organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-[(2-hy­dr­oxy­benzyl­­idene)amino]-6-methyl-4,5,6,7-tetra­hydro­thieno[2,3-c]pyridine-3-carboxyl­ate

aDepartment of Chemistry, Hitit University, 19030 Çorum, Turkey, bDepartment of Physics, Dicle University, 21280 Sur, Diyarbakır, Turkey, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 5 June 2013; accepted 13 June 2013; online 19 June 2013)

The title compound, C18H20N2O3S, exists as the phenol–imine form in the crystal and there are bifurcated intra­molecular O—H⋯(N/O) hydrogen bonds present. The conformation about the C=N bond is anti (1E); the C=N imine bond length is 1.287 (4) Å and the C=N—C angle is 122.5 (3)°. In the tetrahydrothienopyridine moiety, the six-membered ring has a flattened-boat conformation. In the crystal, mol­ecules are stacked nearly parallel to (110) and a weak C—H⋯π inter­action is observed. The carbonyl O atom is disordered over two positions and was refined with a fixed occupancy ratio of 0.7:0.3.

Related literature

For investigations of tautomerism and intra­molecular hydrogen bonds in 2-hy­droxy Schiff bases in both solution and the solid state, see: Hayvalı et al. (2003[Hayvalı, Z., Hayvalı, M., Kılıç, Z., Hökelek, T. & Weber, E. (2003). J. Incl. Phenom. Macrocycl. Chem. 45, 285-294.]); Pizzala et al. (2000[Pizzala, H., Carles, M., Stone, W. E. E. & Thevand, A. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 935-939.]); Kaitner & Pavlovic (1996[Kaitner, B. & Pavlovic, G. (1996). Acta Cryst. C52, 2573-2575.]). For the role of tautomerism in Schiff bases in distinguishing their photochromic and thermochromic characteristics, see: Hadjoudis (1981[Hadjoudis, E. (1981). J. Photochem. 17, 355-367.]); Dürr (1989[Dürr, H. (1989). Angew. Chem. Int. Ed. Engl. 28, 413-431.]); Moustakali-Mavridis et al. (1980[Moustakali-Mavridis, I., Hadjoudis, B. & Mavridis, A. (1980). Acta Cryst. B36, 1126-1130.]). For keto-amine and phenol-imine forms observed in naphthaldimine and salicylaldimine Schiff bases, see: Gavranic et al. (1996[Gavranic, M., Kaitner, B. & Mestrovic, E. (1996). J. Chem. Crystallogr. 26, 23-28.]); Kaitner & Pavlovic (1996[Kaitner, B. & Pavlovic, G. (1996). Acta Cryst. C52, 2573-2575.]); Pizzala et al. (2000[Pizzala, H., Carles, M., Stone, W. E. E. & Thevand, A. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 935-939.]); Hökelek et al. (2004[Hökelek, T., Bilge, S., Demiriz, Ş., Özgüç, B. & Kılıç, Z. (2004). Acta Cryst. C60, o803-o805.]). For related structures, see: Hökelek et al. (2000[Hökelek, T., Akduran, N., Yıldız, M. & Kılıç, Z. (2000). Anal. Sci. 16, 553-554.], 2004[Hökelek, T., Bilge, S., Demiriz, Ş., Özgüç, B. & Kılıç, Z. (2004). Acta Cryst. C60, o803-o805.]);Yıldız et al. (1998[Yıldız, M., Kılıç, Z. & Hökelek, T. (1998). J. Mol. Struct. 441, 1-10.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20N2O3S

  • Mr = 344.42

  • Orthorhombic, P n a 21

  • a = 22.0243 (5) Å

  • b = 16.1559 (4) Å

  • c = 4.8055 (1) Å

  • V = 1709.90 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.35 × 0.15 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.912, Tmax = 0.980

  • 11744 measured reflections

  • 2778 independent reflections

  • 2120 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.104

  • S = 1.02

  • 2778 reflections

  • 236 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 691 Friedel pairs

  • Flack parameter: 0.08 (11)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of ring B (S1/C8–C10/C14).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 0.90 (5) 2.40 (5) 3.053 (4) 129 (4)
O1—H1⋯N1 0.90 (5) 1.79 (5) 2.605 (4) 148 (4)
C12—H12ACg1i 0.97 2.77 3.701 (3) 161
Symmetry code: (i) x, y, z-1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Tautomerism and intramolecular hydrogen bonds in 2-hydroxy Schiff bases in solution and in the solid state have been investigated using IR and UV spectroscopies (Hayvalı et al., 2003), 1H, 13C and 15N NMR spectroscopies (Pizzala et al., 2000), and X-ray crystallography techniques (Kaitner & Pavlovic, 1996). Tautomerism in Schiff bases plays an important role in distinguishing their photochromic (Hadjoudis, 1981; Dürr, 1989) and thermochromic (Moustakali-Mavridis et al., 1980) characteristics. In the solid state, it is generally specified by X-ray analysis that the O···H—N (keto-amine form) is observed in naphthaldimine, while the O—H···N (phenol-imine form) is observed in salicylaldimine Schiff bases (Gavranic et al., 1996; Kaitner & Pavlovic, 1996), although it is claimed that both keto-amine and phenol-imine forms are present in the crystalline state, based on NMR (Pizzala et al., 2000) and X-ray studies (Hökelek et al., 2004). In fact, the stereochemistry of the molecule and the type of nitrogen substituents in salicylaldimine and naphthaldimine Schiff bases are highly important on the type of hydrogen bond being observed (Hökelek et al., 2004). The title 2-hydroxy Schiff base compound was synthesized and its crystal structure is reported on herein.

The molecule of the title compound is in the phenol-imine form (Fig. 1). The CN [1.287 (4) Å] imine bond distance and CN–C [122.5 (3)°] bond angle are comparable with the corresponding values of 1.276 (2) Å and 124.64 (17)°, and 1.279 (2) Å and 123.05 (16)° in 1,3-bis[2-(2-hydroxybenzylideneamino]phenoxy] propane, (II) (Hökelek et al., 2004), 1.270 (3) Å and 123.5 (2)° in 1,8-di[N-2-oxyphenyl-salicylidene]-3,6-dioxaoctane, (III) (Yıldız et al., 1998) and those of 1.288 (4) Å and 121.3 (3)°, and 1.277 (4) Å and 124.3 (3)° in 1,5-di[N-2-oxyphenyl-salicylidene]-3-oxapentane, (IV) (Hökelek et al., 2000).

There are bifurcated intramolecular O—H···N and O—H···O hydrogen bonds present in the molecule (Table 1 and Fig. 1). The C6-C7N1-C8 [178.0 (3)°] torsion angle shows that the conformation about the CN bond is anti (1E). The planar rings A (C1–C6) and B (S1/C8–C10/C14) are oriented at a dihedral angle of 8.48 (9)°. Ring C (N2/C10–C14) has a flattened-boat conformation [φ = -23.8 (5)° and θ = 128.0 (4)°] having a total puckering amplitude QT of 0.500 (3) Å (Cremer & Pople, 1975).

In the crystal, molecules are stacked nearly parallel to (110) and a weak C—H···π interaction is observed (Table 1 and Fig. 2).

Related literature top

For investigations of tautomerism and intramolecular hydrogen bonds in 2-hydroxy Schiff bases in both solution and the solid state, see: Hayvalı et al. (2003); Pizzala et al. (2000); Kaitner & Pavlovic (1996). For the role of tautomerism in Schiff bases in distinguishing their photochromic and thermochromic characteristics, see: Hadjoudis (1981); Dürr (1989); Moustakali-Mavridis et al. (1980). For keto-amine and phenol-imine forms observed in naphthaldimine and salicylaldimine Schiff bases, see: Gavranic et al. (1996); Kaitner & Pavlovic (1996); Pizzala et al. (2000); Hökelek et al. (2004). For related structures, see: Hökelek et al. (2000, 2004);Yıldız et al. (1998). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of 2-hydroxybenzaldehyde (1.22 g, 10 mmol) and ethyl 2-amino-6-methyl -4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxylate (2.40 g, 10 mmol) in ethanol (20 ml) was refluxed for 2 h, and then cooled to room temperature. The precipitated solid was collected, washed with cold ethanol and recrystallized from ethanol giving orange block-like crystals.

Refinement top

Atoms H1 (for OH) and H7 (for methine) were located in a difference Fourier map and refined freely. The C-bound H atoms were positioned geometrically with C—H = 0.93, 0.96 and 0.97 Å for aromatic, methyl and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H-atoms and k = 1.2 for other H-atoms. During the refinement process the disordered O2A and O2B atoms were refined with a fixed occupancy ratio of 0.70:0.30.

Structure description top

Tautomerism and intramolecular hydrogen bonds in 2-hydroxy Schiff bases in solution and in the solid state have been investigated using IR and UV spectroscopies (Hayvalı et al., 2003), 1H, 13C and 15N NMR spectroscopies (Pizzala et al., 2000), and X-ray crystallography techniques (Kaitner & Pavlovic, 1996). Tautomerism in Schiff bases plays an important role in distinguishing their photochromic (Hadjoudis, 1981; Dürr, 1989) and thermochromic (Moustakali-Mavridis et al., 1980) characteristics. In the solid state, it is generally specified by X-ray analysis that the O···H—N (keto-amine form) is observed in naphthaldimine, while the O—H···N (phenol-imine form) is observed in salicylaldimine Schiff bases (Gavranic et al., 1996; Kaitner & Pavlovic, 1996), although it is claimed that both keto-amine and phenol-imine forms are present in the crystalline state, based on NMR (Pizzala et al., 2000) and X-ray studies (Hökelek et al., 2004). In fact, the stereochemistry of the molecule and the type of nitrogen substituents in salicylaldimine and naphthaldimine Schiff bases are highly important on the type of hydrogen bond being observed (Hökelek et al., 2004). The title 2-hydroxy Schiff base compound was synthesized and its crystal structure is reported on herein.

The molecule of the title compound is in the phenol-imine form (Fig. 1). The CN [1.287 (4) Å] imine bond distance and CN–C [122.5 (3)°] bond angle are comparable with the corresponding values of 1.276 (2) Å and 124.64 (17)°, and 1.279 (2) Å and 123.05 (16)° in 1,3-bis[2-(2-hydroxybenzylideneamino]phenoxy] propane, (II) (Hökelek et al., 2004), 1.270 (3) Å and 123.5 (2)° in 1,8-di[N-2-oxyphenyl-salicylidene]-3,6-dioxaoctane, (III) (Yıldız et al., 1998) and those of 1.288 (4) Å and 121.3 (3)°, and 1.277 (4) Å and 124.3 (3)° in 1,5-di[N-2-oxyphenyl-salicylidene]-3-oxapentane, (IV) (Hökelek et al., 2000).

There are bifurcated intramolecular O—H···N and O—H···O hydrogen bonds present in the molecule (Table 1 and Fig. 1). The C6-C7N1-C8 [178.0 (3)°] torsion angle shows that the conformation about the CN bond is anti (1E). The planar rings A (C1–C6) and B (S1/C8–C10/C14) are oriented at a dihedral angle of 8.48 (9)°. Ring C (N2/C10–C14) has a flattened-boat conformation [φ = -23.8 (5)° and θ = 128.0 (4)°] having a total puckering amplitude QT of 0.500 (3) Å (Cremer & Pople, 1975).

In the crystal, molecules are stacked nearly parallel to (110) and a weak C—H···π interaction is observed (Table 1 and Fig. 2).

For investigations of tautomerism and intramolecular hydrogen bonds in 2-hydroxy Schiff bases in both solution and the solid state, see: Hayvalı et al. (2003); Pizzala et al. (2000); Kaitner & Pavlovic (1996). For the role of tautomerism in Schiff bases in distinguishing their photochromic and thermochromic characteristics, see: Hadjoudis (1981); Dürr (1989); Moustakali-Mavridis et al. (1980). For keto-amine and phenol-imine forms observed in naphthaldimine and salicylaldimine Schiff bases, see: Gavranic et al. (1996); Kaitner & Pavlovic (1996); Pizzala et al. (2000); Hökelek et al. (2004). For related structures, see: Hökelek et al. (2000, 2004);Yıldız et al. (1998). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines - see Table 1 for details.
[Figure 2] Fig. 2. A view along the c axis of the crystal packing of the title compound.
Ethyl 2-[(2-hydroxybenzylidene)amino]-6-methyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxylate top
Crystal data top
C18H20N2O3SF(000) = 728
Mr = 344.42Dx = 1.338 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2064 reflections
a = 22.0243 (5) Åθ = 3.1–23.9°
b = 16.1559 (4) ŵ = 0.21 mm1
c = 4.8055 (1) ÅT = 296 K
V = 1709.90 (7) Å3Block, orange
Z = 40.35 × 0.15 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2778 independent reflections
Radiation source: fine-focus sealed tube2120 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
φ and ω scansθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2828
Tmin = 0.912, Tmax = 0.980k = 2020
11744 measured reflectionsl = 56
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.1687P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
2778 reflectionsΔρmax = 0.16 e Å3
236 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack (1983), 691 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (11)
Crystal data top
C18H20N2O3SV = 1709.90 (7) Å3
Mr = 344.42Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 22.0243 (5) ŵ = 0.21 mm1
b = 16.1559 (4) ÅT = 296 K
c = 4.8055 (1) Å0.35 × 0.15 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2778 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2120 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.980Rint = 0.062
11744 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104Δρmax = 0.16 e Å3
S = 1.02Δρmin = 0.16 e Å3
2778 reflectionsAbsolute structure: Flack (1983), 691 Friedel pairs
236 parametersAbsolute structure parameter: 0.08 (11)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.29327 (3)0.31834 (4)0.0279 (2)0.0491 (2)
O10.10485 (13)0.45699 (12)0.4998 (7)0.0729 (8)
H10.139 (2)0.454 (3)0.396 (12)0.13 (2)*
O2A0.2600 (4)0.6160 (5)0.080 (3)0.086 (2)0.70
O2B0.2404 (9)0.6148 (14)0.184 (7)0.113 (9)0.30
O30.17722 (11)0.54989 (12)0.0569 (8)0.0883 (10)
N10.19752 (11)0.39116 (14)0.2458 (6)0.0487 (6)
N20.43249 (11)0.42497 (15)0.4324 (6)0.0524 (7)
C10.10020 (15)0.38418 (19)0.6356 (8)0.0537 (8)
C20.05554 (16)0.3758 (2)0.8360 (8)0.0656 (10)
H20.03030.42030.87650.079*
C30.04824 (15)0.3022 (2)0.9757 (10)0.0681 (9)
H30.01760.29721.10800.082*
C40.08544 (16)0.2361 (2)0.9225 (8)0.0649 (9)
H40.08030.18671.01890.078*
C50.13008 (15)0.2433 (2)0.7273 (8)0.0568 (8)
H50.15530.19840.69190.068*
C60.13862 (13)0.31758 (16)0.5781 (7)0.0459 (7)
C70.18721 (14)0.32333 (19)0.3779 (7)0.0496 (8)
H70.2133 (13)0.2791 (19)0.362 (7)0.058 (10)*
C80.24460 (12)0.39946 (16)0.0600 (7)0.0449 (7)
C90.26209 (12)0.47141 (15)0.0714 (8)0.0453 (7)
C100.31599 (13)0.46149 (16)0.2347 (7)0.0458 (7)
C110.34991 (14)0.52626 (18)0.3940 (8)0.0577 (9)
H11A0.36870.56450.26450.069*
H11B0.32160.55730.50810.069*
C120.39840 (14)0.48860 (19)0.5785 (7)0.0569 (8)
H12A0.37950.46470.74200.068*
H12B0.42600.53170.64000.068*
C130.39395 (13)0.35399 (18)0.3697 (7)0.0517 (8)
H13A0.41530.31610.24740.062*
H13B0.38410.32480.54020.062*
C140.33712 (13)0.38294 (17)0.2328 (7)0.0468 (7)
C150.48474 (16)0.3986 (2)0.5965 (8)0.0727 (11)
H15A0.51120.44490.62720.109*
H15B0.47110.37730.77220.109*
H15C0.50630.35610.49790.109*
C160.23215 (14)0.55284 (17)0.0432 (10)0.0571 (8)
C170.1444 (2)0.6277 (2)0.0843 (15)0.1079 (19)
H17A0.14000.64130.27990.129*
H17B0.16740.67160.00410.129*
C180.0884 (2)0.6222 (3)0.036 (2)0.166 (4)
H18A0.06630.67240.00260.249*
H18B0.06660.57640.04340.249*
H18C0.09280.61390.23250.249*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0510 (4)0.0387 (3)0.0577 (5)0.0018 (3)0.0006 (4)0.0037 (4)
O10.0915 (18)0.0470 (12)0.080 (2)0.0143 (11)0.0188 (17)0.0050 (14)
O2B0.071 (12)0.067 (9)0.20 (3)0.008 (8)0.023 (12)0.057 (13)
O2A0.074 (5)0.034 (2)0.150 (8)0.008 (3)0.006 (5)0.000 (4)
O30.0702 (15)0.0412 (11)0.153 (3)0.0134 (10)0.0125 (18)0.0042 (17)
N10.0494 (13)0.0428 (13)0.0538 (17)0.0065 (10)0.0035 (13)0.0020 (12)
N20.0510 (14)0.0611 (15)0.0451 (16)0.0100 (12)0.0020 (12)0.0006 (13)
C10.0553 (18)0.0520 (17)0.054 (2)0.0013 (14)0.0023 (16)0.0028 (16)
C20.068 (2)0.059 (2)0.070 (3)0.0040 (16)0.0080 (19)0.0106 (19)
C30.0651 (18)0.078 (2)0.061 (2)0.0085 (17)0.014 (2)0.001 (2)
C40.072 (2)0.0601 (18)0.062 (3)0.0068 (16)0.006 (2)0.0011 (19)
C50.0626 (19)0.0486 (17)0.059 (2)0.0020 (15)0.0021 (18)0.0007 (16)
C60.0500 (16)0.0436 (15)0.0440 (17)0.0025 (12)0.0052 (14)0.0033 (14)
C70.0480 (16)0.0423 (16)0.059 (2)0.0010 (13)0.0046 (14)0.0015 (15)
C80.0411 (14)0.0402 (14)0.053 (2)0.0044 (11)0.0078 (13)0.0001 (14)
C90.0470 (14)0.0384 (13)0.050 (2)0.0062 (11)0.0098 (16)0.0007 (15)
C100.0487 (15)0.0394 (15)0.0494 (19)0.0056 (12)0.0098 (16)0.0005 (14)
C110.0621 (19)0.0505 (17)0.061 (2)0.0111 (15)0.0065 (18)0.0088 (17)
C120.0663 (19)0.0605 (17)0.044 (2)0.0129 (15)0.0008 (17)0.0017 (17)
C130.0527 (17)0.0532 (16)0.049 (2)0.0044 (14)0.0063 (15)0.0006 (16)
C140.0450 (15)0.0449 (16)0.051 (2)0.0069 (12)0.0093 (15)0.0025 (15)
C150.065 (2)0.092 (3)0.061 (3)0.0069 (18)0.0067 (19)0.001 (2)
C160.0576 (17)0.0414 (15)0.072 (2)0.0035 (13)0.005 (2)0.001 (2)
C170.095 (3)0.0472 (19)0.182 (6)0.025 (2)0.000 (4)0.009 (3)
C180.108 (4)0.109 (4)0.280 (10)0.057 (3)0.054 (6)0.071 (6)
Geometric parameters (Å, º) top
S1—C81.745 (3)C9—C161.478 (4)
S1—C141.730 (3)C10—C111.497 (4)
O1—H10.91 (5)C11—C121.515 (5)
O2A—O2B0.66 (3)C11—H11A0.9700
O3—C171.455 (4)C11—H11B0.9700
N1—C81.375 (4)C12—H12A0.9700
N2—C121.454 (4)C12—H12B0.9700
N2—C151.459 (4)C13—N21.458 (4)
C1—O11.349 (4)C13—C141.489 (4)
C2—C11.383 (5)C13—H13A0.9700
C2—H20.9300C13—H13B0.9700
C3—C21.375 (5)C14—C101.352 (4)
C3—C41.370 (4)C15—H15A0.9600
C3—H30.9300C15—H15B0.9600
C4—C51.364 (5)C15—H15C0.9600
C4—H40.9300C16—O2A1.203 (10)
C5—C61.411 (4)C16—O2B1.22 (3)
C5—H50.9300C16—O31.303 (4)
C6—C11.396 (4)C17—C181.366 (7)
C7—N11.287 (4)C17—H17A0.9700
C7—C61.442 (4)C17—H17B0.9700
C7—H70.92 (3)C18—H18A0.9600
C8—C91.378 (4)C18—H18B0.9600
C9—C101.432 (4)C18—H18C0.9600
C14—S1—C891.59 (14)C12—C11—H11B109.3
C1—O1—H1106 (3)H11A—C11—H11B107.9
C16—O3—C17117.6 (3)N2—C12—C11111.4 (3)
C7—N1—C8122.5 (3)N2—C12—H12A109.3
C12—N2—C13110.8 (2)N2—C12—H12B109.3
C12—N2—C15110.7 (3)C11—C12—H12A109.3
C15—N2—C13109.9 (3)C11—C12—H12B109.3
O1—C1—C2118.4 (3)H12A—C12—H12B108.0
O1—C1—C6122.0 (3)N2—C13—C14109.5 (2)
C2—C1—C6119.6 (3)N2—C13—H13A109.8
C1—C2—H2119.7N2—C13—H13B109.8
C3—C2—C1120.5 (3)C14—C13—H13A109.8
C3—C2—H2119.7C14—C13—H13B109.8
C2—C3—H3119.6H13A—C13—H13B108.2
C4—C3—C2120.9 (4)C10—C14—S1112.2 (2)
C4—C3—H3119.6C10—C14—C13125.5 (3)
C3—C4—H4120.2C13—C14—S1122.1 (2)
C5—C4—C3119.6 (3)N2—C15—H15A109.5
C5—C4—H4120.2N2—C15—H15B109.5
C4—C5—C6121.2 (3)N2—C15—H15C109.5
C4—C5—H5119.4H15A—C15—H15B109.5
C6—C5—H5119.4H15A—C15—H15C109.5
C1—C6—C5118.3 (3)H15B—C15—H15C109.5
C1—C6—C7122.1 (3)O2A—C16—O3123.9 (5)
C5—C6—C7119.5 (3)O2A—C16—C9120.9 (5)
N1—C7—C6121.0 (3)O2B—C16—O3111.8 (11)
N1—C7—H7121 (2)O2B—C16—C9127.8 (14)
C6—C7—H7118 (2)O3—C16—C9114.6 (3)
N1—C8—S1123.2 (2)C18—C17—O3110.8 (4)
N1—C8—C9126.2 (3)C18—C17—H17A109.5
C9—C8—S1110.5 (2)C18—C17—H17B109.5
C8—C9—C10112.9 (2)O3—C17—H17A109.5
C8—C9—C16125.8 (3)O3—C17—H17B109.5
C10—C9—C16121.3 (3)H17A—C17—H17B108.1
C9—C10—C11128.0 (3)C17—C18—H18A109.5
C14—C10—C9112.8 (3)C17—C18—H18B109.5
C14—C10—C11119.2 (3)C17—C18—H18C109.5
C10—C11—C12111.7 (2)H18A—C18—H18B109.5
C10—C11—H11A109.3H18A—C18—H18C109.5
C10—C11—H11B109.3H18B—C18—H18C109.5
C12—C11—H11A109.3
C14—S1—C8—N1175.9 (3)C8—C9—C10—C142.1 (4)
C14—S1—C8—C91.3 (3)C16—C9—C10—C110.3 (5)
C8—S1—C14—C100.1 (3)C16—C9—C10—C14179.2 (3)
C8—S1—C14—C13175.6 (3)C8—C9—C16—O2A153.8 (7)
C16—O3—C17—C18129.0 (6)C8—C9—C16—O2B168.6 (14)
C7—N1—C8—S12.8 (4)C8—C9—C16—O317.9 (5)
C7—N1—C8—C9173.9 (3)C10—C9—C16—O2A22.9 (8)
C13—N2—C12—C1166.6 (3)C10—C9—C16—O2B14.7 (14)
C15—N2—C12—C11171.1 (3)C10—C9—C16—O3165.4 (3)
C3—C2—C1—O1178.6 (4)C9—C10—C11—C12170.4 (3)
C3—C2—C1—C60.9 (5)C14—C10—C11—C1210.8 (4)
C4—C3—C2—C10.9 (6)C10—C11—C12—N244.3 (3)
C2—C3—C4—C50.4 (6)C14—C13—N2—C1250.4 (4)
C3—C4—C5—C60.2 (5)C14—C13—N2—C15173.1 (3)
C4—C5—C6—C10.2 (5)N2—C13—C14—S1157.9 (2)
C4—C5—C6—C7178.6 (3)N2—C13—C14—C1017.1 (4)
C5—C6—C1—O1179.1 (3)S1—C14—C10—C91.1 (4)
C5—C6—C1—C20.4 (5)S1—C14—C10—C11177.9 (2)
C7—C6—C1—O12.5 (5)C13—C14—C10—C9176.5 (3)
C7—C6—C1—C2178.0 (3)C13—C14—C10—C112.4 (5)
C6—C7—N1—C8178.0 (3)O3—C16—O2A—O2B76 (4)
N1—C7—C6—C10.9 (5)C9—C16—O2A—O2B113 (3)
N1—C7—C6—C5177.5 (3)O3—C16—O2B—O2A120 (3)
S1—C8—C9—C102.1 (3)C9—C16—O2B—O2A89 (4)
S1—C8—C9—C16179.1 (3)O2A—C16—O3—C1710.0 (9)
N1—C8—C9—C10175.0 (3)O2B—C16—O3—C1723.2 (16)
N1—C8—C9—C162.0 (5)C9—C16—O3—C17178.6 (4)
C8—C9—C10—C11176.8 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of ring B (S1/C8–C10/C14).
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.90 (5)2.40 (5)3.053 (4)129 (4)
O1—H1···N10.90 (5)1.79 (5)2.605 (4)148 (4)
C12—H12A···Cg1i0.972.773.701 (3)161
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formulaC18H20N2O3S
Mr344.42
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)22.0243 (5), 16.1559 (4), 4.8055 (1)
V3)1709.90 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.35 × 0.15 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.912, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
11744, 2778, 2120
Rint0.062
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.104, 1.02
No. of reflections2778
No. of parameters236
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.16
Absolute structureFlack (1983), 691 Friedel pairs
Absolute structure parameter0.08 (11)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of ring B (S1/C8–C10/C14).
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.90 (5)2.40 (5)3.053 (4)129 (4)
O1—H1···N10.90 (5)1.79 (5)2.605 (4)148 (4)
C12—H12A···Cg1i0.972.773.701 (3)161
Symmetry code: (i) x, y, z1.
 

Acknowledgements

The authors are indebted to Dicle University Scientific and Technological Applied and Research Center, Diyarbakır, Turkey, for the use of X-ray diffractometer.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDürr, H. (1989). Angew. Chem. Int. Ed. Engl. 28, 413–431.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGavranic, M., Kaitner, B. & Mestrovic, E. (1996). J. Chem. Crystallogr. 26, 23–28.  CSD CrossRef CAS Web of Science Google Scholar
First citationHadjoudis, E. (1981). J. Photochem. 17, 355–367.  CrossRef CAS Web of Science Google Scholar
First citationHayvalı, Z., Hayvalı, M., Kılıç, Z., Hökelek, T. & Weber, E. (2003). J. Incl. Phenom. Macrocycl. Chem. 45, 285–294.  Web of Science CSD CrossRef CAS Google Scholar
First citationHökelek, T., Akduran, N., Yıldız, M. & Kılıç, Z. (2000). Anal. Sci. 16, 553–554.  CAS Google Scholar
First citationHökelek, T., Bilge, S., Demiriz, Ş., Özgüç, B. & Kılıç, Z. (2004). Acta Cryst. C60, o803–o805.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKaitner, B. & Pavlovic, G. (1996). Acta Cryst. C52, 2573–2575.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMoustakali-Mavridis, I., Hadjoudis, B. & Mavridis, A. (1980). Acta Cryst. B36, 1126–1130.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationPizzala, H., Carles, M., Stone, W. E. E. & Thevand, A. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 935–939.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYıldız, M., Kılıç, Z. & Hökelek, T. (1998). J. Mol. Struct. 441, 1–10.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds