organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-[2-(2-Cyano­phen­yl)diazen-2-ium-1-yl]naphthalen-2-olate

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Département de Chimie, Université Mentouri de Constantine 1, 25000 Constantine, Algeria
*Correspondence e-mail: bougueriahassiba@gmail.com

(Received 18 June 2013; accepted 22 June 2013; online 29 June 2013)

There are two independent zwitterion mol­ecules (A and B) in the asymmetric unit of the title compound, C17H11N3O, which belongs to the family of azo dyes. The dihedral angle between the benzene ring and the naphthalene ring system is 6.99 (6)° in mol­ecule A and 4.38 (6)° in mol­ecule B. The azo group adopts an E conformation with respect to the –N=N– bond and each of the independent mol­ecules has an intra­molecular N—H⋯O hydrogen bond. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯N hydrogen bonds, forming ribbons propagating along [-110]. The ribbons are linked via ππ inter­actions involving the benzene and naphthalene rings of inversion-related A and inversion-related B mol­ecules, forming a three-dimensional structure. The most significant centroid–centroid distances vary from 3.6599 (6) to 3.7538 (9) Å.

Related literature

For general background to azo compounds and their use in dyes, pigments and advanced materials, see: Lee et al. (2004[Lee, S. H., Kim, J. Y., Ko, J., Lee, J. Y. & Kim, J. S. (2004). J. Org. Chem. 69, 2902-2905.]); Oueslati et al. (2004[Oueslati, F., Dumazet-Bonnamour, I. & Lamartine, R. (2004). New J. Chem. 28, 1575-1578.]). Many azo compounds have been synthesized by diazo­tization and diazo coupling reactions, see: Wang et al. (2003[Wang, M., Funabiki, K. & Matsui, M. (2003). Dyes Pigments, 57, 77-86.]). For a related structure, see: Rãdulescu et al. (2006[Rãdulescu, C., Hossu, A. M. & Ionitã, I. (2006). Dyes Pigments, 71, 123-129.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H11N3O

  • Mr = 273.29

  • Triclinic, [P \overline 1]

  • a = 7.1296 (3) Å

  • b = 12.9532 (7) Å

  • c = 15.6181 (8) Å

  • α = 111.562 (2)°

  • β = 90.536 (2)°

  • γ = 100.779 (2)°

  • V = 1312.92 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.55 × 0.11 × 0.08 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.910, Tmax = 0.993

  • 18729 measured reflections

  • 6021 independent reflections

  • 3859 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.120

  • S = 1.06

  • 6021 reflections

  • 387 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.92 (1) 1.80 (2) 2.5380 (16) 136 (2)
N5—H5⋯O2 0.90 (1) 1.72 (2) 2.5277 (17) 147 (2)
C21—H21⋯N3i 0.93 2.61 3.509 (2) 162
C30—H30⋯N3ii 0.93 2.60 3.487 (2) 159
C32—H32⋯O1iii 0.93 2.49 3.1994 (18) 133
Symmetry codes: (i) -x+1, -y, -z; (ii) -x, -y-1, -z; (iii) x, y, z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Azo dno's (dyes and pigments) are by far the most important class of dno's, accounting for over 50% of all commercial dno's, and having been studied more than any other class of dye. Azo dno's contain at least one azo group (–N=N–) but can contain two (diazo), three (triazo), or more but rarely, four (tetrakisazo) or more (polyazo) azo groups. The azo group is attached to two groups of which at least one, but more usually both, are aromatic. They exist in the trans form in which the band angle vis. 120°; the nitrogen atoms are sp2 hybridized. Almost without exception, azo dno's are made by diazotization of a primary aromatic amine followed by coupling of the resultant diazonium salt with an electron-rich nucleophile (Wang et al., 2003). We report herein on the crystal structure of the title compound, obtained through the diazotization of 2-cyanoaniline followed by a coupling reaction with 2-naphthol.

The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit contains two independent molecules (A and B) with no significant differences in their structures. The bond distances (Allen et al., 1987) and bond angles in the two molecules are normal and similar to those in a related compound (Rãdulescu et al., 2006). Interestingly, the hydrogen atom of the OH group has been transfered to the N atom in the azo group to form a zwitterion, and in each of the independent molecules there is an intramolecular N—H···O hydrogen bond (Table 1). The molecules are relatively planar with the dihedral angle between the benzene ring and naphthalene ring system being 6.99 (6) ° in A and 4.38 (6) ° in B. Both molecules have an E conformation with respect to azo bridge (Fig. 1). The C1-N1-N2-C11 torsion angle is -175.64 (12) ° in A and the C18–N4–N5–C28 torsion angle is-177.81 (13)° in B, confirming the trans conformation of the C atom with respect to hydrazine N atom.

In the crystal, molecules are linked by C-H···O and C-H···N hydrogen bonds forming ribbons propagating along [-110]; see Table 1 and Fig. 2. The ribbons are linked via π-π interactions involving the benzene and naphthalene rings of inversion related A and inversion related B molecules. The most significant centroid-to-centroid distances are Cg1···Cg3i and Cg2···Cg3i = 3.6636 (9) and 3.7538 (9) Å, respectively, for the A molecules, and Cg5···Cg7ii and Cg6···Cg7ii = 3.6599 (6) and 3.6610 (9) Å, respectively, for the B molecules [Cg1, Cg2, Cg3, Cg5, Cg6 and Cg7 are the centroids of the C1-C5/C10, C5-C10, C11-C16, C18-C22/C27, C22-C27 and C28-C30 rings, respectively; symmetry codes: (i) -x+1, -y, -z; (ii) -x, -y, -z+1].

Related literature top

For general background to azo compounds and their use in dyes, pigments and advanced materials, see: Lee et al. (2004); Oueslati et al. (2004). Many azo compounds have been synthesized by diazotization and diazo coupling reactions, see: Wang et al. (2003). For a related structure, see: Rãdulescu et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was obtained through the diazotization of 2-cyanoaniline followed by a coupling reaction with 2-naphthol, according to the literature procedure used to synthesize other aromatic azo-compounds (Wang et al., 2003). Orange rod-like crystals of the title compound were obtained by slow evaporation at room temperature of a solution in H2O/THF (1/1 v/v).

Refinement top

The NH H atoms were located in a difference Fourier map and refined with distance restraints [N-H = 0.89 (1) Å]. The C-bound H atoms were included in calculated positions and treated as riding atoms: C-H = 0.93 Å with Uiso(H) = 1.2Ueq(C).

Structure description top

Azo dno's (dyes and pigments) are by far the most important class of dno's, accounting for over 50% of all commercial dno's, and having been studied more than any other class of dye. Azo dno's contain at least one azo group (–N=N–) but can contain two (diazo), three (triazo), or more but rarely, four (tetrakisazo) or more (polyazo) azo groups. The azo group is attached to two groups of which at least one, but more usually both, are aromatic. They exist in the trans form in which the band angle vis. 120°; the nitrogen atoms are sp2 hybridized. Almost without exception, azo dno's are made by diazotization of a primary aromatic amine followed by coupling of the resultant diazonium salt with an electron-rich nucleophile (Wang et al., 2003). We report herein on the crystal structure of the title compound, obtained through the diazotization of 2-cyanoaniline followed by a coupling reaction with 2-naphthol.

The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit contains two independent molecules (A and B) with no significant differences in their structures. The bond distances (Allen et al., 1987) and bond angles in the two molecules are normal and similar to those in a related compound (Rãdulescu et al., 2006). Interestingly, the hydrogen atom of the OH group has been transfered to the N atom in the azo group to form a zwitterion, and in each of the independent molecules there is an intramolecular N—H···O hydrogen bond (Table 1). The molecules are relatively planar with the dihedral angle between the benzene ring and naphthalene ring system being 6.99 (6) ° in A and 4.38 (6) ° in B. Both molecules have an E conformation with respect to azo bridge (Fig. 1). The C1-N1-N2-C11 torsion angle is -175.64 (12) ° in A and the C18–N4–N5–C28 torsion angle is-177.81 (13)° in B, confirming the trans conformation of the C atom with respect to hydrazine N atom.

In the crystal, molecules are linked by C-H···O and C-H···N hydrogen bonds forming ribbons propagating along [-110]; see Table 1 and Fig. 2. The ribbons are linked via π-π interactions involving the benzene and naphthalene rings of inversion related A and inversion related B molecules. The most significant centroid-to-centroid distances are Cg1···Cg3i and Cg2···Cg3i = 3.6636 (9) and 3.7538 (9) Å, respectively, for the A molecules, and Cg5···Cg7ii and Cg6···Cg7ii = 3.6599 (6) and 3.6610 (9) Å, respectively, for the B molecules [Cg1, Cg2, Cg3, Cg5, Cg6 and Cg7 are the centroids of the C1-C5/C10, C5-C10, C11-C16, C18-C22/C27, C22-C27 and C28-C30 rings, respectively; symmetry codes: (i) -x+1, -y, -z; (ii) -x, -y, -z+1].

For general background to azo compounds and their use in dyes, pigments and advanced materials, see: Lee et al. (2004); Oueslati et al. (2004). Many azo compounds have been synthesized by diazotization and diazo coupling reactions, see: Wang et al. (2003). For a related structure, see: Rãdulescu et al. (2006). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the two independent molecules (A and B) of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound, showing the hydrogen bonds as dashed lines (see Table 1 for details).
(E)-1-[2-(2-Cyanophenyl)diazen-2-ium-1-yl]naphthalen-2-olate top
Crystal data top
C17H11N3OZ = 4
Mr = 273.29F(000) = 568
Triclinic, P1Dx = 1.383 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1296 (3) ÅCell parameters from 4069 reflections
b = 12.9532 (7) Åθ = 2.7–27.2°
c = 15.6181 (8) ŵ = 0.09 mm1
α = 111.562 (2)°T = 150 K
β = 90.536 (2)°Rod, orange
γ = 100.779 (2)°0.55 × 0.11 × 0.08 mm
V = 1312.92 (11) Å3
Data collection top
Bruker APEXII
diffractometer
6021 independent reflections
Radiation source: fine-focus sealed tube3859 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
CCD rotation images, thin slices scansθmax = 27.6°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 98
Tmin = 0.910, Tmax = 0.993k = 1516
18729 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0552P)2]
where P = (Fo2 + 2Fc2)/3
6021 reflections(Δ/σ)max < 0.001
387 parametersΔρmax = 0.20 e Å3
2 restraintsΔρmin = 0.23 e Å3
Crystal data top
C17H11N3Oγ = 100.779 (2)°
Mr = 273.29V = 1312.92 (11) Å3
Triclinic, P1Z = 4
a = 7.1296 (3) ÅMo Kα radiation
b = 12.9532 (7) ŵ = 0.09 mm1
c = 15.6181 (8) ÅT = 150 K
α = 111.562 (2)°0.55 × 0.11 × 0.08 mm
β = 90.536 (2)°
Data collection top
Bruker APEXII
diffractometer
6021 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
3859 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.993Rint = 0.037
18729 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0462 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.20 e Å3
6021 reflectionsΔρmin = 0.23 e Å3
387 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.22974 (15)0.08495 (9)0.19945 (7)0.0353 (4)
N10.26603 (15)0.03201 (9)0.00509 (8)0.0228 (4)
N20.28634 (16)0.13393 (10)0.05950 (8)0.0240 (4)
N30.2868 (2)0.37222 (11)0.25733 (9)0.0395 (5)
C10.22947 (18)0.03886 (11)0.04340 (9)0.0214 (4)
C20.2066 (2)0.00985 (13)0.14333 (10)0.0273 (5)
C30.1577 (2)0.09342 (13)0.17514 (10)0.0322 (5)
C40.1391 (2)0.19509 (13)0.11610 (10)0.0323 (5)
C50.16559 (19)0.22862 (12)0.01740 (10)0.0258 (5)
C60.1453 (2)0.33609 (13)0.04241 (11)0.0323 (5)
C70.1666 (2)0.36735 (13)0.13627 (11)0.0343 (5)
C80.2071 (2)0.29038 (13)0.17290 (10)0.0318 (5)
C90.2267 (2)0.18361 (12)0.11562 (10)0.0265 (5)
C100.20812 (18)0.15051 (11)0.01973 (9)0.0221 (4)
C110.31180 (18)0.21245 (11)0.02079 (9)0.0221 (4)
C120.31961 (19)0.32258 (12)0.08066 (9)0.0246 (4)
C130.3380 (2)0.40431 (12)0.04526 (10)0.0307 (5)
C140.3500 (2)0.37679 (13)0.04877 (11)0.0336 (5)
C150.3436 (2)0.26761 (12)0.10790 (10)0.0302 (5)
C160.32483 (19)0.18560 (12)0.07411 (9)0.0252 (4)
C170.3020 (2)0.35134 (12)0.17923 (11)0.0287 (5)
O20.25056 (17)0.07164 (10)0.29923 (7)0.0412 (4)
N40.23605 (16)0.01608 (10)0.49355 (8)0.0263 (4)
N50.15976 (18)0.12048 (10)0.43789 (8)0.0287 (4)
N60.0106 (2)0.36198 (11)0.23897 (9)0.0409 (5)
C180.3133 (2)0.05720 (12)0.45560 (10)0.0259 (5)
C190.3193 (2)0.02819 (14)0.35679 (10)0.0320 (5)
C200.4066 (2)0.11518 (15)0.32526 (11)0.0381 (6)
C210.4765 (2)0.22096 (15)0.38446 (11)0.0391 (6)
C220.4725 (2)0.25414 (13)0.48296 (11)0.0317 (5)
C230.5459 (2)0.36558 (14)0.54297 (13)0.0426 (6)
C240.5446 (2)0.39650 (14)0.63640 (13)0.0428 (6)
C250.4710 (2)0.31589 (14)0.67273 (11)0.0391 (6)
C260.3963 (2)0.20554 (13)0.61554 (10)0.0319 (5)
C270.3940 (2)0.17243 (12)0.51944 (10)0.0272 (5)
C280.0844 (2)0.19913 (12)0.47635 (10)0.0257 (5)
C290.0006 (2)0.30904 (12)0.41620 (9)0.0275 (5)
C300.0778 (2)0.39107 (13)0.45099 (10)0.0319 (5)
C310.0682 (2)0.36403 (13)0.54521 (10)0.0338 (5)
C320.0176 (2)0.25528 (13)0.60442 (10)0.0328 (5)
C330.0925 (2)0.17330 (13)0.57078 (10)0.0292 (5)
C340.0066 (2)0.33815 (12)0.31768 (11)0.0314 (5)
H20.272 (2)0.1545 (14)0.1223 (6)0.052 (5)*
H30.138600.076100.238300.0390*
H40.107700.246500.139700.0390*
H60.116800.387400.017900.0390*
H70.153900.439500.175200.0410*
H80.221200.311100.236600.0380*
H90.252700.132800.141200.0320*
H130.342100.477600.085000.0370*
H140.362500.431400.072600.0400*
H150.352000.249600.171400.0360*
H160.320900.112600.114500.0300*
H50.171 (3)0.1310 (16)0.3780 (7)0.075 (7)*
H200.414900.097700.262300.0460*
H210.529900.275300.361100.0470*
H230.596600.419600.518800.0510*
H240.592900.471200.675500.0510*
H250.472100.336700.736400.0470*
H260.346900.152500.640900.0380*
H300.135600.463800.410900.0380*
H310.119100.418500.568900.0410*
H320.024700.237500.667900.0390*
H330.148400.100600.611400.0350*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0424 (7)0.0354 (7)0.0234 (6)0.0079 (5)0.0014 (5)0.0058 (5)
N10.0197 (6)0.0200 (7)0.0252 (7)0.0027 (5)0.0010 (5)0.0052 (5)
N20.0251 (6)0.0214 (7)0.0227 (7)0.0043 (5)0.0006 (5)0.0054 (6)
N30.0474 (9)0.0325 (8)0.0325 (8)0.0039 (7)0.0031 (6)0.0074 (7)
C10.0166 (7)0.0232 (8)0.0238 (8)0.0011 (6)0.0008 (6)0.0095 (7)
C20.0234 (7)0.0285 (9)0.0265 (9)0.0016 (6)0.0009 (6)0.0083 (7)
C30.0324 (8)0.0399 (10)0.0267 (9)0.0072 (7)0.0018 (7)0.0155 (8)
C40.0282 (8)0.0364 (10)0.0379 (10)0.0053 (7)0.0016 (7)0.0210 (8)
C50.0178 (7)0.0281 (9)0.0328 (9)0.0029 (6)0.0002 (6)0.0139 (7)
C60.0252 (8)0.0265 (9)0.0484 (11)0.0055 (7)0.0010 (7)0.0177 (8)
C70.0278 (8)0.0248 (9)0.0456 (10)0.0060 (7)0.0062 (7)0.0075 (8)
C80.0301 (8)0.0303 (9)0.0298 (9)0.0030 (7)0.0054 (7)0.0069 (7)
C90.0261 (8)0.0243 (8)0.0291 (9)0.0038 (6)0.0027 (6)0.0108 (7)
C100.0153 (7)0.0219 (8)0.0273 (8)0.0008 (6)0.0004 (6)0.0088 (6)
C110.0181 (7)0.0211 (8)0.0259 (8)0.0028 (6)0.0017 (6)0.0080 (6)
C120.0219 (7)0.0220 (8)0.0269 (8)0.0028 (6)0.0017 (6)0.0065 (7)
C130.0300 (8)0.0220 (8)0.0363 (9)0.0050 (7)0.0018 (7)0.0067 (7)
C140.0347 (9)0.0284 (9)0.0433 (10)0.0074 (7)0.0013 (7)0.0195 (8)
C150.0311 (8)0.0323 (9)0.0282 (9)0.0062 (7)0.0013 (7)0.0126 (7)
C160.0245 (7)0.0232 (8)0.0252 (8)0.0044 (6)0.0017 (6)0.0062 (7)
C170.0284 (8)0.0205 (8)0.0320 (10)0.0025 (6)0.0037 (7)0.0050 (7)
O20.0551 (8)0.0418 (7)0.0233 (6)0.0147 (6)0.0010 (5)0.0060 (5)
N40.0251 (6)0.0258 (7)0.0259 (7)0.0089 (6)0.0009 (5)0.0057 (6)
N50.0338 (7)0.0263 (8)0.0235 (7)0.0094 (6)0.0001 (6)0.0051 (6)
N60.0539 (9)0.0338 (8)0.0313 (8)0.0092 (7)0.0007 (7)0.0080 (7)
C180.0229 (7)0.0304 (9)0.0253 (8)0.0099 (7)0.0005 (6)0.0094 (7)
C190.0297 (8)0.0395 (10)0.0279 (9)0.0149 (7)0.0015 (7)0.0101 (8)
C200.0339 (9)0.0548 (12)0.0313 (9)0.0139 (8)0.0054 (7)0.0205 (9)
C210.0290 (9)0.0493 (11)0.0477 (11)0.0067 (8)0.0043 (7)0.0287 (9)
C220.0209 (7)0.0348 (10)0.0395 (10)0.0049 (7)0.0011 (7)0.0145 (8)
C230.0281 (9)0.0403 (11)0.0610 (13)0.0001 (8)0.0067 (8)0.0245 (10)
C240.0346 (9)0.0293 (10)0.0554 (12)0.0027 (8)0.0123 (8)0.0077 (9)
C250.0367 (9)0.0383 (11)0.0342 (10)0.0112 (8)0.0100 (7)0.0029 (8)
C260.0312 (8)0.0320 (10)0.0306 (9)0.0096 (7)0.0025 (7)0.0082 (8)
C270.0206 (7)0.0299 (9)0.0305 (9)0.0093 (7)0.0009 (6)0.0086 (7)
C280.0249 (8)0.0266 (9)0.0264 (8)0.0109 (7)0.0003 (6)0.0084 (7)
C290.0287 (8)0.0285 (9)0.0233 (8)0.0117 (7)0.0031 (6)0.0047 (7)
C300.0314 (8)0.0253 (9)0.0339 (9)0.0063 (7)0.0050 (7)0.0054 (7)
C310.0349 (9)0.0308 (9)0.0353 (10)0.0040 (7)0.0028 (7)0.0133 (8)
C320.0323 (9)0.0379 (10)0.0270 (9)0.0068 (7)0.0018 (7)0.0113 (8)
C330.0287 (8)0.0259 (9)0.0282 (9)0.0066 (7)0.0031 (6)0.0042 (7)
C340.0347 (9)0.0244 (9)0.0329 (10)0.0096 (7)0.0023 (7)0.0066 (7)
Geometric parameters (Å, º) top
O1—C21.261 (2)C8—H80.9300
O2—C191.273 (2)C9—H90.9300
N1—N21.3173 (17)C13—H130.9300
N1—C11.3263 (19)C14—H140.9300
N2—C111.397 (2)C15—H150.9300
N3—C171.148 (2)C16—H160.9300
N2—H20.916 (9)C18—C271.459 (2)
N4—N51.3162 (18)C18—C191.451 (2)
N4—C181.334 (2)C19—C201.432 (3)
N5—C281.392 (2)C20—C211.336 (3)
N6—C341.151 (2)C21—C221.439 (2)
N5—H50.901 (12)C22—C271.409 (2)
C1—C101.457 (2)C22—C231.396 (3)
C1—C21.465 (2)C23—C241.365 (3)
C2—C31.440 (2)C24—C251.387 (3)
C3—C41.333 (2)C25—C261.376 (2)
C4—C51.440 (2)C26—C271.400 (2)
C5—C61.398 (2)C28—C331.385 (2)
C5—C101.412 (2)C28—C291.400 (2)
C6—C71.368 (2)C29—C301.392 (2)
C7—C81.389 (2)C29—C341.442 (2)
C8—C91.378 (2)C30—C311.380 (2)
C9—C101.396 (2)C31—C321.387 (2)
C11—C161.3903 (19)C32—C331.376 (2)
C11—C121.401 (2)C20—H200.9300
C12—C131.387 (2)C21—H210.9300
C12—C171.443 (2)C23—H230.9300
C13—C141.376 (2)C24—H240.9300
C14—C151.386 (2)C25—H250.9300
C15—C161.374 (2)C26—H260.9300
C3—H30.9300C30—H300.9300
C4—H40.9300C31—H310.9300
C6—H60.9300C32—H320.9300
C7—H70.9300C33—H330.9300
N2—N1—C1118.56 (12)C14—C15—H15119.00
N1—N2—C11119.42 (11)C16—C15—H15120.00
C11—N2—H2120.8 (11)C11—C16—H16120.00
N1—N2—H2119.5 (11)C15—C16—H16120.00
N5—N4—C18117.91 (12)C19—C18—C27119.88 (14)
N4—N5—C28118.70 (12)N4—C18—C27116.30 (13)
N4—N5—H5112.2 (13)N4—C18—C19123.82 (14)
C28—N5—H5129.0 (13)O2—C19—C18121.45 (16)
N1—C1—C10116.45 (12)O2—C19—C20120.47 (14)
C2—C1—C10119.75 (13)C18—C19—C20118.08 (15)
N1—C1—C2123.79 (13)C19—C20—C21121.38 (15)
O1—C2—C1121.04 (14)C20—C21—C22122.62 (17)
O1—C2—C3121.26 (13)C21—C22—C27119.33 (15)
C1—C2—C3117.70 (14)C23—C22—C27119.46 (15)
C2—C3—C4121.48 (14)C21—C22—C23121.21 (16)
C3—C4—C5122.80 (15)C22—C23—C24121.13 (17)
C6—C5—C10119.37 (13)C23—C24—C25119.63 (17)
C4—C5—C6121.21 (15)C24—C25—C26120.72 (15)
C4—C5—C10119.40 (14)C25—C26—C27120.53 (16)
C5—C6—C7121.32 (16)C22—C27—C26118.51 (15)
C6—C7—C8119.39 (15)C18—C27—C26122.81 (15)
C7—C8—C9120.57 (14)C18—C27—C22118.67 (13)
C8—C9—C10120.99 (14)N5—C28—C29117.98 (13)
C1—C10—C9122.83 (13)N5—C28—C33122.77 (14)
C5—C10—C9118.36 (13)C29—C28—C33119.25 (15)
C1—C10—C5118.81 (12)C28—C29—C30120.34 (13)
N2—C11—C12118.15 (12)C30—C29—C34119.64 (14)
N2—C11—C16122.33 (13)C28—C29—C34120.02 (14)
C12—C11—C16119.50 (14)C29—C30—C31119.69 (15)
C11—C12—C17119.62 (14)C30—C31—C32119.71 (16)
C13—C12—C17120.29 (14)C31—C32—C33121.05 (14)
C11—C12—C13120.06 (12)C28—C33—C32119.96 (15)
C12—C13—C14119.88 (14)N6—C34—C29179.50 (17)
C13—C14—C15119.98 (16)C19—C20—H20119.00
C14—C15—C16120.98 (14)C21—C20—H20119.00
C11—C16—C15119.60 (14)C20—C21—H21119.00
N3—C17—C12178.63 (17)C22—C21—H21119.00
C4—C3—H3119.00C22—C23—H23119.00
C2—C3—H3119.00C24—C23—H23119.00
C5—C4—H4119.00C23—C24—H24120.00
C3—C4—H4119.00C25—C24—H24120.00
C5—C6—H6119.00C24—C25—H25120.00
C7—C6—H6119.00C26—C25—H25120.00
C6—C7—H7120.00C25—C26—H26120.00
C8—C7—H7120.00C27—C26—H26120.00
C9—C8—H8120.00C29—C30—H30120.00
C7—C8—H8120.00C31—C30—H30120.00
C10—C9—H9119.00C30—C31—H31120.00
C8—C9—H9120.00C32—C31—H31120.00
C12—C13—H13120.00C31—C32—H32119.00
C14—C13—H13120.00C33—C32—H32119.00
C13—C14—H14120.00C28—C33—H33120.00
C15—C14—H14120.00C32—C33—H33120.00
C1—N1—N2—C11175.64 (12)C11—C12—C13—C140.5 (2)
N2—N1—C1—C21.2 (2)C17—C12—C13—C14178.41 (14)
N2—N1—C1—C10179.96 (12)C12—C13—C14—C150.0 (2)
N1—N2—C11—C12175.62 (12)C13—C14—C15—C160.2 (2)
N1—N2—C11—C162.8 (2)C14—C15—C16—C110.1 (2)
N5—N4—C18—C27179.18 (13)N4—C18—C19—O20.5 (2)
C18—N4—N5—C28177.81 (13)N4—C18—C19—C20180.00 (15)
N5—N4—C18—C190.5 (2)C27—C18—C19—O2179.83 (14)
N4—N5—C28—C29178.40 (13)C27—C18—C19—C200.3 (2)
N4—N5—C28—C332.4 (2)N4—C18—C27—C22178.20 (13)
C10—C1—C2—O1177.94 (13)N4—C18—C27—C261.6 (2)
C10—C1—C2—C31.8 (2)C19—C18—C27—C221.5 (2)
N1—C1—C2—O13.3 (2)C19—C18—C27—C26178.72 (14)
N1—C1—C2—C3176.96 (13)O2—C19—C20—C21178.79 (15)
C2—C1—C10—C9179.57 (13)C18—C19—C20—C211.7 (2)
N1—C1—C10—C5178.85 (12)C19—C20—C21—C221.2 (2)
N1—C1—C10—C90.7 (2)C20—C21—C22—C23179.67 (15)
C2—C1—C10—C50.0 (2)C20—C21—C22—C270.7 (2)
O1—C2—C3—C4177.83 (15)C21—C22—C23—C24179.01 (14)
C1—C2—C3—C41.9 (2)C27—C22—C23—C240.6 (2)
C2—C3—C4—C50.2 (2)C21—C22—C27—C182.0 (2)
C3—C4—C5—C101.8 (2)C21—C22—C27—C26178.21 (14)
C3—C4—C5—C6179.86 (15)C23—C22—C27—C18178.35 (14)
C6—C5—C10—C90.6 (2)C23—C22—C27—C261.4 (2)
C4—C5—C10—C11.8 (2)C22—C23—C24—C250.7 (2)
C4—C5—C6—C7178.66 (14)C23—C24—C25—C261.1 (2)
C10—C5—C6—C70.3 (2)C24—C25—C26—C270.3 (2)
C4—C5—C10—C9177.84 (13)C25—C26—C27—C18178.79 (14)
C6—C5—C10—C1179.82 (13)C25—C26—C27—C221.0 (2)
C5—C6—C7—C80.7 (2)N5—C28—C29—C30179.85 (13)
C6—C7—C8—C90.3 (2)N5—C28—C29—C340.6 (2)
C7—C8—C9—C100.6 (2)C33—C28—C29—C300.7 (2)
C8—C9—C10—C1179.42 (14)C33—C28—C29—C34178.65 (14)
C8—C9—C10—C51.0 (2)N5—C28—C33—C32179.13 (14)
C16—C11—C12—C130.7 (2)C29—C28—C33—C320.0 (2)
C16—C11—C12—C17178.68 (13)C28—C29—C30—C310.8 (2)
N2—C11—C12—C170.2 (2)C34—C29—C30—C31178.51 (14)
N2—C11—C12—C13177.75 (13)C29—C30—C31—C320.2 (2)
C12—C11—C16—C150.5 (2)C30—C31—C32—C330.4 (2)
N2—C11—C16—C15177.89 (13)C31—C32—C33—C280.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.92 (1)1.80 (2)2.5380 (16)136 (2)
N5—H5···O20.90 (1)1.72 (2)2.5277 (17)147 (2)
C21—H21···N3i0.932.613.509 (2)162
C30—H30···N3ii0.932.603.487 (2)159
C32—H32···O1iii0.932.493.1994 (18)133
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC17H11N3O
Mr273.29
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)7.1296 (3), 12.9532 (7), 15.6181 (8)
α, β, γ (°)111.562 (2), 90.536 (2), 100.779 (2)
V3)1312.92 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.55 × 0.11 × 0.08
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.910, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
18729, 6021, 3859
Rint0.037
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.120, 1.06
No. of reflections6021
No. of parameters387
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.23

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.916 (9)1.802 (15)2.5380 (16)135.5 (15)
N5—H5···O20.901 (12)1.724 (17)2.5277 (17)147.0 (18)
C21—H21···N3i0.932.613.509 (2)162
C30—H30···N3ii0.932.603.487 (2)159
C32—H32···O1iii0.932.493.1994 (18)133
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x, y, z+1.
 

Acknowledgements

We thank all researchers of the CHEMS Research Unit of the University of Constantine, Algeria, for the valuable assistance they have provided us throughout the realisation of this work. We also express our gratitude and thank Mr. L Ouahab, Director of Research at laboratory UMR LCSIM 6511, CNRS, Rennes I (France), for his valuable collaboration in the recording and inter­pretation of the XRD data.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLee, S. H., Kim, J. Y., Ko, J., Lee, J. Y. & Kim, J. S. (2004). J. Org. Chem. 69, 2902–2905.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOueslati, F., Dumazet-Bonnamour, I. & Lamartine, R. (2004). New J. Chem. 28, 1575–1578.  Web of Science CrossRef CAS Google Scholar
First citationRãdulescu, C., Hossu, A. M. & Ionitã, I. (2006). Dyes Pigments, 71, 123–129.  Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, M., Funabiki, K. & Matsui, M. (2003). Dyes Pigments, 57, 77–86.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds