3)
C4—C5—C6—C7177.75 (15)C28—C21—C22—C23178.11 (19)
C1—C6—C7—C85.17 (19)N2—C21—C22—C27127.56 (15)
C5—C6—C7—C8179.29 (14)C7—C21—C22—C27117.77 (16)
C1—C6—C7—C21127.66 (15)C28—C21—C22—C273.58 (18)
C5—C6—C7—C2156.8 (2)C27—C22—C23—C241.0 (3)
C6—C7—C8—N197.00 (14)C21—C22—C23—C24177.17 (18)
C21—C7—C8—N1133.06 (12)C22—C23—C24—C250.3 (3)
C6—C7—C8—C20143.98 (13)C23—C24—C25—C260.8 (4)
C21—C7—C8—C2014.04 (15)C24—C25—C26—C270.0 (3)
C6—C7—C8—C921.05 (16)C25—C26—C27—C221.3 (3)
C21—C7—C8—C9108.89 (13)C25—C26—C27—N3179.9 (2)
N1—C8—C9—O165.62 (15)C23—C22—C27—C261.9 (3)
C20—C8—C9—O1171.52 (12)C21—C22—C27—C26176.67 (18)
C7—C8—C9—O152.45 (15)C23—C22—C27—N3179.16 (17)
N1—C8—C9—C1056.78 (16)C21—C22—C27—N32.3 (2)
C20—C8—C9—C1066.07 (17)N2—C21—C28—O452.8 (3)
C7—C8—C9—C10174.86 (12)C22—C21—C28—O4175.7 (2)
O1—C9—C10—C1145.55 (19)C7—C21—C28—O461.4 (3)
C8—C9—C10—C1178.51 (18)N2—C21—C28—N3126.64 (16)
O1—C9—C10—C19132.72 (15)C22—C21—C28—N33.67 (19)
C8—C9—C10—C19103.22 (17)C7—C21—C28—N3119.16 (17)
C19—C10—C11—C123.4 (3)C20—C8—N1—O325.4 (2)
C9—C10—C11—C12178.27 (17)C7—C8—N1—O3141.06 (15)
C10—C11—C12—C131.7 (3)C9—C8—N1—O398.29 (16)
C11—C12—C13—C140.7 (4)C20—C8—N1—O2158.88 (14)
C12—C13—C14—C15179.0 (2)C7—C8—N1—O243.25 (17)
C12—C13—C14—C191.4 (3)C9—C8—N1—O277.40 (17)
C13—C14—C15—C16179.1 (3)C8—C20—N2—C29165.99 (17)
C19—C14—C15—C161.3 (4)C8—C20—N2—C2135.37 (16)
C14—C15—C16—C170.1 (4)C22—C21—N2—C2964.53 (19)
C15—C16—C17—C180.8 (4)C7—C21—N2—C29172.78 (15)
C16—C17—C18—C190.5 (3)C28—C21—N2—C2951.9 (2)
C17—C18—C19—C140.7 (3)C22—C21—N2—C20166.51 (12)
C17—C18—C19—C10179.78 (18)C7—C21—N2—C2043.82 (15)
C13—C14—C19—C18178.90 (19)C28—C21—N2—C2077.02 (16)
C15—C14—C19—C181.5 (3)O4—C28—N3—C27176.8 (2)
C13—C14—C19—C100.3 (3)C21—C28—N3—C272.6 (2)
C15—C14—C19—C10179.30 (17)C26—C27—N3—C28179.2 (2)
C11—C10—C19—C18176.46 (17)C22—C27—N3—C280.2 (2)
C9—C10—C19—C181.8 (2)C6—C1—O1—C932.43 (19)
C11—C10—C19—C142.7 (2)C2—C1—O1—C9149.38 (14)
C9—C10—C19—C14179.08 (15)C10—C9—O1—C1173.96 (13)
N1—C8—C20—N2105.18 (14)C8—C9—O1—C158.67 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C14/C19 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9···O40.982.443.250 (2)140
N3—H3A···O3i0.87 (2)2.52 (2)3.220 (2)138 (2)
C2—H2···O3ii0.932.583.156 (2)121
C3—H3···Cg1ii0.932.573.473 (2)164
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC29H23N3O4
Mr477.50
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.4359 (6), 16.5086 (11), 15.1964 (10)
β (°) 96.363 (4)
V3)2352.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.973, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
22349, 5856, 3862
Rint0.035
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.141, 1.03
No. of reflections5856
No. of parameters329
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.18

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C14/C19 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9···O40.982.443.250 (2)140
N3—H3A···O3i0.873 (16)2.522 (16)3.220 (2)137.6 (19)
C2—H2···O3ii0.932.583.156 (2)121
C3—H3···Cg1ii0.932.573.473 (2)164
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. SK, TS and DV thank the UGC (SAP–CAS) for the departmental facilities. SK also thanks DST PURSE for a Junior Research Fellowship and TS also thanks DST Inspire for a fellowship.

References

First citationBrooks, G. T. (1998). Pestic. Sci. 22, 41–50.  CrossRef Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.  Google Scholar
First citationCai, S. X. (2007). Recent Patents Anticancer Drug Discov. 2, 79–101.  Google Scholar
First citationCai, S. X. (2008). Bioorg. Med. Chem. Lett. 18, 603–607.  Web of Science PubMed Google Scholar
First citationCai, S. X., Drewe, J. & Kasibhatla, S. (2006). Curr. Med. Chem. 13, 2627–2644.  Web of Science PubMed CAS Google Scholar
First citationColgan, S. T., Haggan, G. R. & Reed, R. H. (1996). J. Pharm. Biomed. Anal. 14, 825–833.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGabor, M. (1988). The Pharmacology of Benzopyrone Derivatives and Related Compounds, pp. 91–126. Budapest: Akademiai Kiado.  Google Scholar
First citationHyana, T. & Saimoto, H. (1987). Jpn. Patent JP 621 812 768.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437–o1438.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationValenti, P., Da Re, P., Rampa, A., Montanari, P., Carrara, M. & Cima, L. (1993). Anticancer Drug. Des. 8, 349–360.  CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds