metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(Di­methyl­amino)­pyridinium tri­chlorido[4-(di­methyl­amino)­pyridine-κN]cobaltate(II)

aUnité de Recherche Chimie de l'Environnement et Moléculaire Structurale, 'CHEMS', Faculté des Sciences Exactes, Campus Chaabet Ersas, Université Constantine I, 25000 Constantine, Algeria
*Correspondence e-mail: Lamiabendjeddou@yahoo.fr

(Received 21 May 2013; accepted 4 June 2013; online 12 June 2013)

In the anion of the title compound, (C7H11N2)[CoCl3(C7H10N2)], the CoII ion is coordinated by one N atom from a 4-(di­methyl­amino)­pyridine (DMAP) ligand and three Cl atoms, forming a CoNCl3 polyhedron with a distorted tetra­hedral geometry. In the crystal, cations and anions are linked via weak N—H⋯Cl and C—H⋯Cl hydrogen bonds. Double layers of complex anions stack along the b- axis direction, which alternate with double layers of 4-(di­methyl­amino)-pyridinium cations.

Related literature

For applications and properties of DMAP, see: Araki et al. (2005[Araki, H., Tsuge, K., Sasaki, Y., Ishizaka, S. & Kitamura, N. (2005). Inorg. Chem. 44, 9667-9675.]); Satgé et al. (2004[Satgé, C., Granet, R., Verneuil, B., Branland, P. & Krausz, P. (2004). C. R. Chim. 7, 135-142.]). For Co—N and Co—Cl bond lengths and angles in related compounds, see: Akbarzadeh Torbati et al. (2010[Akbarzadeh Torbati, N., Rezvani, A. R., Safari, N., Amani, V. & Khavasi, H. R. (2010). Acta Cryst. E66, m1236.]); Baker et al. (1988[Baker, G. L., Fronczek, F. R., Kiefer, G. E., Marston, C. R., Modenbach, C. L., Newkome, G. R., Puckett, W. E. & Watkins, S. F. (1988). Acta Cryst. C44, 1668-1669.]). For hysrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]);

[Scheme 1]

Experimental

Crystal data
  • (C7H11N2)[CoCl3(C7H10N2)]

  • Mr = 410.63

  • Triclinic, [P \overline 1]

  • a = 7.7468 (2) Å

  • b = 8.4036 (2) Å

  • c = 15.4765 (4) Å

  • α = 79.732 (2)°

  • β = 89.983 (2)°

  • γ = 67.889 (2)°

  • V = 916.02 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.38 mm−1

  • T = 293 K

  • 0.1 × 0.09 × 0.08 mm

Data collection
  • Bruker APEXII diffractometer

  • 7932 measured reflections

  • 3230 independent reflections

  • 2982 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.054

  • S = 1.04

  • 3230 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Selected bond lengths (Å)

Co—Cl1 2.2482 (6)
Co—Cl2 2.2642 (5)
Co—Cl3 2.2680 (5)
Co—N2 2.0154 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯Cl2i 0.86 2.64 3.3535 (17) 142
N4—H4⋯Cl3i 0.86 2.70 3.3279 (17) 131
C13—H13⋯Cl3i 0.93 2.81 3.4048 (19) 123
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and POVRay (Persistence of Vision Team, 2004[Persistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org/.]).

Supporting information


Comment top

The N-heteroaromatic ligand 4-(dimethylamino) pyridine (DMAP) finds use as a homogeneous catalyst in cellulose acylation in the synthesis of biodegradable plastics (Satgé et al., 2004). DMAP is also known to form transition metal complexes which exhibit luminescence properties (Araki et al., 2005). We report here the synthesis and crystal structure of such a cobalt(II) complex with 4-(dimethylamino)pyridine.

The title compound (I) consists of one complex anion [CoCl3(C7H10N2)]- and one 4-(dimethylamino)-pyridinium cation (Figure 1). In the structure of (I), each cobalt(II) is coordinated by one N atom from the DMAP ligand and three Cl atoms, forming a distorted tetrahedral coordination geometry. The Co—N and Co—Cl bond lengths and angles (Table 1) are within normal range as observed in: dichloro(6,6'-dimethyl-2,2'-bipyridyl)cobalt(II) hemibenzene solvate (Baker et al., 1988) and dichlorido(6,6'-dimethyl-2, 2'-bipyridine-κ2N,N')cobalt(II) (Akbarzadeh Torbati et al., 2010) .

The crystal structure of the title compound (I) is formed by double layers of complex anions [CoCl3(C7H10N2)]- stacking along the b axis, at c = 0 and 1, which alternate with double layers of 4-(dimethylamino)-pyridinium cations placed along the [010] direction at c = 1/2 (Figure 2). The crystal packing is consolidated by two N—H···Cl and one C—H···Cl hydrogen bonds established between cations and anions, forming rings in two-dimensional network which can be described by the graph-set motif R12(5) and R21 (4) (Bernstein et al., 1995) (Figure 3).

Related literature top

For applications and properties of DMAP, see: Araki et al. (2005); Satgé et al. (2004). For Co—N and Co—Cl bond lengths and angles in related compounds, see: Akbarzadeh Torbati et al. (2010); Baker et al. (1988). For hysrogen-bond motifs, see: Bernstein et al. (1995);

Experimental top

A mixture of NaN3 and CoCl2.6H2O in methanol was stirred for half an hour, then 4-dimethylaminopyridine was added to the solution and the reaction continued to stir for one hour. After filtration, the pink filtrate was allowed to stand at room temperature. Blue crystals were obtained by slow evaporation.

Refinement top

The H atoms were placed at calculated positions with C—H = 0.93 and 0.96 Å, for aromatic and methyl H atoms, respectively, with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and 1.5Ueq(C) for methyl H atoms.

Structure description top

The N-heteroaromatic ligand 4-(dimethylamino) pyridine (DMAP) finds use as a homogeneous catalyst in cellulose acylation in the synthesis of biodegradable plastics (Satgé et al., 2004). DMAP is also known to form transition metal complexes which exhibit luminescence properties (Araki et al., 2005). We report here the synthesis and crystal structure of such a cobalt(II) complex with 4-(dimethylamino)pyridine.

The title compound (I) consists of one complex anion [CoCl3(C7H10N2)]- and one 4-(dimethylamino)-pyridinium cation (Figure 1). In the structure of (I), each cobalt(II) is coordinated by one N atom from the DMAP ligand and three Cl atoms, forming a distorted tetrahedral coordination geometry. The Co—N and Co—Cl bond lengths and angles (Table 1) are within normal range as observed in: dichloro(6,6'-dimethyl-2,2'-bipyridyl)cobalt(II) hemibenzene solvate (Baker et al., 1988) and dichlorido(6,6'-dimethyl-2, 2'-bipyridine-κ2N,N')cobalt(II) (Akbarzadeh Torbati et al., 2010) .

The crystal structure of the title compound (I) is formed by double layers of complex anions [CoCl3(C7H10N2)]- stacking along the b axis, at c = 0 and 1, which alternate with double layers of 4-(dimethylamino)-pyridinium cations placed along the [010] direction at c = 1/2 (Figure 2). The crystal packing is consolidated by two N—H···Cl and one C—H···Cl hydrogen bonds established between cations and anions, forming rings in two-dimensional network which can be described by the graph-set motif R12(5) and R21 (4) (Bernstein et al., 1995) (Figure 3).

For applications and properties of DMAP, see: Araki et al. (2005); Satgé et al. (2004). For Co—N and Co—Cl bond lengths and angles in related compounds, see: Akbarzadeh Torbati et al. (2010); Baker et al. (1988). For hysrogen-bond motifs, see: Bernstein et al. (1995);

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012), Mercury (Macrae et al., 2006) and POVRay (Persistence of Vision Team, 2004).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as spheres of arbitrary radii.
[Figure 2] Fig. 2. View of the crystal structure of (I), showing the alternating double layers of cations and anions along the b axis.
[Figure 3] Fig. 3. Part of the crystal structure, showing the aggregation of R12(5) and R21 (4) hydrogen-bonding motifs. [Symmetry codes: (ii) 1-x, 1-y, 1-z; (iii) -1+x, 1+y, z]
4-(Dimethylamino)pyridinium trichlorido[4-(dimethylamino)pyridine-κN]cobaltate(II) top
Crystal data top
(C7H11N2)[CoCl3(C7H10N2)]Z = 2
Mr = 410.63F(000) = 422
Triclinic, P1Dx = 1.489 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7468 (2) ÅCell parameters from 3230 reflections
b = 8.4036 (2) Åθ = 2.7–25.0°
c = 15.4765 (4) ŵ = 1.38 mm1
α = 79.732 (2)°T = 293 K
β = 89.983 (2)°Prism, blue
γ = 67.889 (2)°0.1 × 0.09 × 0.08 mm
V = 916.02 (4) Å3
Data collection top
Bruker APEXII
diffractometer
2982 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.012
Graphite monochromatorθmax = 25.0°, θmin = 2.7°
φ scansh = 99
7932 measured reflectionsk = 99
3230 independent reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.0266P)2 + 0.4298P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.054(Δ/σ)max = 0.002
S = 1.04Δρmax = 0.31 e Å3
3230 reflectionsΔρmin = 0.24 e Å3
199 parameters
Crystal data top
(C7H11N2)[CoCl3(C7H10N2)]γ = 67.889 (2)°
Mr = 410.63V = 916.02 (4) Å3
Triclinic, P1Z = 2
a = 7.7468 (2) ÅMo Kα radiation
b = 8.4036 (2) ŵ = 1.38 mm1
c = 15.4765 (4) ÅT = 293 K
α = 79.732 (2)°0.1 × 0.09 × 0.08 mm
β = 89.983 (2)°
Data collection top
Bruker APEXII
diffractometer
2982 reflections with I > 2σ(I)
7932 measured reflectionsRint = 0.012
3230 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.04Δρmax = 0.31 e Å3
3230 reflectionsΔρmin = 0.24 e Å3
199 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.97567 (3)0.05454 (3)0.75509 (1)0.0213 (1)
Cl11.17207 (6)0.08718 (6)0.73814 (3)0.0306 (1)
Cl21.12085 (6)0.34664 (5)0.80434 (3)0.0341 (1)
Cl30.80521 (6)0.03086 (6)0.63092 (3)0.0309 (1)
N10.4028 (2)0.28626 (19)1.01267 (9)0.0296 (4)
N20.78837 (18)0.06985 (17)0.83537 (9)0.0226 (4)
C10.2121 (2)0.2955 (3)1.00244 (12)0.0344 (5)
C20.4620 (3)0.3238 (3)1.09356 (12)0.0404 (6)
C30.5268 (2)0.2194 (2)0.95499 (10)0.0240 (5)
C40.4763 (2)0.1638 (2)0.88186 (10)0.0247 (5)
C50.6070 (2)0.0912 (2)0.82633 (10)0.0235 (5)
C60.8363 (2)0.1278 (2)0.90386 (11)0.0261 (5)
C70.7166 (2)0.1992 (2)0.96373 (11)0.0279 (5)
N30.5958 (2)0.6338 (2)0.60387 (10)0.0348 (5)
N40.8714 (2)0.4027 (2)0.40501 (11)0.0345 (5)
C80.4455 (3)0.8064 (3)0.58671 (16)0.0464 (7)
C90.6493 (4)0.5499 (4)0.69593 (13)0.0620 (9)
C100.6871 (2)0.5610 (2)0.53913 (11)0.0242 (5)
C110.6388 (2)0.6428 (2)0.44901 (11)0.0261 (5)
C120.7323 (3)0.5605 (3)0.38523 (11)0.0318 (6)
C130.9237 (3)0.3224 (2)0.48886 (14)0.0359 (6)
C140.8384 (2)0.3958 (2)0.55592 (12)0.0309 (5)
H1A0.142220.345721.048790.0515*
H1B0.213880.179841.005250.0515*
H1C0.154580.367010.946530.0515*
H2A0.355480.370061.126520.0605*
H2B0.518700.408101.079200.0605*
H2C0.550930.218001.128200.0605*
H4A0.353110.176660.871360.0296*
H50.569020.053970.779290.0281*
H60.959190.118430.910680.0313*
H70.759220.234611.010200.0334*
H40.927570.352680.363410.0414*
H8A0.397120.836070.641330.0696*
H8B0.347510.805470.549080.0696*
H8C0.492740.891440.558420.0696*
H9A0.567590.621600.732660.0929*
H9B0.775690.535230.710030.0929*
H9C0.639790.437490.705780.0929*
H110.543150.752730.433780.0313*
H120.698890.614850.326500.0382*
H131.021290.213310.501220.0430*
H140.878960.337760.613670.0371*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.0182 (1)0.0204 (1)0.0238 (1)0.0059 (1)0.0025 (1)0.0039 (1)
Cl10.0251 (2)0.0346 (2)0.0351 (2)0.0161 (2)0.0011 (2)0.0038 (2)
Cl20.0423 (3)0.0219 (2)0.0288 (2)0.0039 (2)0.0040 (2)0.0005 (2)
Cl30.0260 (2)0.0317 (2)0.0315 (2)0.0057 (2)0.0046 (2)0.0092 (2)
N10.0294 (8)0.0294 (8)0.0233 (7)0.0030 (6)0.0043 (6)0.0069 (6)
N20.0194 (7)0.0225 (7)0.0245 (7)0.0061 (5)0.0014 (5)0.0054 (5)
C10.0273 (9)0.0329 (10)0.0304 (9)0.0003 (7)0.0098 (7)0.0014 (8)
C20.0501 (12)0.0379 (11)0.0266 (9)0.0065 (9)0.0054 (8)0.0130 (8)
C30.0259 (8)0.0168 (8)0.0229 (8)0.0021 (6)0.0010 (7)0.0015 (6)
C40.0187 (8)0.0278 (9)0.0251 (8)0.0068 (7)0.0005 (6)0.0037 (7)
C50.0225 (8)0.0251 (8)0.0223 (8)0.0084 (7)0.0003 (6)0.0050 (7)
C60.0207 (8)0.0256 (9)0.0312 (9)0.0080 (7)0.0019 (7)0.0055 (7)
C70.0289 (9)0.0257 (9)0.0279 (9)0.0081 (7)0.0038 (7)0.0077 (7)
N30.0380 (9)0.0459 (9)0.0282 (8)0.0206 (7)0.0062 (7)0.0161 (7)
N40.0364 (8)0.0359 (9)0.0430 (9)0.0214 (7)0.0158 (7)0.0202 (7)
C80.0357 (11)0.0520 (13)0.0636 (14)0.0192 (10)0.0152 (10)0.0358 (11)
C90.0711 (17)0.097 (2)0.0253 (10)0.0384 (15)0.0099 (10)0.0160 (12)
C100.0245 (8)0.0268 (9)0.0269 (8)0.0157 (7)0.0010 (7)0.0063 (7)
C110.0248 (8)0.0235 (8)0.0301 (9)0.0107 (7)0.0021 (7)0.0022 (7)
C120.0394 (10)0.0409 (11)0.0248 (9)0.0269 (9)0.0027 (8)0.0047 (8)
C130.0287 (9)0.0245 (9)0.0568 (12)0.0121 (7)0.0048 (9)0.0093 (9)
C140.0323 (9)0.0274 (9)0.0330 (9)0.0153 (8)0.0053 (8)0.0026 (7)
Geometric parameters (Å, º) top
Co—Cl12.2482 (6)C2—H2C0.9600
Co—Cl22.2642 (5)C2—H2A0.9600
Co—Cl32.2680 (5)C2—H2B0.9600
Co—N22.0154 (14)C4—H4A0.9300
N1—C11.457 (2)C5—H50.9300
N1—C21.459 (2)C6—H60.9300
N1—C31.344 (2)C7—H70.9300
N2—C51.352 (2)C10—C111.422 (2)
N2—C61.349 (2)C10—C141.420 (2)
N3—C91.456 (3)C11—C121.358 (3)
N3—C101.331 (2)C13—C141.347 (3)
N3—C81.457 (3)C8—H8A0.9600
N4—C121.339 (3)C8—H8B0.9600
N4—C131.336 (3)C8—H8C0.9600
N4—H40.8600C9—H9A0.9600
C3—C71.419 (2)C9—H9B0.9600
C3—C41.407 (2)C9—H9C0.9600
C4—C51.363 (2)C11—H110.9300
C6—C71.363 (2)C12—H120.9300
C1—H1B0.9600C13—H130.9300
C1—H1A0.9600C14—H140.9300
C1—H1C0.9600
Co···H4i3.2300C13···H8Bviii2.8000
Cl1···N23.3714 (16)C14···H9B2.8000
Cl1···C4ii3.5458 (17)C14···H9C2.7800
Cl1···C5ii3.6498 (17)H1A···H2A2.1400
Cl1···C63.6194 (17)H1A···Cl2vii3.0500
Cl1···C12iii3.549 (2)H1B···C7vii2.9700
Cl2···N4i3.3535 (17)H1B···H4A2.3400
Cl2···Cl33.5783 (7)H1B···C42.7700
Cl3···N23.4083 (14)H1B···C6vii2.8800
Cl3···Cl23.5783 (7)H1B···N2vii2.9400
Cl3···C8iv3.648 (3)H1B···C5vii3.0700
Cl3···C13i3.4048 (19)H1C···Cl2xii2.8900
Cl3···N4i3.3279 (17)H1C···C42.7400
Cl3···C53.5318 (16)H1C···H4A2.2600
Cl1···H5ii3.0400H2A···H1A2.1400
Cl1···H142.8700H2A···C9xi2.9400
Cl1···H12iii3.0400H2A···H9Axi2.2800
Cl1···H4Aii2.8500H2B···H72.2900
Cl1···H8Av2.8400H2B···C72.7800
Cl1···H63.1400H2B···C3xi2.9600
Cl1···H2Cvi3.0700H2B···C7xi3.0600
Cl2···H1Cv2.8900H2B···Cl2vi3.1500
Cl2···H1Avii3.0500H2C···Cl1vi3.0700
Cl2···H2Bvi3.1500H2C···C72.8500
Cl2···H4i2.6400H2C···H72.4600
Cl3···H8Civ3.0000H4···Cl2i2.6400
Cl3···H52.9500H4···Coi3.2300
Cl3···H4i2.7000H4···Cl3i2.7000
Cl3···H8Bviii3.0300H4A···Cl1ix2.8500
Cl3···H11viii2.8600H4A···H1C2.2600
Cl3···H13i2.8100H4A···H1B2.3400
N2···Cl13.3714 (16)H4A···C12.4900
N2···Cl33.4083 (14)H5···Cl1ix3.0400
N4···C14iii3.394 (2)H5···Cl32.9500
N4···Cl2i3.3535 (17)H6···Cl13.1400
N4···Cl3i3.3279 (17)H7···C22.5600
N2···H1Bvii2.9400H7···H2B2.2900
N4···H8Bviii2.8700H7···H2C2.4600
C4···Cl1ix3.5458 (17)H8A···Cl1xii2.8400
C5···Cl1ix3.6498 (17)H8A···H9A2.0700
C8···Cl3x3.648 (3)H8B···C112.7900
C10···C13iii3.509 (3)H8B···H112.3400
C10···C11viii3.533 (2)H8B···Cl3viii3.0300
C11···C10viii3.533 (2)H8B···N4viii2.8700
C12···Cl1iii3.549 (2)H8B···C13viii2.8000
C13···C10iii3.509 (3)H8C···Cl3x3.0000
C13···Cl3i3.4048 (19)H8C···C112.8300
C13···C14iii3.491 (3)H8C···H112.3900
C14···C13iii3.491 (3)H8C···H8Cxiii2.3600
C14···N4iii3.394 (2)H9A···H8A2.0700
C1···H4A2.4900H9A···C2xi2.8000
C2···H9Axi2.8000H9A···H2Axi2.2800
C2···H72.5600H9B···C142.8000
C3···H2Bxi2.9600H9B···H142.3500
C4···H1B2.7700H9C···C142.7800
C4···H1C2.7400H9C···H142.3300
C5···H1Bvii3.0700H11···C82.5500
C6···H1Bvii2.8800H11···H8B2.3400
C7···H2Bxi3.0600H11···H8C2.3900
C7···H2B2.7800H11···Cl3viii2.8600
C7···H2C2.8500H12···Cl1iii3.0400
C7···H1Bvii2.9700H13···Cl3i2.8100
C8···H112.5500H14···Cl12.8700
C9···H2Axi2.9400H14···C92.5300
C9···H142.5300H14···H9B2.3500
C11···H8B2.7900H14···H9C2.3300
C11···H8C2.8300
Cl1—Co—Cl2113.59 (2)N1—C2—H2C109.00
Cl1—Co—Cl3115.11 (2)C3—C4—H4A120.00
Cl1—Co—N2104.37 (4)C5—C4—H4A120.00
Cl2—Co—Cl3104.29 (2)N2—C5—H5118.00
Cl2—Co—N2114.18 (4)C4—C5—H5118.00
Cl3—Co—N2105.29 (4)C7—C6—H6118.00
C1—N1—C2118.24 (16)N2—C6—H6118.00
C1—N1—C3119.92 (15)C6—C7—H7120.00
C2—N1—C3121.09 (17)C3—C7—H7120.00
Co—N2—C5121.29 (11)C11—C10—C14115.84 (15)
Co—N2—C6122.80 (12)N3—C10—C11122.27 (15)
C5—N2—C6115.81 (14)N3—C10—C14121.88 (16)
C9—N3—C10121.60 (18)C10—C11—C12120.02 (16)
C8—N3—C9116.52 (19)N4—C12—C11121.46 (16)
C8—N3—C10121.76 (16)N4—C13—C14121.57 (17)
C12—N4—C13120.55 (16)C10—C14—C13120.53 (17)
C13—N4—H4120.00N3—C8—H8A109.00
C12—N4—H4120.00N3—C8—H8B109.00
N1—C3—C4121.87 (15)N3—C8—H8C109.00
C4—C3—C7115.53 (14)H8A—C8—H8B109.00
N1—C3—C7122.61 (15)H8A—C8—H8C109.00
C3—C4—C5120.32 (15)H8B—C8—H8C109.00
N2—C5—C4124.10 (15)N3—C9—H9A109.00
N2—C6—C7124.37 (16)N3—C9—H9B109.00
C3—C7—C6119.83 (15)N3—C9—H9C109.00
H1A—C1—H1B109.00H9A—C9—H9B109.00
H1A—C1—H1C109.00H9A—C9—H9C109.00
N1—C1—H1C109.00H9B—C9—H9C109.00
N1—C1—H1A109.00C10—C11—H11120.00
N1—C1—H1B109.00C12—C11—H11120.00
H1B—C1—H1C109.00N4—C12—H12119.00
H2B—C2—H2C109.00C11—C12—H12119.00
N1—C2—H2B109.00N4—C13—H13119.00
N1—C2—H2A109.00C14—C13—H13119.00
H2A—C2—H2B109.00C10—C14—H14120.00
H2A—C2—H2C109.00C13—C14—H14120.00
Cl1—Co—N2—C5144.99 (11)C9—N3—C10—C141.6 (3)
Cl1—Co—N2—C638.86 (13)C8—N3—C10—C112.9 (3)
Cl2—Co—N2—C590.41 (12)C12—N4—C13—C140.5 (3)
Cl2—Co—N2—C685.75 (13)C13—N4—C12—C110.8 (3)
Cl3—Co—N2—C523.37 (13)C7—C3—C4—C51.9 (2)
Cl3—Co—N2—C6160.48 (12)N1—C3—C4—C5177.79 (15)
C1—N1—C3—C42.7 (2)N1—C3—C7—C6178.90 (16)
C1—N1—C3—C7176.94 (16)C4—C3—C7—C60.8 (2)
C2—N1—C3—C4172.62 (16)C3—C4—C5—N21.1 (2)
C2—N1—C3—C77.0 (3)N2—C6—C7—C31.3 (3)
Co—N2—C5—C4175.57 (12)N3—C10—C11—C12177.82 (19)
C6—N2—C5—C40.8 (2)C14—C10—C11—C121.8 (3)
Co—N2—C6—C7174.29 (13)N3—C10—C14—C13177.53 (18)
C5—N2—C6—C72.1 (2)C11—C10—C14—C132.1 (3)
C8—N3—C10—C14177.51 (18)C10—C11—C12—N40.4 (3)
C9—N3—C10—C11178.8 (2)N4—C13—C14—C101.0 (3)
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z; (iii) x+2, y+1, z+1; (iv) x, y1, z; (v) x+1, y1, z; (vi) x+2, y, z+2; (vii) x+1, y, z+2; (viii) x+1, y+1, z+1; (ix) x1, y, z; (x) x, y+1, z; (xi) x+1, y+1, z+2; (xii) x1, y+1, z; (xiii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···Cl2i0.86002.64003.3535 (17)142.00
N4—H4···Cl3i0.86002.70003.3279 (17)131.00
C13—H13···Cl3i0.93002.81003.4048 (19)123.00
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula(C7H11N2)[CoCl3(C7H10N2)]
Mr410.63
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.7468 (2), 8.4036 (2), 15.4765 (4)
α, β, γ (°)79.732 (2), 89.983 (2), 67.889 (2)
V3)916.02 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.38
Crystal size (mm)0.1 × 0.09 × 0.08
Data collection
DiffractometerBruker APEXII
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7932, 3230, 2982
Rint0.012
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.054, 1.04
No. of reflections3230
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.24

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012), Mercury (Macrae et al., 2006) and POVRay (Persistence of Vision Team, 2004).

Selected bond lengths (Å) top
Co—Cl12.2482 (6)Co—Cl32.2680 (5)
Co—Cl22.2642 (5)Co—N22.0154 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···Cl2i0.86002.64003.3535 (17)142.00
N4—H4···Cl3i0.86002.70003.3279 (17)131.00
C13—H13···Cl3i0.93002.81003.4048 (19)123.00
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

This work was supported by the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université de Constantine 1, Algeria. Thanks are due to MESRS and ATRST (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique et l'Agence Thématique de Recherche en Sciences et Technologie, Algeria) via the PNR program for financial support.

References

First citationAkbarzadeh Torbati, N., Rezvani, A. R., Safari, N., Amani, V. & Khavasi, H. R. (2010). Acta Cryst. E66, m1236.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAraki, H., Tsuge, K., Sasaki, Y., Ishizaka, S. & Kitamura, N. (2005). Inorg. Chem. 44, 9667–9675.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBaker, G. L., Fronczek, F. R., Kiefer, G. E., Marston, C. R., Modenbach, C. L., Newkome, G. R., Puckett, W. E. & Watkins, S. F. (1988). Acta Cryst. C44, 1668–1669.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPersistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org/Google Scholar
First citationSatgé, C., Granet, R., Verneuil, B., Branland, P. & Krausz, P. (2004). C. R. Chim. 7, 135–142.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds