organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2,5-Di­methyl­phen­yl)-8-meth­­oxy-2-oxo-1-aza­spiro­[4.5]dec-3-en-4-yl 3-(2-bromo-4-fluoro­phen­yl)acrylate

aCollege of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China, and bMinistry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, People's Republic of China
*Correspondence e-mail: jinhaozhao@zju.edu.cn

(Received 9 May 2013; accepted 23 May 2013; online 8 June 2013)

In the title compound, C27H27BrFNO4, which is an inhibitor of acetyl-CoA carboxyl­ase, the cyclo­hexane ring displays a chair comformation with the spiro-C and meth­oxy-bearing C atoms deviating by 0.681 (7) and −0.655 (1) Å, resppectively, from the mean plane formed by the other four C atoms of the spiro-C6 ring. The mean planes of the cyclo­hexane and 2-bromo-4-fluoro­phenyl rings are nearly perpendicular to that of the pyrrolidine ring, making dihedral angles 89.75 (6) and 87.60 (9)°, respectively. In the crystal, mol­ecules are linked via pairs of N—H⋯O hydrogen bonds, forming inversion dimers.

Related literature

For the pesticide spiro­tetra­mat (systematic name: cis-3-(2,5-di­methyl­phen­yl)-8-meth­oxy-2-oxo-1-aza­spiro­[4.5]dec-3-en-4-yl ethyl carbonate), the central unit of the title compound, see: Fischer & Weiss (2008[Fischer, R. & Weiss, H. C. (2008). Bayer CropSci. J. 61, 127-140.]); Maus (2008[Maus, C. (2008). Bayer CropSci. J. 61, 159-180.]). For structures of spiro­tetra­mat derivatives, see: Fischer et al. (2010[Fischer, R., Bretschneider, T., Lehr, S., Arnold, C., Dittgen, J., Feucht, D., Kehne, H., Malsam, O., Rosinger, C. H., Franken, E. M. & Goergens, U. (2010). US Patent No. 20100279873A1.]); Campbell et al. (1985[Campbell, A. C., Maidment, M. S., Pick, J. H. & Stevenson, D. F. M. (1985). J. Chem. Soc. Perkin Trans. 1, pp. 1567-1576.]); Schobert & Schlenk (2008[Schobert, R. & Schlenk, A. (2008). Bioorg. Med. Chem. 16, 4203-4221.]); Zhao et al. (2012[Zhao, J. H., Zhang, J. G., Xu, B. R., Wang, Z. C., Cheng, J. L. & Zhu, G. N. (2012). J. Agric. Food Chem. 60, 4779-4787.]); Wang et al. (2011[Wang, Z. C., Xu, B. R. & Cheng, J. L. (2011). Chin. J. Struc. Chem. 30, 1675-1679.]). For the metabolic transformation of spiro­tetra­mat, see: Bruck et al. (2009[Bruck, E., Elbert, A., Fischer, R. & Krueger, S. (2009). Crop Prot. 28, 838-844.]).

[Scheme 1]

Experimental

Crystal data
  • C27H27BrFNO4

  • Mr = 528.41

  • Triclinic, [P \overline 1]

  • a = 10.5170 (5) Å

  • b = 11.2410 (6) Å

  • c = 12.5150 (7) Å

  • α = 110.364 (2)°

  • β = 102.049 (2)°

  • γ = 107.409 (1)°

  • V = 1239.95 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.70 mm−1

  • T = 296 K

  • 0.48 × 0.45 × 0.24 mm

Data collection
  • Rigaku R-AXIS RAPID/ZJUG diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.446, Tmax = 0.665

  • 10805 measured reflections

  • 4845 independent reflections

  • 3433 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.134

  • S = 1.00

  • 4845 reflections

  • 311 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.95 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.11 2.859 (4) 145
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Spirotetramat is a new systemic insecticide which belongs chemically to the class of spirocyclic tetramic acid derivatives and was developed by Bayer CropScience AG (Fischer et al., 2008; Maus, 2008). A unique mode of action coupled with a high degree of activity on targeted pests and low toxicity to nontarget organisms make spirocyclic tetronic acid compounds a new tool for integrated pest management (Bruck et al., 2009; Campbell et al.,1985; Schobert et al., 2008). Encouraged by previous papers from our laboratory (Zhao et al., 2012; Wang et al., 2011) in order to find the relationship between the ester at position C3 and biological activity, we synthesized the title compound by an esterification reaction and determined its molecular and crystal structure (Fig. 1).

The molecule contains two benzene rings, one six membered ring, and one five membered ring. The cyclohexane ring displays a chair conformation; atoms C22, C23, C25 and C26 lie in a plane with atoms C4 and C24 deviating by 0.681 (7) and -0.655 (1) Å. The mean plane of the cyclohexane ring and the benzene ring C16-C21 are nearly perpendicular to the pyrrolidine ring, making dihedral angles of 89.75 (6) and 87.60 (9) °, respectively. In the crystal, molecules are linked via a pair of N—H···O hydrogen bonds forming inversion dimers (Table 1).

Related literature top

For the pesticide spirotetramat (systematic name: cis-3-(2,5-dimethylphenyl)-8-methoxy-2-oxo-1-azaspiro[4.5]dec-3-en-4-yl ethyl carbonate), the central unit of the title compound, see: Fischer & Weiss (2008); Maus (2008). For structures of spirotetramat derivatives, see: Fischer et al. (2010); Campbell et al. (1985); Schobert & Schlenk (2008); Zhao et al. (2012); Wang et al. (2011). For the metabolic transformation of spirotetramat, see: Bruck et al. (2009).

Experimental top

The synthesis of the title compound is described in Fig. 2. In a flask, a solution of 3-(2-bromo-4-fluoro-phenyl)-acryloyl chloride (0.55 g, 2.0 mmoL) in anhydrous chloroform (5 ml) was added drop wise to a solution of cis-3-(2,5-dimethylphenyl)-4-hydroxy-8-methoxy-1-azaspiro[4.5]dec-3-en-2-one (0.40 g, 1.3 mmoL) in anhydrous chloroform (15 ml) at 0° C and stirred for 10 min. The reaction mixture was allowed to warm to room temperature and stirred at room temperature for 1 h. The reaction mixture was then washed with water (15 ml), saturated sodium bicarbonate (15 ml) and saturated sodium chloride solution and dried over anhydrous Na2SO4. The solvent was evaporated, and the residual solid was purified by flash column chromatography on silica gel using a mixture of petroleum ether (boiling point range 60–90° C) and ethyl acetate (4:1 by volume) as the eluent to give the title compound (0.33 g, 48%) as a colorless solid. The solid was filtrated and recrystallized with 95% ethanol to get colourless blocks. The 1H NMR, ESI-MS date testified the title compound's structure. 1H NMR (500 MHz, CDCl3): 8.02 (1H, d, J = 16 Hz, Ph—CH=CH–), 7.60–7.58 (1H, m, Ph—H), 7.40–7.38 (1H, m, Ph—H), 7.11–7.08 (2H, m, Ph—H), 7.04–7.02 (2H, m, Ph—H), 6.58 (1H, s, –NH–), 6.29 (1H, d, J = 16 Hz, Ph—CH=CH–), 3.40 (3H, s, –OCH3), 3.27–3.23 (1H, m, CH3OCH–), 2.28,2.26 (6H, s, Me2—Ar), 2.24–1.41 (8H, m, cyclohexane-H8); ESI-MS: 528 (M+H)+ (100%).

Refinement top

The H atoms were geometrically placed (C–H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Structure description top

Spirotetramat is a new systemic insecticide which belongs chemically to the class of spirocyclic tetramic acid derivatives and was developed by Bayer CropScience AG (Fischer et al., 2008; Maus, 2008). A unique mode of action coupled with a high degree of activity on targeted pests and low toxicity to nontarget organisms make spirocyclic tetronic acid compounds a new tool for integrated pest management (Bruck et al., 2009; Campbell et al.,1985; Schobert et al., 2008). Encouraged by previous papers from our laboratory (Zhao et al., 2012; Wang et al., 2011) in order to find the relationship between the ester at position C3 and biological activity, we synthesized the title compound by an esterification reaction and determined its molecular and crystal structure (Fig. 1).

The molecule contains two benzene rings, one six membered ring, and one five membered ring. The cyclohexane ring displays a chair conformation; atoms C22, C23, C25 and C26 lie in a plane with atoms C4 and C24 deviating by 0.681 (7) and -0.655 (1) Å. The mean plane of the cyclohexane ring and the benzene ring C16-C21 are nearly perpendicular to the pyrrolidine ring, making dihedral angles of 89.75 (6) and 87.60 (9) °, respectively. In the crystal, molecules are linked via a pair of N—H···O hydrogen bonds forming inversion dimers (Table 1).

For the pesticide spirotetramat (systematic name: cis-3-(2,5-dimethylphenyl)-8-methoxy-2-oxo-1-azaspiro[4.5]dec-3-en-4-yl ethyl carbonate), the central unit of the title compound, see: Fischer & Weiss (2008); Maus (2008). For structures of spirotetramat derivatives, see: Fischer et al. (2010); Campbell et al. (1985); Schobert & Schlenk (2008); Zhao et al. (2012); Wang et al. (2011). For the metabolic transformation of spirotetramat, see: Bruck et al. (2009).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. Reaction scheme.
3-(2,5-Dimethylphenyl)-8-methoxy-2-oxo-1-azaspiro[4.5]dec-3-en-4-yl 3-(2-bromo-4-fluorophenyl)acrylate top
Crystal data top
C27H27BrFNO4Z = 2
Mr = 528.41F(000) = 544
Triclinic, P1Dx = 1.415 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.5170 (5) ÅCell parameters from 8334 reflections
b = 11.2410 (6) Åθ = 3.1–27.4°
c = 12.5150 (7) ŵ = 1.70 mm1
α = 110.364 (2)°T = 296 K
β = 102.049 (2)°Chunk, colorless
γ = 107.409 (1)°0.48 × 0.45 × 0.24 mm
V = 1239.95 (11) Å3
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
4845 independent reflections
Radiation source: rotating anode3433 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 10.00 pixels mm-1θmax = 26.0°, θmin = 3.1°
ω scansh = 1212
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1313
Tmin = 0.446, Tmax = 0.665l = 1515
10805 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0452P)2 + 2.4533P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4845 reflectionsΔρmax = 0.46 e Å3
311 parametersΔρmin = 0.95 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.036 (2)
Crystal data top
C27H27BrFNO4γ = 107.409 (1)°
Mr = 528.41V = 1239.95 (11) Å3
Triclinic, P1Z = 2
a = 10.5170 (5) ÅMo Kα radiation
b = 11.2410 (6) ŵ = 1.70 mm1
c = 12.5150 (7) ÅT = 296 K
α = 110.364 (2)°0.48 × 0.45 × 0.24 mm
β = 102.049 (2)°
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
4845 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3433 reflections with I > 2σ(I)
Tmin = 0.446, Tmax = 0.665Rint = 0.035
10805 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.00Δρmax = 0.46 e Å3
4845 reflectionsΔρmin = 0.95 e Å3
311 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8088 (4)0.4745 (4)0.4082 (4)0.0461 (9)
C20.6693 (4)0.4235 (4)0.3104 (4)0.0427 (9)
C30.5971 (4)0.2940 (4)0.2902 (3)0.0383 (8)
C40.6755 (4)0.2431 (4)0.3664 (3)0.0368 (8)
C50.6237 (4)0.5058 (4)0.2510 (4)0.0478 (10)
C60.7037 (5)0.5696 (4)0.1946 (4)0.0517 (10)
C70.6475 (6)0.6406 (5)0.1396 (4)0.0634 (13)
H70.69910.68520.10260.076*
C80.5196 (6)0.6467 (5)0.1384 (4)0.0648 (13)
H80.48670.69570.10120.078*
C90.4375 (5)0.5814 (4)0.1916 (4)0.0538 (11)
C100.4938 (4)0.5121 (4)0.2489 (4)0.0489 (10)
H100.44220.46890.28680.059*
C110.8437 (6)0.5624 (6)0.1891 (6)0.0758 (15)
H11A0.91950.63440.26210.114*
H11B0.85950.57450.12000.114*
H11C0.84080.47360.18160.114*
C120.2922 (5)0.5783 (6)0.1840 (5)0.0744 (15)
H12A0.29220.66680.19370.112*
H12B0.26720.55840.24730.112*
H12C0.22410.50750.10630.112*
C130.4365 (4)0.1713 (4)0.0883 (3)0.0392 (8)
C140.2895 (4)0.1370 (4)0.0199 (3)0.0389 (8)
H140.25590.08450.06400.047*
C150.2014 (4)0.1765 (4)0.0705 (3)0.0368 (8)
H150.23300.21790.15510.044*
C160.0597 (4)0.1620 (4)0.0080 (3)0.0368 (8)
C170.0245 (4)0.2068 (4)0.0720 (3)0.0375 (8)
C180.1587 (4)0.1930 (4)0.0134 (4)0.0433 (9)
H180.21390.22210.05710.052*
C190.2076 (4)0.1352 (4)0.1108 (4)0.0450 (9)
C200.1310 (4)0.0910 (4)0.1794 (4)0.0498 (10)
H200.16710.05320.26390.060*
C210.0027 (4)0.1043 (4)0.1186 (4)0.0448 (9)
H210.05610.07380.16370.054*
C220.7009 (4)0.1194 (4)0.2883 (3)0.0369 (8)
H22A0.61000.04380.23360.044*
H22B0.75310.14600.23910.044*
C230.7841 (4)0.0692 (4)0.3654 (3)0.0416 (9)
H23A0.79440.01130.31240.050*
H23B0.87850.14170.41480.050*
C240.7083 (4)0.0313 (4)0.4473 (3)0.0422 (9)
H240.61710.04840.39670.051*
C250.6811 (4)0.1511 (4)0.5247 (4)0.0478 (10)
H25A0.77130.22670.58110.057*
H25B0.62720.12220.57200.057*
C260.5993 (4)0.2028 (4)0.4484 (4)0.0446 (9)
H26A0.58870.28270.50190.054*
H26B0.50500.13050.39830.054*
C270.7981 (6)0.1319 (5)0.4762 (5)0.0770 (16)
H27A0.70410.20300.42820.115*
H27B0.84140.15270.53900.115*
H27C0.85430.12810.42510.115*
N10.8079 (3)0.3695 (3)0.4373 (3)0.0448 (8)
H10.87790.37580.49200.054*
O10.9056 (3)0.5907 (3)0.4548 (3)0.0610 (9)
O20.7899 (3)0.0026 (3)0.5295 (3)0.0570 (8)
O30.4596 (2)0.2081 (3)0.2103 (2)0.0393 (6)
O40.5294 (3)0.1721 (3)0.0476 (3)0.0579 (8)
F10.3399 (2)0.1198 (3)0.1697 (3)0.0642 (7)
Br10.04050 (4)0.28752 (5)0.24507 (4)0.0578 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.037 (2)0.041 (2)0.049 (2)0.0123 (17)0.0039 (17)0.0168 (19)
C20.036 (2)0.042 (2)0.043 (2)0.0138 (16)0.0015 (16)0.0204 (18)
C30.0278 (17)0.041 (2)0.039 (2)0.0122 (15)0.0059 (14)0.0151 (17)
C40.0283 (18)0.0381 (19)0.037 (2)0.0086 (14)0.0044 (14)0.0163 (16)
C50.045 (2)0.037 (2)0.044 (2)0.0096 (16)0.0010 (17)0.0142 (18)
C60.060 (3)0.040 (2)0.048 (2)0.0157 (19)0.014 (2)0.0195 (19)
C70.080 (3)0.050 (3)0.054 (3)0.018 (2)0.016 (2)0.028 (2)
C80.075 (3)0.049 (3)0.059 (3)0.023 (2)0.002 (2)0.026 (2)
C90.060 (3)0.042 (2)0.047 (2)0.021 (2)0.001 (2)0.016 (2)
C100.048 (2)0.040 (2)0.050 (2)0.0134 (17)0.0057 (18)0.0190 (19)
C110.076 (4)0.077 (4)0.091 (4)0.031 (3)0.042 (3)0.047 (3)
C120.071 (3)0.067 (3)0.082 (4)0.037 (3)0.007 (3)0.033 (3)
C130.0295 (19)0.041 (2)0.042 (2)0.0128 (15)0.0072 (15)0.0181 (17)
C140.0355 (19)0.041 (2)0.0323 (19)0.0132 (15)0.0068 (15)0.0132 (16)
C150.0328 (18)0.043 (2)0.0289 (18)0.0108 (15)0.0071 (14)0.0157 (16)
C160.0298 (18)0.0363 (19)0.041 (2)0.0090 (14)0.0090 (14)0.0187 (16)
C170.0363 (19)0.0359 (19)0.036 (2)0.0109 (15)0.0118 (15)0.0151 (16)
C180.035 (2)0.041 (2)0.057 (3)0.0176 (16)0.0194 (17)0.0208 (19)
C190.0293 (19)0.047 (2)0.059 (3)0.0141 (16)0.0085 (17)0.029 (2)
C200.043 (2)0.058 (3)0.042 (2)0.0150 (19)0.0043 (17)0.026 (2)
C210.036 (2)0.055 (2)0.039 (2)0.0165 (17)0.0084 (16)0.0203 (19)
C220.0361 (19)0.040 (2)0.0355 (19)0.0161 (15)0.0134 (15)0.0172 (16)
C230.041 (2)0.044 (2)0.040 (2)0.0190 (17)0.0126 (16)0.0176 (17)
C240.046 (2)0.046 (2)0.033 (2)0.0185 (17)0.0075 (16)0.0181 (17)
C250.053 (2)0.055 (2)0.040 (2)0.0229 (19)0.0172 (18)0.0237 (19)
C260.043 (2)0.052 (2)0.044 (2)0.0228 (18)0.0163 (17)0.0226 (19)
C270.109 (4)0.055 (3)0.068 (3)0.046 (3)0.015 (3)0.027 (3)
N10.0353 (17)0.0384 (17)0.0474 (19)0.0095 (13)0.0018 (14)0.0183 (15)
O10.0406 (16)0.0398 (16)0.076 (2)0.0051 (13)0.0066 (14)0.0217 (15)
O20.080 (2)0.0511 (17)0.0417 (16)0.0353 (16)0.0093 (14)0.0224 (14)
O30.0250 (12)0.0469 (15)0.0410 (14)0.0099 (10)0.0051 (10)0.0214 (12)
O40.0389 (16)0.082 (2)0.0533 (18)0.0284 (15)0.0198 (13)0.0247 (16)
F10.0347 (12)0.0731 (17)0.0796 (18)0.0215 (11)0.0030 (11)0.0380 (15)
Br10.0467 (3)0.0738 (4)0.0435 (3)0.0204 (2)0.01813 (19)0.0176 (2)
Geometric parameters (Å, º) top
C1—O11.228 (5)C15—C161.463 (5)
C1—N11.350 (5)C15—H150.9300
C1—C21.496 (5)C16—C211.395 (5)
C2—C31.327 (5)C16—C171.401 (5)
C2—C51.494 (5)C17—C181.383 (5)
C3—O31.383 (4)C17—Br11.903 (4)
C3—C41.500 (5)C18—C191.367 (6)
C4—N11.473 (4)C18—H180.9300
C4—C261.533 (5)C19—F11.359 (4)
C4—C221.532 (5)C19—C201.366 (6)
C5—C101.385 (6)C20—C211.388 (5)
C5—C61.400 (6)C20—H200.9300
C6—C71.398 (6)C21—H210.9300
C6—C111.513 (7)C22—C231.529 (5)
C7—C81.364 (7)C22—H22A0.9700
C7—H70.9300C22—H22B0.9700
C8—C91.389 (7)C23—C241.520 (5)
C8—H80.9300C23—H23A0.9700
C9—C101.399 (6)C23—H23B0.9700
C9—C121.501 (7)C24—O21.429 (4)
C10—H100.9300C24—C251.508 (6)
C11—H11A0.9600C24—H240.9800
C11—H11B0.9600C25—C261.527 (5)
C11—H11C0.9600C25—H25A0.9700
C12—H12A0.9600C25—H25B0.9700
C12—H12B0.9600C26—H26A0.9700
C12—H12C0.9600C26—H26B0.9700
C13—O41.192 (4)C27—O21.410 (5)
C13—O31.381 (5)C27—H27A0.9600
C13—C141.461 (5)C27—H27B0.9600
C14—C151.324 (5)C27—H27C0.9600
C14—H140.9300N1—H10.8600
O1—C1—N1126.2 (4)C18—C17—C16122.0 (3)
O1—C1—C2126.7 (4)C18—C17—Br1116.8 (3)
N1—C1—C2107.2 (3)C16—C17—Br1121.1 (3)
C3—C2—C5128.4 (3)C19—C18—C17117.8 (3)
C3—C2—C1106.0 (3)C19—C18—H18121.1
C5—C2—C1125.6 (3)C17—C18—H18121.1
C2—C3—O3126.1 (3)F1—C19—C20118.0 (4)
C2—C3—C4114.4 (3)F1—C19—C18118.5 (4)
O3—C3—C4119.5 (3)C20—C19—C18123.5 (3)
N1—C4—C399.0 (3)C19—C20—C21117.6 (4)
N1—C4—C26111.7 (3)C19—C20—H20121.2
C3—C4—C26112.8 (3)C21—C20—H20121.2
N1—C4—C22112.4 (3)C20—C21—C16122.2 (4)
C3—C4—C22111.8 (3)C20—C21—H21118.9
C26—C4—C22108.9 (3)C16—C21—H21118.9
C10—C5—C6120.2 (4)C23—C22—C4112.2 (3)
C10—C5—C2117.0 (4)C23—C22—H22A109.2
C6—C5—C2122.7 (4)C4—C22—H22A109.2
C7—C6—C5117.0 (4)C23—C22—H22B109.2
C7—C6—C11119.8 (4)C4—C22—H22B109.2
C5—C6—C11123.2 (4)H22A—C22—H22B107.9
C8—C7—C6122.3 (5)C24—C23—C22110.8 (3)
C8—C7—H7118.8C24—C23—H23A109.5
C6—C7—H7118.8C22—C23—H23A109.5
C7—C8—C9121.4 (4)C24—C23—H23B109.5
C7—C8—H8119.3C22—C23—H23B109.5
C9—C8—H8119.3H23A—C23—H23B108.1
C8—C9—C10116.9 (4)O2—C24—C25106.3 (3)
C8—C9—C12122.4 (4)O2—C24—C23112.4 (3)
C10—C9—C12120.7 (4)C25—C24—C23110.9 (3)
C5—C10—C9122.2 (4)O2—C24—H24109.0
C5—C10—H10118.9C25—C24—H24109.0
C9—C10—H10118.9C23—C24—H24109.0
C6—C11—H11A109.5C24—C25—C26112.1 (3)
C6—C11—H11B109.5C24—C25—H25A109.2
H11A—C11—H11B109.5C26—C25—H25A109.2
C6—C11—H11C109.5C24—C25—H25B109.2
H11A—C11—H11C109.5C26—C25—H25B109.2
H11B—C11—H11C109.5H25A—C25—H25B107.9
C9—C12—H12A109.5C25—C26—C4111.7 (3)
C9—C12—H12B109.5C25—C26—H26A109.3
H12A—C12—H12B109.5C4—C26—H26A109.3
C9—C12—H12C109.5C25—C26—H26B109.3
H12A—C12—H12C109.5C4—C26—H26B109.3
H12B—C12—H12C109.5H26A—C26—H26B107.9
O4—C13—O3122.2 (3)O2—C27—H27A109.5
O4—C13—C14125.7 (4)O2—C27—H27B109.5
O3—C13—C14112.1 (3)H27A—C27—H27B109.5
C15—C14—C13123.8 (3)O2—C27—H27C109.5
C15—C14—H14118.1H27A—C27—H27C109.5
C13—C14—H14118.1H27B—C27—H27C109.5
C14—C15—C16127.1 (3)C1—N1—C4113.4 (3)
C14—C15—H15116.4C1—N1—H1123.3
C16—C15—H15116.4C4—N1—H1123.3
C21—C16—C17116.8 (3)C27—O2—C24115.2 (3)
C21—C16—C15121.4 (3)C13—O3—C3116.7 (3)
C17—C16—C15121.8 (3)
O1—C1—C2—C3178.7 (4)C21—C16—C17—C180.9 (5)
N1—C1—C2—C30.4 (5)C15—C16—C17—C18179.8 (3)
O1—C1—C2—C50.7 (7)C21—C16—C17—Br1180.0 (3)
N1—C1—C2—C5179.8 (4)C15—C16—C17—Br10.7 (5)
C5—C2—C3—O32.3 (7)C16—C17—C18—C190.8 (6)
C1—C2—C3—O3177.1 (4)Br1—C17—C18—C19180.0 (3)
C5—C2—C3—C4179.9 (4)C17—C18—C19—F1179.4 (3)
C1—C2—C3—C40.8 (5)C17—C18—C19—C200.1 (6)
C2—C3—C4—N10.8 (4)F1—C19—C20—C21178.6 (3)
O3—C3—C4—N1177.2 (3)C18—C19—C20—C210.9 (6)
C2—C3—C4—C26119.1 (4)C19—C20—C21—C160.8 (6)
O3—C3—C4—C2658.9 (4)C17—C16—C21—C200.1 (6)
C2—C3—C4—C22117.7 (4)C15—C16—C21—C20179.4 (4)
O3—C3—C4—C2264.2 (4)N1—C4—C22—C2368.2 (4)
C3—C2—C5—C1051.7 (6)C3—C4—C22—C23178.5 (3)
C1—C2—C5—C10127.5 (4)C26—C4—C22—C2356.1 (4)
C3—C2—C5—C6125.6 (5)C4—C22—C23—C2456.8 (4)
C1—C2—C5—C655.2 (6)C22—C23—C24—O2174.0 (3)
C10—C5—C6—C71.2 (6)C22—C23—C24—C2555.1 (4)
C2—C5—C6—C7178.4 (4)O2—C24—C25—C26177.6 (3)
C10—C5—C6—C11177.6 (4)C23—C24—C25—C2655.1 (4)
C2—C5—C6—C110.4 (7)C24—C25—C26—C455.9 (5)
C5—C6—C7—C81.0 (7)N1—C4—C26—C2569.6 (4)
C11—C6—C7—C8177.9 (5)C3—C4—C26—C25179.9 (3)
C6—C7—C8—C90.4 (8)C22—C4—C26—C2555.1 (4)
C7—C8—C9—C101.5 (7)O1—C1—N1—C4179.2 (4)
C7—C8—C9—C12175.7 (5)C2—C1—N1—C40.1 (5)
C6—C5—C10—C90.1 (6)C3—C4—N1—C10.5 (4)
C2—C5—C10—C9177.4 (4)C26—C4—N1—C1119.6 (4)
C8—C9—C10—C51.3 (6)C22—C4—N1—C1117.6 (4)
C12—C9—C10—C5176.0 (4)C25—C24—O2—C27165.5 (4)
O4—C13—C14—C15158.5 (4)C23—C24—O2—C2773.0 (5)
O3—C13—C14—C1519.6 (5)O4—C13—O3—C323.9 (5)
C13—C14—C15—C16171.6 (3)C14—C13—O3—C3154.3 (3)
C14—C15—C16—C211.4 (6)C2—C3—O3—C1364.2 (5)
C14—C15—C16—C17179.3 (4)C4—C3—O3—C13118.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.112.859 (4)145
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC27H27BrFNO4
Mr528.41
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.5170 (5), 11.2410 (6), 12.5150 (7)
α, β, γ (°)110.364 (2), 102.049 (2), 107.409 (1)
V3)1239.95 (11)
Z2
Radiation typeMo Kα
µ (mm1)1.70
Crystal size (mm)0.48 × 0.45 × 0.24
Data collection
DiffractometerRigaku R-AXIS RAPID/ZJUG
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.446, 0.665
No. of measured, independent and
observed [I > 2σ(I)] reflections
10805, 4845, 3433
Rint0.035
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.134, 1.00
No. of reflections4845
No. of parameters311
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.95

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.112.859 (4)145
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

This project was supported by the National Natural Science Foundation of China (No. 31101470) and the Fundamental Research Funds for Universities – Educational Commission of Zhejiang Province (No. Y201224393). The authors are grateful to Professor Jianming Gu for help with the crystal structure analysis.

References

First citationBruck, E., Elbert, A., Fischer, R. & Krueger, S. (2009). Crop Prot. 28, 838–844.  Google Scholar
First citationCampbell, A. C., Maidment, M. S., Pick, J. H. & Stevenson, D. F. M. (1985). J. Chem. Soc. Perkin Trans. 1, pp. 1567–1576.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFischer, R., Bretschneider, T., Lehr, S., Arnold, C., Dittgen, J., Feucht, D., Kehne, H., Malsam, O., Rosinger, C. H., Franken, E. M. & Goergens, U. (2010). US Patent No. 20100279873A1.  Google Scholar
First citationFischer, R. & Weiss, H. C. (2008). Bayer CropSci. J. 61, 127–140.  CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMaus, C. (2008). Bayer CropSci. J. 61, 159–180.  CAS Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSchobert, R. & Schlenk, A. (2008). Bioorg. Med. Chem. 16, 4203–4221.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z. C., Xu, B. R. & Cheng, J. L. (2011). Chin. J. Struc. Chem. 30, 1675–1679.  CAS Google Scholar
First citationZhao, J. H., Zhang, J. G., Xu, B. R., Wang, Z. C., Cheng, J. L. & Zhu, G. N. (2012). J. Agric. Food Chem. 60, 4779–4787.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds