organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[(5-Chloro-2-hy­dr­oxy­benzyl­­idene)amino]-2-sulfanyl­­idene-1,3-thia­zolidin-4-one

aDepartment of Chemistry, Anadolu University, 26470 Eskişehir, Turkey
*Correspondence e-mail: hakandal@anadolu.edu.tr

(Received 6 June 2013; accepted 14 June 2013; online 19 June 2013)

In the title compound, C10H7ClN2O2S2, the mean plane of the thioxo­thia­zolidine ring [maximum deviation = 0.032 (2) Å] is inclined to the benzene ring by 12.25 (4)°. There is a strong intra­molecular O—H⋯N hydrogen bond present. In the crystal, mol­ecules are linked via pairs of C—H⋯Cl hydrogen bonds, forming inversion dimers.

Related literature

For general background to the chemistry, and pharmacological and biological activity of rhodanine and its derivatives, see: Raper (1985[Raper, E. S. (1985). Coord. Chem. Rev. 61, 115-184.]); Contello et al. (1994[Contello, B. C. C., Cawhorne, M. A., Haigh, D., Hindley, R. M., Smith, S. A. & Thurlby, P. L. (1994). Bioorg. Med. Chem. Lett. 4, 1181-1184.]); Villain-Guillot et al. (2007[Villain-Guillot, P., Gualtieri, M., Bastide, L., Roquet, F., Martinez, J., Amblard, M., Pugniere, M. & Leonetti, J. P. (2007). J. Med. Chem. 50, 4195-4204.]); Yan et al. (2007[Yan, S., Larson, G., Wu, J. Z., Applby, T., Ding, Y., Hamatake, R., Hong, Z. & Yao, N. (2007). Bioorg. Med. Chem. Lett. 17, 63-67.]); Kletzien et al. (1992[Kletzien, R. F., Clarke, S. D. & Ulrich, R. G. (1992). Mol. Pharmacol. 41, 393-398.]).

[Scheme 1]

Experimental

Crystal data
  • C10H7ClN2O2S2

  • Mr = 286.77

  • Monoclinic, P 21 /c

  • a = 9.8506 (3) Å

  • b = 10.0936 (3) Å

  • c = 12.1096 (4) Å

  • β = 110.409 (2)°

  • V = 1128.45 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 100 K

  • 0.37 × 0.26 × 0.11 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.783, Tmax = 0.927

  • 10564 measured reflections

  • 2816 independent reflections

  • 2427 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.081

  • S = 1.09

  • 2816 reflections

  • 162 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N2 0.75 (2) 1.97 (2) 2.6291 (19) 147 (3)
C9—H9B⋯Cl1i 0.99 2.81 3.7860 (19) 169
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Rhodanine and its derivatives are used in a variety of applications ranging from industry to biochemistry and coordination chemistry. They have wide industrial applications as brightening additives in silver electroplating, intermediates in the syntheses of dyes, extreme-pressure lubricants and antioxidants as well as pharmacological (Contello et al., 1994), and biological activities including antibacterial (Villain-Guillot et al., 2007), antiviral (Yan et al., 2007) and antidiabetical (Kletzien et al., 1992). The interesting aspect of the chemistry of these compounds is their electron donating power to metal ions, which make them strong ligands in coordination compounds (Raper, 1985). herein we report on the crystal structure of the title rhodanine derivative.

In the molecule of the title compound (Fig. 1), the bond lengths and angles are generally within normal ranges. Ring B (S1/N1/C8–C10) is planar to within 0.032 (2) Å and is inclined to the benzene ring A (C1–C6) at a dihedral angle of 12.25 (4)°. Atoms Cl1, O2 and C7 are -0.0272 (4), -0.047 (2) and 0.052 (2) Å out of the plane of ring A, while atoms O1, S2 and N2 are 0.112 (2), -0.0327 (5) and 0.024 (2) Å displaced from the mean plane of ring B. The presence of the intramolecular O—H···N hydrogen bond (Table 1) forms a non-planar six-membered ring (O2/N2/H2/C5–C7), and contributes to the stabilization of the molecule.

In the crystal, molecules are linked via a pair of C-H···Cl hydrogen bonds forming inversion dimers (Table 1).

Related literature top

For general background to the chemistry, and pharmacological and biological activity of rhodanine and its derivatives, see: Raper (1985); Contello et al. (1994); Villain-Guillot et al. (2007); Yan et al. (2007); Kletzien et al. (1992).

Experimental top

The title compound was prepared by the reaction of 2-hydroxy-5-chlorophenyl (0.63 g, 4 mmol) and N-amino rhodanine (0.50 g, 4 mmol) in methanol (50 ml) at room temperature. After stirring for 6 h, a fluffy yellow precipitate was obtained. The resulting crude solid was collected by filtration, dried and then purified by repeated recrystallization using methanol as solvent; yielding yellow block-like crystals.

Refinement top

Atoms H2 (for OH) and H7 (for methine) were located in a difference Fourier map and refined freely. The C-bound H-atoms were positioned geometrically with C—H = 0.95 and 0.99 Å for aromatic and methylene H-atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 × Ueq(C).

Structure description top

Rhodanine and its derivatives are used in a variety of applications ranging from industry to biochemistry and coordination chemistry. They have wide industrial applications as brightening additives in silver electroplating, intermediates in the syntheses of dyes, extreme-pressure lubricants and antioxidants as well as pharmacological (Contello et al., 1994), and biological activities including antibacterial (Villain-Guillot et al., 2007), antiviral (Yan et al., 2007) and antidiabetical (Kletzien et al., 1992). The interesting aspect of the chemistry of these compounds is their electron donating power to metal ions, which make them strong ligands in coordination compounds (Raper, 1985). herein we report on the crystal structure of the title rhodanine derivative.

In the molecule of the title compound (Fig. 1), the bond lengths and angles are generally within normal ranges. Ring B (S1/N1/C8–C10) is planar to within 0.032 (2) Å and is inclined to the benzene ring A (C1–C6) at a dihedral angle of 12.25 (4)°. Atoms Cl1, O2 and C7 are -0.0272 (4), -0.047 (2) and 0.052 (2) Å out of the plane of ring A, while atoms O1, S2 and N2 are 0.112 (2), -0.0327 (5) and 0.024 (2) Å displaced from the mean plane of ring B. The presence of the intramolecular O—H···N hydrogen bond (Table 1) forms a non-planar six-membered ring (O2/N2/H2/C5–C7), and contributes to the stabilization of the molecule.

In the crystal, molecules are linked via a pair of C-H···Cl hydrogen bonds forming inversion dimers (Table 1).

For general background to the chemistry, and pharmacological and biological activity of rhodanine and its derivatives, see: Raper (1985); Contello et al. (1994); Villain-Guillot et al. (2007); Yan et al. (2007); Kletzien et al. (1992).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular O-H···N hydrogen bond is shown as a dashed line - see Table 1 for details.
3-[(5-Chloro-2-hydroxybenzylidene)amino]-2-sulfanylidene-1,3-thiazolidin-4-one top
Crystal data top
C10H7ClN2O2S2F(000) = 584
Mr = 286.77Dx = 1.688 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4301 reflections
a = 9.8506 (3) Åθ = 2.2–28.3°
b = 10.0936 (3) ŵ = 0.70 mm1
c = 12.1096 (4) ÅT = 100 K
β = 110.409 (2)°Block, yellow
V = 1128.45 (6) Å30.37 × 0.26 × 0.11 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2816 independent reflections
Radiation source: fine-focus sealed tube2427 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1313
Tmin = 0.783, Tmax = 0.927k = 1313
10564 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0379P)2 + 0.6866P]
where P = (Fo2 + 2Fc2)/3
2816 reflections(Δ/σ)max = 0.001
162 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C10H7ClN2O2S2V = 1128.45 (6) Å3
Mr = 286.77Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.8506 (3) ŵ = 0.70 mm1
b = 10.0936 (3) ÅT = 100 K
c = 12.1096 (4) Å0.37 × 0.26 × 0.11 mm
β = 110.409 (2)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2816 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2427 reflections with I > 2σ(I)
Tmin = 0.783, Tmax = 0.927Rint = 0.027
10564 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.45 e Å3
2816 reflectionsΔρmin = 0.31 e Å3
162 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.07187 (4)1.08989 (5)0.26371 (4)0.01535 (11)
S20.06151 (4)1.23019 (5)0.48023 (4)0.01547 (11)
O10.31445 (14)0.95179 (13)0.40194 (11)0.0179 (3)
O20.25301 (14)1.25062 (13)0.75822 (11)0.0163 (3)
H20.221 (3)1.231 (2)0.695 (2)0.032 (7)*
N10.15074 (15)1.07839 (14)0.45427 (12)0.0117 (3)
N20.23170 (15)1.11112 (15)0.56955 (12)0.0129 (3)
C10.55038 (18)1.01067 (18)0.80910 (14)0.0139 (3)
H10.58080.94040.77100.017*
C20.63231 (17)1.04465 (18)0.92291 (14)0.0133 (3)
C30.59104 (18)1.14826 (18)0.98024 (14)0.0147 (3)
H30.64961.17231.05820.018*
C40.46398 (19)1.21576 (18)0.92266 (15)0.0155 (3)
H40.43501.28610.96170.019*
C50.37768 (18)1.18186 (18)0.80794 (14)0.0135 (3)
C60.42240 (17)1.07939 (17)0.74940 (14)0.0123 (3)
C70.34218 (18)1.04111 (18)0.62815 (15)0.0143 (3)
H70.378 (2)0.966 (2)0.5974 (19)0.019 (5)*
C80.01423 (18)1.13498 (17)0.40910 (14)0.0129 (3)
C90.07577 (19)0.98704 (19)0.25954 (15)0.0164 (4)
H9A0.04420.89350.24550.020*
H9B0.10921.01600.19520.020*
C100.19599 (19)1.00064 (17)0.37653 (15)0.0136 (3)
Cl10.79051 (4)0.95632 (4)0.99429 (3)0.01531 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0133 (2)0.0190 (2)0.0114 (2)0.00020 (16)0.00125 (16)0.00067 (16)
S20.0143 (2)0.0150 (2)0.0173 (2)0.00122 (16)0.00585 (16)0.00154 (16)
O10.0186 (6)0.0198 (7)0.0154 (6)0.0049 (5)0.0061 (5)0.0001 (5)
O20.0158 (6)0.0176 (7)0.0128 (6)0.0054 (5)0.0016 (5)0.0009 (5)
N10.0130 (7)0.0106 (7)0.0098 (6)0.0006 (5)0.0020 (5)0.0005 (5)
N20.0131 (6)0.0146 (8)0.0098 (6)0.0020 (6)0.0025 (5)0.0006 (5)
C10.0142 (8)0.0152 (9)0.0123 (8)0.0004 (7)0.0048 (6)0.0003 (6)
C20.0111 (7)0.0147 (9)0.0126 (8)0.0009 (6)0.0023 (6)0.0017 (6)
C30.0149 (8)0.0172 (9)0.0111 (7)0.0027 (7)0.0033 (6)0.0020 (7)
C40.0165 (8)0.0157 (9)0.0144 (8)0.0008 (7)0.0054 (7)0.0019 (7)
C50.0126 (7)0.0142 (9)0.0137 (8)0.0002 (7)0.0047 (6)0.0022 (6)
C60.0135 (8)0.0112 (9)0.0119 (8)0.0017 (6)0.0039 (6)0.0006 (6)
C70.0152 (8)0.0138 (9)0.0134 (8)0.0011 (7)0.0044 (6)0.0004 (7)
C80.0126 (8)0.0129 (8)0.0122 (7)0.0021 (6)0.0030 (6)0.0019 (6)
C90.0172 (8)0.0186 (10)0.0127 (8)0.0002 (7)0.0041 (7)0.0023 (7)
C100.0177 (8)0.0110 (8)0.0126 (8)0.0000 (7)0.0062 (6)0.0022 (6)
Cl10.01286 (19)0.0175 (2)0.01301 (19)0.00297 (15)0.00127 (15)0.00100 (15)
Geometric parameters (Å, º) top
S1—C81.7277 (17)C3—H30.9500
S1—C91.8018 (18)C4—C31.381 (2)
S2—C81.6341 (17)C4—C51.395 (2)
O1—C101.204 (2)C4—H40.9500
O2—C51.355 (2)C5—C61.409 (2)
O2—H20.74 (3)C7—N21.284 (2)
N1—N21.3848 (19)C7—C61.456 (2)
N1—C81.386 (2)C7—H70.97 (2)
N1—C101.412 (2)C9—C101.503 (2)
C1—C61.399 (2)C9—H9A0.9900
C1—H10.9500C9—H9B0.9900
C2—C11.376 (2)Cl1—C21.7410 (17)
C2—C31.392 (2)
C8—S1—C993.79 (8)C4—C5—C6119.50 (16)
C5—O2—H2109 (2)C1—C6—C5119.18 (15)
N2—N1—C8115.97 (13)C1—C6—C7117.63 (15)
N2—N1—C10126.87 (14)C5—C6—C7123.19 (16)
C8—N1—C10117.03 (14)N2—C7—C6117.94 (16)
C7—N2—N1120.33 (15)N2—C7—H7125.1 (13)
C2—C1—C6120.14 (16)C6—C7—H7116.9 (13)
C2—C1—H1119.9S2—C8—S1122.68 (10)
C6—C1—H1119.9N1—C8—S1110.95 (12)
C1—C2—C3121.03 (16)N1—C8—S2126.36 (13)
C1—C2—Cl1118.72 (13)S1—C9—H9A110.2
C3—C2—Cl1120.24 (13)S1—C9—H9B110.2
C2—C3—H3120.3C10—C9—S1107.42 (12)
C4—C3—C2119.31 (16)C10—C9—H9A110.2
C4—C3—H3120.3C10—C9—H9B110.2
C3—C4—C5120.79 (16)H9A—C9—H9B108.5
C3—C4—H4119.6O1—C10—N1124.09 (16)
C5—C4—H4119.6O1—C10—C9125.35 (16)
O2—C5—C4117.39 (15)N1—C10—C9110.55 (14)
O2—C5—C6123.12 (15)
C9—S1—C8—S2177.82 (12)Cl1—C2—C1—C6179.78 (13)
C9—S1—C8—N11.29 (13)C1—C2—C3—C41.5 (3)
C8—S1—C9—C103.74 (13)Cl1—C2—C3—C4179.02 (13)
C8—N1—N2—C7163.12 (15)C5—C4—C3—C20.5 (3)
C10—N1—N2—C721.1 (2)C3—C4—C5—O2178.56 (15)
N2—N1—C8—S1178.09 (11)C3—C4—C5—C61.4 (3)
N2—N1—C8—S22.8 (2)O2—C5—C6—C1177.81 (15)
C10—N1—C8—S11.86 (18)O2—C5—C6—C72.7 (3)
C10—N1—C8—S2179.07 (13)C4—C5—C6—C12.1 (2)
N2—N1—C10—O10.0 (3)C4—C5—C6—C7177.44 (16)
N2—N1—C10—C9179.45 (15)C6—C7—N2—N1179.40 (14)
C8—N1—C10—O1175.75 (16)N2—C7—C6—C1174.04 (16)
C8—N1—C10—C94.8 (2)N2—C7—C6—C55.5 (3)
C2—C1—C6—C51.1 (2)S1—C9—C10—O1175.28 (15)
C2—C1—C6—C7178.51 (15)S1—C9—C10—N15.26 (17)
C3—C2—C1—C60.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.75 (2)1.97 (2)2.6291 (19)147 (3)
C9—H9B···Cl1i0.992.813.7860 (19)169
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC10H7ClN2O2S2
Mr286.77
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.8506 (3), 10.0936 (3), 12.1096 (4)
β (°) 110.409 (2)
V3)1128.45 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.37 × 0.26 × 0.11
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.783, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
10564, 2816, 2427
Rint0.027
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.081, 1.09
No. of reflections2816
No. of parameters162
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.31

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.75 (2)1.97 (2)2.6291 (19)147 (3)
C9—H9B···Cl1i0.992.813.7860 (19)169
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

The author is indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the X-ray diffractometer.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationContello, B. C. C., Cawhorne, M. A., Haigh, D., Hindley, R. M., Smith, S. A. & Thurlby, P. L. (1994). Bioorg. Med. Chem. Lett. 4, 1181–1184.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKletzien, R. F., Clarke, S. D. & Ulrich, R. G. (1992). Mol. Pharmacol. 41, 393–398.  PubMed CAS Web of Science Google Scholar
First citationRaper, E. S. (1985). Coord. Chem. Rev. 61, 115–184.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVillain-Guillot, P., Gualtieri, M., Bastide, L., Roquet, F., Martinez, J., Amblard, M., Pugniere, M. & Leonetti, J. P. (2007). J. Med. Chem. 50, 4195–4204.  Web of Science PubMed CAS Google Scholar
First citationYan, S., Larson, G., Wu, J. Z., Applby, T., Ding, Y., Hamatake, R., Hong, Z. & Yao, N. (2007). Bioorg. Med. Chem. Lett. 17, 63–67.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds