metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(N,N-di­methyl­anilinium) tri-μ-bromido-bis­[tri­bromido­anti­monate(III)]

aLaboratoire de Génie des Matériaux et Environnement, École Nationale d'Ingénieurs de Sfax, Université de Sfax, BP 1173, Sfax, Tunisia, and bService commun d'analyse par diffraction des rayons X, Universite de Brest, 6 avenue Victor Le Gorgeu, CS 93837, F-29238 Brest Cedex 3, France
*Correspondence e-mail: kharrat_houda@yahoo.fr

(Received 15 May 2013; accepted 23 May 2013; online 8 June 2013)

In the title compound, (C8H12N)3[Sb2Br9], two of the three unique N,N-dimethyanilinium cations exhibit flip–flop disorder with an occupancy ratio of 0.58 (1):0.42 (1). N—H⋯Br hydrogen bonds link the organic cations and bioctahedral face-sharing anions into a three-dimensional network.

Related literature

For related hybrid organic anti­monate(III) halogenide crystal structures, see: Bujak & Angel (2005[Bujak, M. & Angel, R. J. (2005). J. Solid State Chem. 178, 2237-2246.]); Chaabouni et al. (1997[Chaabouni, S., Kamoun, S., Daoud, A. & Jouini, T. (1997). J. Chem. Crystallogr. 27, 401-404.], 1998[Chaabouni, S., Kamoun, S. & Jaud, J. (1998). Mater. Res. Bull. 33, 377-388.]). For dielectric and phase transitions properties, see: Chaabouni & Kamoun (1998[Chaabouni, S. & Kamoun, S. (1998). Phase Transitions, 66, 119-127.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H12N)3[Sb2Br9]

  • Mr = 1329.25

  • Triclinic, [P \overline 1]

  • a = 9.7857 (3) Å

  • b = 13.7658 (5) Å

  • c = 17.0297 (6) Å

  • α = 66.581 (4)°

  • β = 78.689 (3)°

  • γ = 72.601 (3)°

  • V = 2000.91 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 10.36 mm−1

  • T = 296 K

  • 0.58 × 0.29 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur (Sapphire2) diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrystAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.038, Tmax = 0.126

  • 29905 measured reflections

  • 12050 independent reflections

  • 6232 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.096

  • S = 0.88

  • 12050 reflections

  • 398 parameters

  • 88 restraints

  • H-atom parameters constrained

  • Δρmax = 1.33 e Å−3

  • Δρmin = −0.89 e Å−3

Table 1
Selected bond lengths (Å)

Sb1—Br1 2.6036 (6)
Sb1—Br2 2.6292 (6)
Sb1—Br3 2.6925 (6)
Sb1—Br4 3.1222 (6)
Sb1—Br5 3.0287 (6)
Sb1—Br6 2.9558 (7)
Sb2—Br4 3.1333 (7)
Sb2—Br5 3.1602 (7)
Sb2—Br6 3.2393 (7)
Sb2—Br7 2.6068 (7)
Sb2—Br8 2.5696 (7)
Sb2—Br9 2.5713 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br4 0.91 2.47 3.362 (5) 168
N2A—H2A⋯Br3 0.91 2.43 3.23 (3) 146
N2B—H2B⋯Br3 0.91 2.55 3.43 (4) 162
N3A—H3A⋯Br6 0.91 2.4 3.25 (2) 155
N3B—H3B⋯Br6 0.91 2.68 3.48 (3) 148

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrystAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrystAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

This study is a part of our investigations on the syntheses, structures and phase transitions of halogenoantimonate (III) anions in combination with organic cations (Bujak & Angel, 2005; Chaabouni et al., 1997; Chaabouni et al., 1998; Chaabouni & Kamoun, 1998). In these compounds the Sb atom shows a tendency toward distorted octahedral coordination with some rather long Sb—X bonds, which is attributed to the aspherical distribution of the lone pair electrons at Sb(III). The asymmetric unit of the title compound, consists of one isolated [Sb2Br9]3- anion with one ordered and two disordered N,N-dimethylanilinium cations which exhibit flip-flop disorder with 0.58 (1):0.42 (1) occupancy ratio. The inorganic ions are built up from two distorted [SbBr6]3- octahedra sharing one face. Two types of Sb—Br distances are present within the Sb2Br9 group: six short Sb—Br (terminal) distances [2.5696 (7)–2.6925 (6) Å)] and three longer Sb—Br (bridging) distances [(2.9558 (7)–3.2393 (7) Å)]. The interatomic Br—Sb—Br angles involving the terminal Br atoms are greater than the ideal 90°, whereas those between the bridging ones are less than 90°. The average Sb—Br—Sb angle is 89.92 (2)°. According to the valence-shell electron-pair repulsion (VSEPR) model, the lone pair electrons on Sb(III) atom may be considered as stereochemical non active. The phenyl rings of the N,N-dimethylanilinium cations are practically planar with the greatest deviation from the six-atoms least squares plane being 0.0088 Å, 0.0383 Å,0.0518 Å, 0.0605 Å and 0.0970 Å respectively. The π-π interactions between phenyl rings may be neglected (> 4 Å); in fact the shortest distances between the centroids of the rings are: Cg(1)···Cg(1)i = 5.521 (4) Å,Cg(2)···Cg(2)ii = 4.227 (15) Å, Cg(2)···Cg(3)ii = 4.214 (19) Å and Cg(3)···Cg(3)ii = 4.26 (2) Å [Cg(1), Cg(2) and Cg(3) are the centroids of the C1···C6, C9···C14 and C17···C22 rings respectively; symmetry codes: (i) 1 - x, -y, -z; (ii) -x, 1 - y, 1 - z]. The major contributions to the cohesion and the stability of the structure is the presence of N—H···Br hydrogen bonds which provide a linkage between N,N-dimethylanilinium cations and [Sb2Br9]3- anions which include five relatively medium contacts, with H···Br and N..Br distances ranging from 2.40 Å to 2.68 Å and 3.23 (3) Å to 3.48 (3) Å, respectively (Fig. 2 and Table 1).

Related literature top

For related hybrid organic antimonate(III) halogenide crystal structures, see: Bujak & Angel (2005); Chaabouni et al. (1997, 1998). For dielectric and phase transitions properties, see: Chaabouni & Kamoun (1998).

Experimental top

Crystals of (C8H12N)3[Sb2Br9] were obtained by dissolving antimony (III) oxide Sb2O3 and N,N-dimethylanilinium bromide C8H12NBr (molar ratio 3:1) in 50 ml of a solution of HBr (24%). After a slow solvent evaporation prismatic yellow crystals suitable for X-ray analysis were obtained. They were washed with diethyl ether and dried over P2O5.

Refinement top

The positions of the two disordered N,N-dimethylanilinium cations were initially refined with different occupancy ratios, but the refinement converged extremely slowly when using anisotropic atomic displacement parameters. Since the refined occupancy factors for the two cations were nearly equal upon refining with isotropic atomic displacement parameters it was decided to use a single occupancy factor for the final anisotropic refinement. SADI and EADP restraints were used. All H atoms were geometrically positioned and treated as riding on their parent atoms, with C—H = 0.93 Å for the phenyl, 0.96 Å for the methyl and N—H = 0.91 Å with Uiso(H) = 1.2 Ueq(C-phenyl, N) or 1.5 Ueq(C-methyl).

Structure description top

This study is a part of our investigations on the syntheses, structures and phase transitions of halogenoantimonate (III) anions in combination with organic cations (Bujak & Angel, 2005; Chaabouni et al., 1997; Chaabouni et al., 1998; Chaabouni & Kamoun, 1998). In these compounds the Sb atom shows a tendency toward distorted octahedral coordination with some rather long Sb—X bonds, which is attributed to the aspherical distribution of the lone pair electrons at Sb(III). The asymmetric unit of the title compound, consists of one isolated [Sb2Br9]3- anion with one ordered and two disordered N,N-dimethylanilinium cations which exhibit flip-flop disorder with 0.58 (1):0.42 (1) occupancy ratio. The inorganic ions are built up from two distorted [SbBr6]3- octahedra sharing one face. Two types of Sb—Br distances are present within the Sb2Br9 group: six short Sb—Br (terminal) distances [2.5696 (7)–2.6925 (6) Å)] and three longer Sb—Br (bridging) distances [(2.9558 (7)–3.2393 (7) Å)]. The interatomic Br—Sb—Br angles involving the terminal Br atoms are greater than the ideal 90°, whereas those between the bridging ones are less than 90°. The average Sb—Br—Sb angle is 89.92 (2)°. According to the valence-shell electron-pair repulsion (VSEPR) model, the lone pair electrons on Sb(III) atom may be considered as stereochemical non active. The phenyl rings of the N,N-dimethylanilinium cations are practically planar with the greatest deviation from the six-atoms least squares plane being 0.0088 Å, 0.0383 Å,0.0518 Å, 0.0605 Å and 0.0970 Å respectively. The π-π interactions between phenyl rings may be neglected (> 4 Å); in fact the shortest distances between the centroids of the rings are: Cg(1)···Cg(1)i = 5.521 (4) Å,Cg(2)···Cg(2)ii = 4.227 (15) Å, Cg(2)···Cg(3)ii = 4.214 (19) Å and Cg(3)···Cg(3)ii = 4.26 (2) Å [Cg(1), Cg(2) and Cg(3) are the centroids of the C1···C6, C9···C14 and C17···C22 rings respectively; symmetry codes: (i) 1 - x, -y, -z; (ii) -x, 1 - y, 1 - z]. The major contributions to the cohesion and the stability of the structure is the presence of N—H···Br hydrogen bonds which provide a linkage between N,N-dimethylanilinium cations and [Sb2Br9]3- anions which include five relatively medium contacts, with H···Br and N..Br distances ranging from 2.40 Å to 2.68 Å and 3.23 (3) Å to 3.48 (3) Å, respectively (Fig. 2 and Table 1).

For related hybrid organic antimonate(III) halogenide crystal structures, see: Bujak & Angel (2005); Chaabouni et al. (1997, 1998). For dielectric and phase transitions properties, see: Chaabouni & Kamoun (1998).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric part of the unit cell of (C8H12N)3Sb2Br9 crystal at 296 (2) K with the atom labeling scheme.
[Figure 2] Fig. 2. The crystal packing of (C8H12N)3Sb2Br9 showing the hydrogen bonding network as blue dashed lines.
Tris(N,N-dimethylanilinium) tri-µ-bromido-bis[tribromidoantimonate(III)] top
Crystal data top
(C8H12N)3[Sb2Br9]Z = 2
Mr = 1329.25F(000) = 1236
Triclinic, P1Dx = 2.206 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7857 (3) ÅCell parameters from 8586 reflections
b = 13.7658 (5) Åθ = 3.1–44.7°
c = 17.0297 (6) ŵ = 10.36 mm1
α = 66.581 (4)°T = 296 K
β = 78.689 (3)°Truncated prism, axis [1 0 0], light yellow
γ = 72.601 (3)°0.58 × 0.29 × 0.20 mm
V = 2000.91 (14) Å3
Data collection top
Oxford Diffraction Xcalibur (Sapphire2, large Be window)
diffractometer
12050 independent reflections
Radiation source: sealed X-ray tube6232 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 8.3622 pixels mm-1θmax = 30.5°, θmin = 3.1°
ω and π scansh = 1312
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 1919
Tmin = 0.038, Tmax = 0.126l = 2324
29905 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.0451P)2]
where P = (Fo2 + 2Fc2)/3
12050 reflections(Δ/σ)max = 0.001
398 parametersΔρmax = 1.33 e Å3
88 restraintsΔρmin = 0.89 e Å3
Crystal data top
(C8H12N)3[Sb2Br9]γ = 72.601 (3)°
Mr = 1329.25V = 2000.91 (14) Å3
Triclinic, P1Z = 2
a = 9.7857 (3) ÅMo Kα radiation
b = 13.7658 (5) ŵ = 10.36 mm1
c = 17.0297 (6) ÅT = 296 K
α = 66.581 (4)°0.58 × 0.29 × 0.20 mm
β = 78.689 (3)°
Data collection top
Oxford Diffraction Xcalibur (Sapphire2, large Be window)
diffractometer
12050 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
6232 reflections with I > 2σ(I)
Tmin = 0.038, Tmax = 0.126Rint = 0.055
29905 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04288 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 0.88Δρmax = 1.33 e Å3
12050 reflectionsΔρmin = 0.89 e Å3
398 parameters
Special details top

Experimental. Absorption correction: empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlis RED (Oxford Diffraction 2009)

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sb10.74142 (3)0.34793 (2)0.23720 (2)0.03514 (9)
Sb20.79395 (4)0.05119 (3)0.24531 (2)0.04300 (10)
Br10.75743 (7)0.40023 (5)0.36561 (4)0.05958 (17)
Br20.50427 (6)0.50174 (4)0.19319 (4)0.05655 (16)
Br30.91249 (6)0.47755 (5)0.13260 (4)0.05430 (15)
Br40.73112 (6)0.27216 (5)0.08874 (4)0.05175 (14)
Br51.00278 (6)0.15806 (5)0.28605 (4)0.05553 (15)
Br60.56880 (6)0.19270 (5)0.35018 (4)0.05216 (15)
Br70.83710 (9)0.11714 (5)0.38803 (4)0.0767 (2)
Br80.59360 (7)0.00822 (6)0.21190 (4)0.06810 (18)
Br90.98781 (8)0.04384 (5)0.15561 (5)0.0780 (2)
C10.3358 (6)0.2456 (4)0.0464 (3)0.0491 (14)
C20.1982 (7)0.2361 (5)0.0576 (4)0.0615 (16)
H20.12740.26940.09050.074*
C30.1669 (8)0.1756 (6)0.0186 (4)0.0719 (19)
H30.07370.16780.02530.086*
C40.2687 (10)0.1279 (6)0.0287 (5)0.079 (2)
H40.24530.08590.0530.094*
C50.4050 (10)0.1392 (6)0.0422 (5)0.088 (2)
H50.47410.10710.07650.106*
C60.4396 (7)0.2009 (6)0.0030 (4)0.0730 (19)
H60.53210.21060.01110.088*
C70.3312 (7)0.4277 (4)0.0415 (4)0.0618 (16)
H7A0.36030.46490.07010.093*
H7B0.22860.450.04030.093*
H7C0.3760.44550.01620.093*
C80.3250 (7)0.2778 (5)0.1818 (3)0.0626 (16)
H8A0.35550.32010.20520.094*
H8B0.36480.20150.21170.094*
H8C0.2220.29260.18850.094*
N10.3760 (5)0.3075 (4)0.0885 (3)0.0548 (12)
H10.47380.28940.08540.066*
C9A1.062 (5)0.5602 (16)0.316 (2)0.066 (4)0.577 (12)
C10A1.085 (4)0.6280 (15)0.3488 (14)0.083 (4)0.577 (12)
H10A1.05810.70310.31980.099*0.577 (12)
C11A1.148 (3)0.5882 (13)0.4232 (15)0.110 (6)0.577 (12)
H11A1.1490.63460.45050.132*0.577 (12)
C12A1.209 (2)0.4806 (15)0.4572 (13)0.096 (6)0.577 (12)
H12A1.2580.45560.50580.116*0.577 (12)
C13A1.203 (3)0.4034 (17)0.4235 (14)0.104 (7)0.577 (12)
H13A1.24330.3290.4490.125*0.577 (12)
C14A1.131 (2)0.4483 (15)0.3484 (14)0.066 (3)0.577 (12)
H14A1.1290.40370.31970.079*0.577 (12)
C15A0.849 (3)0.684 (5)0.240 (2)0.074 (7)0.577 (12)
H15A0.80820.71350.18620.111*0.577 (12)
H15B0.8640.74260.25230.111*0.577 (12)
H15C0.78340.6490.2850.111*0.577 (12)
C16A1.086 (4)0.651 (2)0.1585 (19)0.065 (4)0.577 (12)
H16A1.03320.68420.10860.097*0.577 (12)
H16B1.16730.5950.15110.097*0.577 (12)
H16C1.11870.7060.16620.097*0.577 (12)
N2A0.990 (4)0.603 (3)0.2367 (18)0.070 (3)0.577 (12)
H2A0.97060.54520.23090.084*0.577 (12)
C9B1.083 (7)0.545 (2)0.319 (3)0.066 (4)0.423 (12)
C10B1.101 (5)0.588 (2)0.374 (2)0.083 (4)0.423 (12)
H10B1.06140.66150.36420.099*0.423 (12)
C11B1.176 (5)0.524 (2)0.444 (2)0.110 (6)0.423 (12)
H11B1.20360.55450.47590.132*0.423 (12)
C12B1.208 (4)0.415 (2)0.464 (2)0.096 (6)0.423 (12)
H12B1.25450.36910.51320.116*0.423 (12)
C13B1.172 (4)0.369 (2)0.412 (2)0.104 (7)0.423 (12)
H13B1.19970.29330.42740.125*0.423 (12)
C14B1.097 (3)0.433 (2)0.339 (2)0.066 (3)0.423 (12)
H14B1.06190.40520.30760.079*0.423 (12)
C15B0.863 (5)0.681 (7)0.258 (4)0.074 (7)0.423 (12)
H15D0.80780.7090.20980.111*0.423 (12)
H15E0.87870.74020.26860.111*0.423 (12)
H15F0.81130.6390.30820.111*0.423 (12)
C16B1.096 (5)0.675 (3)0.169 (3)0.065 (4)0.423 (12)
H16D1.05220.70280.11640.097*0.423 (12)
H16E1.19050.62930.16330.097*0.423 (12)
H16F1.10370.73450.18250.097*0.423 (12)
N2B1.006 (5)0.608 (4)0.241 (2)0.070 (3)0.423 (12)
H2B0.98760.55990.22260.084*0.423 (12)
C17A0.653 (3)0.177 (2)0.5912 (13)0.049 (4)0.577 (12)
C18A0.6882 (18)0.137 (3)0.6726 (16)0.060 (4)0.577 (12)
H18A0.74050.06480.69590.072*0.577 (12)
C19A0.648 (4)0.200 (3)0.721 (2)0.086 (6)0.577 (12)
H19A0.68190.17590.77470.103*0.577 (12)
C20A0.559 (3)0.299 (2)0.6888 (13)0.091 (7)0.577 (12)
H20A0.53610.34540.71980.109*0.577 (12)
C21A0.501 (4)0.335 (4)0.614 (2)0.109 (7)0.577 (12)
H21A0.4340.40210.5940.13*0.577 (12)
C22A0.545 (3)0.268 (3)0.569 (3)0.076 (6)0.577 (12)
H22A0.49950.2850.52030.091*0.577 (12)
C23A0.848 (3)0.0786 (13)0.5141 (16)0.043 (3)0.577 (12)
H23A0.86670.03840.47660.065*0.577 (12)
H23B0.89480.03370.56570.065*0.577 (12)
H23C0.88410.14290.48580.065*0.577 (12)
C24A0.624 (4)0.016 (3)0.572 (3)0.065 (8)0.577 (12)
H24A0.64980.02410.53390.098*0.577 (12)
H24B0.5210.04190.57780.098*0.577 (12)
H24C0.6570.0310.62730.098*0.577 (12)
N3A0.691 (2)0.111 (2)0.5359 (16)0.066 (3)0.577 (12)
H3A0.65180.1550.48550.079*0.577 (12)
C17B0.646 (4)0.166 (3)0.615 (2)0.049 (4)0.423 (12)
C18B0.728 (3)0.124 (4)0.685 (3)0.060 (4)0.423 (12)
H18B0.81060.06710.69130.072*0.423 (12)
C19B0.672 (6)0.175 (4)0.745 (3)0.086 (6)0.423 (12)
H19B0.7020.13970.79960.103*0.423 (12)
C20B0.573 (4)0.277 (3)0.7265 (18)0.091 (7)0.423 (12)
H20B0.53790.31180.76580.109*0.423 (12)
C21B0.533 (6)0.320 (5)0.643 (3)0.109 (7)0.423 (12)
H21B0.46970.38870.62720.13*0.423 (12)
C22B0.573 (5)0.275 (4)0.578 (5)0.076 (6)0.423 (12)
H22B0.55390.31190.52070.091*0.423 (12)
C23B0.839 (4)0.1109 (19)0.513 (2)0.043 (3)0.423 (12)
H23D0.86130.0760.47140.065*0.423 (12)
H23E0.90370.07130.55710.065*0.423 (12)
H23F0.84980.18450.48490.065*0.423 (12)
C24B0.656 (6)0.004 (4)0.583 (5)0.065 (8)0.423 (12)
H24D0.68360.02660.53910.098*0.423 (12)
H24E0.55480.01190.59960.098*0.423 (12)
H24F0.70820.04410.63240.098*0.423 (12)
N3B0.689 (3)0.113 (3)0.551 (2)0.066 (3)0.423 (12)
H3B0.6330.15540.5070.079*0.423 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.03892 (19)0.03206 (16)0.03812 (18)0.00952 (13)0.00727 (14)0.01410 (13)
Sb20.0512 (2)0.03633 (17)0.0463 (2)0.01413 (15)0.00341 (17)0.01783 (15)
Br10.0832 (4)0.0580 (3)0.0507 (3)0.0201 (3)0.0150 (3)0.0270 (3)
Br20.0515 (3)0.0522 (3)0.0690 (4)0.0040 (3)0.0174 (3)0.0317 (3)
Br30.0608 (4)0.0566 (3)0.0487 (3)0.0291 (3)0.0056 (3)0.0113 (3)
Br40.0485 (3)0.0585 (3)0.0487 (3)0.0159 (3)0.0030 (3)0.0185 (3)
Br50.0458 (3)0.0593 (3)0.0533 (3)0.0121 (3)0.0059 (3)0.0119 (3)
Br60.0524 (3)0.0601 (3)0.0475 (3)0.0226 (3)0.0070 (3)0.0155 (3)
Br70.1167 (6)0.0462 (3)0.0601 (4)0.0187 (3)0.0198 (4)0.0073 (3)
Br80.0693 (4)0.0899 (5)0.0713 (4)0.0423 (4)0.0041 (3)0.0444 (4)
Br90.0767 (5)0.0615 (4)0.0974 (5)0.0210 (3)0.0267 (4)0.0433 (4)
C10.064 (4)0.050 (3)0.035 (3)0.017 (3)0.011 (3)0.012 (2)
C20.064 (4)0.073 (4)0.051 (4)0.028 (3)0.000 (3)0.021 (3)
C30.079 (5)0.087 (5)0.060 (4)0.047 (4)0.004 (4)0.019 (4)
C40.109 (6)0.076 (5)0.069 (5)0.036 (5)0.015 (5)0.032 (4)
C50.107 (7)0.091 (5)0.062 (5)0.003 (5)0.003 (4)0.042 (4)
C60.062 (4)0.102 (5)0.062 (4)0.022 (4)0.005 (3)0.035 (4)
C70.089 (5)0.053 (3)0.047 (3)0.026 (3)0.016 (3)0.011 (3)
C80.071 (4)0.087 (4)0.036 (3)0.028 (3)0.005 (3)0.022 (3)
N10.050 (3)0.071 (3)0.047 (3)0.021 (2)0.006 (2)0.020 (2)
C9A0.034 (11)0.091 (7)0.062 (5)0.006 (7)0.009 (4)0.022 (6)
C10A0.109 (10)0.068 (13)0.067 (14)0.033 (14)0.018 (10)0.008 (9)
C11A0.097 (13)0.130 (18)0.143 (16)0.032 (17)0.027 (9)0.080 (19)
C12A0.092 (9)0.115 (16)0.088 (9)0.027 (15)0.031 (7)0.032 (15)
C13A0.055 (14)0.089 (14)0.113 (11)0.013 (10)0.005 (8)0.010 (11)
C14A0.055 (11)0.089 (8)0.081 (7)0.034 (6)0.005 (6)0.048 (6)
C15A0.055 (7)0.056 (5)0.099 (15)0.001 (6)0.021 (8)0.020 (12)
C16A0.068 (6)0.064 (12)0.069 (9)0.030 (7)0.007 (6)0.020 (7)
N2A0.065 (7)0.069 (4)0.085 (5)0.013 (4)0.018 (4)0.033 (4)
C9B0.034 (11)0.091 (7)0.062 (5)0.006 (7)0.009 (4)0.022 (6)
C10B0.109 (10)0.068 (13)0.067 (14)0.033 (14)0.018 (10)0.008 (9)
C11B0.097 (13)0.130 (18)0.143 (16)0.032 (17)0.027 (9)0.080 (19)
C12B0.092 (9)0.115 (16)0.088 (9)0.027 (15)0.031 (7)0.032 (15)
C13B0.055 (14)0.089 (14)0.113 (11)0.013 (10)0.005 (8)0.010 (11)
C14B0.055 (11)0.089 (8)0.081 (7)0.034 (6)0.005 (6)0.048 (6)
C15B0.055 (7)0.056 (5)0.099 (15)0.001 (6)0.021 (8)0.020 (12)
C16B0.068 (6)0.064 (12)0.069 (9)0.030 (7)0.007 (6)0.020 (7)
N2B0.065 (7)0.069 (4)0.085 (5)0.013 (4)0.018 (4)0.033 (4)
C17A0.054 (4)0.067 (7)0.038 (12)0.030 (4)0.032 (7)0.037 (10)
C18A0.012 (10)0.078 (9)0.102 (10)0.001 (9)0.006 (8)0.054 (8)
C19A0.062 (14)0.145 (18)0.073 (19)0.029 (10)0.015 (10)0.057 (16)
C20A0.077 (10)0.157 (16)0.11 (2)0.042 (9)0.030 (14)0.125 (19)
C21A0.055 (17)0.104 (13)0.21 (3)0.008 (11)0.002 (13)0.116 (19)
C22A0.047 (12)0.082 (7)0.116 (12)0.025 (8)0.004 (9)0.046 (6)
C23A0.038 (4)0.029 (10)0.051 (4)0.012 (7)0.001 (3)0.019 (8)
C24A0.088 (15)0.072 (9)0.057 (13)0.038 (11)0.007 (13)0.038 (9)
N3A0.063 (4)0.080 (4)0.060 (8)0.015 (3)0.012 (4)0.040 (5)
C17B0.054 (4)0.067 (7)0.038 (12)0.030 (4)0.032 (7)0.037 (10)
C18B0.012 (10)0.078 (9)0.102 (10)0.001 (9)0.006 (8)0.054 (8)
C19B0.062 (14)0.145 (18)0.073 (19)0.029 (10)0.015 (10)0.057 (16)
C20B0.077 (10)0.157 (16)0.11 (2)0.042 (9)0.030 (14)0.125 (19)
C21B0.055 (17)0.104 (13)0.21 (3)0.008 (11)0.002 (13)0.116 (19)
C22B0.047 (12)0.082 (7)0.116 (12)0.025 (8)0.004 (9)0.046 (6)
C23B0.038 (4)0.029 (10)0.051 (4)0.012 (7)0.001 (3)0.019 (8)
C24B0.088 (15)0.072 (9)0.057 (13)0.038 (11)0.007 (13)0.038 (9)
N3B0.063 (4)0.080 (4)0.060 (8)0.015 (3)0.012 (4)0.040 (5)
Geometric parameters (Å, º) top
Sb1—Br12.6036 (6)C11B—C12B1.351 (11)
Sb1—Br22.6292 (6)C11B—H11B0.93
Sb1—Br32.6925 (6)C12B—C13B1.412 (11)
Sb1—Br43.1222 (6)C12B—H12B0.93
Sb1—Br53.0287 (6)C13B—C14B1.408 (10)
Sb1—Br62.9558 (7)C13B—H13B0.93
Sb2—Br43.1333 (7)C14B—H14B0.93
Sb2—Br53.1602 (7)C15B—N2B1.508 (9)
Sb2—Br63.2393 (7)C15B—H15D0.96
Sb2—Br72.6068 (7)C15B—H15E0.96
Sb2—Br82.5696 (7)C15B—H15F0.96
Sb2—Br92.5713 (8)C16B—N2B1.512 (9)
C1—C61.349 (8)C16B—H16D0.96
C1—C21.361 (8)C16B—H16E0.96
C1—N11.482 (7)C16B—H16F0.96
C2—C31.379 (9)N2B—H2B0.91
C2—H20.93C17A—C18A1.346 (14)
C3—C41.336 (10)C17A—C22A1.347 (14)
C3—H30.93C17A—N3A1.480 (9)
C4—C51.353 (10)C18A—C19A1.354 (14)
C4—H40.93C18A—H18A0.93
C5—C61.412 (10)C19A—C20A1.346 (14)
C5—H50.93C19A—H19A0.93
C6—H60.93C20A—C21A1.350 (14)
C7—N11.490 (7)C20A—H20A0.93
C7—H7A0.96C21A—C22A1.352 (14)
C7—H7B0.96C21A—H21A0.93
C7—H7C0.96C22A—H22A0.93
C8—N11.495 (7)C23A—N3A1.482 (8)
C8—H8A0.96C23A—H23A0.96
C8—H8B0.96C23A—H23B0.96
C8—H8C0.96C23A—H23C0.96
N1—H10.91C24A—N3A1.495 (8)
C9A—C10A1.351 (10)C24A—H24A0.96
C9A—C14A1.408 (10)C24A—H24B0.96
C9A—N2A1.474 (10)C24A—H24C0.96
C10A—C11A1.354 (10)N3A—H3A0.91
C10A—H10A0.93C17B—C18B1.39 (2)
C11A—C12A1.344 (10)C17B—C22B1.40 (2)
C11A—H11A0.93C17B—N3B1.477 (10)
C12A—C13A1.413 (10)C18B—C19B1.40 (2)
C12A—H12A0.93C18B—H18B0.93
C13A—C14A1.408 (10)C19B—C20B1.40 (2)
C13A—H13A0.93C19B—H19B0.93
C14A—H14A0.93C20B—C21B1.40 (2)
C15A—N2A1.507 (8)C20B—H20B0.93
C15A—H15A0.96C21B—C22B1.40 (2)
C15A—H15B0.96C21B—H21B0.93
C15A—H15C0.96C22B—H22B0.93
C16A—N2A1.512 (8)C23B—N3B1.480 (8)
C16A—H16A0.96C23B—H23D0.96
C16A—H16B0.96C23B—H23E0.96
C16A—H16C0.96C23B—H23F0.96
N2A—H2A0.91C24B—N3B1.489 (8)
C9B—C10B1.350 (10)C24B—H24D0.96
C9B—C14B1.408 (10)C24B—H24E0.96
C9B—N2B1.474 (10)C24B—H24F0.96
C10B—C11B1.355 (11)N3B—H3B0.91
C10B—H10B0.93
Br1—Sb1—Br292.27 (2)C9B—C10B—C11B121 (3)
Br1—Sb1—Br391.63 (2)C9B—C10B—H10B119.6
Br1—Sb1—Br4176.87 (2)C11B—C10B—H10B119.6
Br1—Sb1—Br591.05 (2)C12B—C11B—C10B117 (3)
Br1—Sb1—Br690.23 (2)C12B—C11B—H11B121.3
Br2—Sb1—Br393.37 (2)C10B—C11B—H11B121.3
Br2—Sb1—Br490.50 (2)C11B—C12B—C13B121 (3)
Br2—Sb1—Br5175.26 (2)C11B—C12B—H12B119.3
Br2—Sb1—Br690.04 (2)C13B—C12B—H12B119.3
Br3—Sb1—Br489.67 (2)C14B—C13B—C12B122 (3)
Br3—Sb1—Br589.915 (19)C14B—C13B—H13B118.9
Br3—Sb1—Br6176.05 (2)C12B—C13B—H13B118.9
Br4—Sb1—Br586.10 (2)C9B—C14B—C13B111 (2)
Br4—Sb1—Br688.29 (2)C9B—C14B—H14B124.4
Br5—Sb1—Br686.570 (18)C13B—C14B—H14B124.4
Br4—Sb2—Br583.71 (2)N2B—C15B—H15D109.5
Br4—Sb2—Br683.28 (2)N2B—C15B—H15E109.5
Br4—Sb2—Br7172.52 (2)H15D—C15B—H15E109.5
Br4—Sb2—Br890.89 (2)N2B—C15B—H15F109.5
Br4—Sb2—Br992.67 (2)H15D—C15B—H15F109.5
Br5—Sb2—Br679.75 (2)H15E—C15B—H15F109.5
Br5—Sb2—Br791.92 (2)N2B—C16B—H16D109.5
Br5—Sb2—Br8170.96 (2)N2B—C16B—H16E109.5
Br5—Sb2—Br994.81 (2)H16D—C16B—H16E109.5
Br6—Sb2—Br789.98 (2)N2B—C16B—H16F109.5
Br6—Sb2—Br892.44 (2)H16D—C16B—H16F109.5
Br6—Sb2—Br9173.51 (2)H16E—C16B—H16F109.5
Br8—Sb2—Br992.68 (3)C9B—N2B—C15B111.9 (7)
Br8—Sb2—Br792.64 (3)C9B—N2B—C16B111.5 (7)
Br9—Sb2—Br793.76 (3)C15B—N2B—C16B110.5 (8)
C6—C1—C2122.4 (6)C9B—N2B—H2B107.5
C6—C1—N1117.5 (5)C15B—N2B—H2B107.5
C2—C1—N1120.1 (5)C16B—N2B—H2B107.5
C1—C2—C3117.8 (6)C18A—C17A—C22A117 (3)
C1—C2—H2121.1C18A—C17A—N3A123 (2)
C3—C2—H2121.1C22A—C17A—N3A117 (2)
C4—C3—C2121.0 (7)C17A—C18A—C19A121 (2)
C4—C3—H3119.5C17A—C18A—H18A119.6
C2—C3—H3119.5C19A—C18A—H18A119.6
C3—C4—C5121.7 (7)C20A—C19A—C18A117.8 (19)
C3—C4—H4119.1C20A—C19A—H19A121.1
C5—C4—H4119.1C18A—C19A—H19A121.1
C4—C5—C6118.4 (7)C19A—C20A—C21A123 (2)
C4—C5—H5120.8C19A—C20A—H20A118.4
C6—C5—H5120.8C21A—C20A—H20A118.4
C1—C6—C5118.7 (6)C20A—C21A—C22A116 (3)
C1—C6—H6120.7C20A—C21A—H21A122.2
C5—C6—H6120.7C22A—C21A—H21A122.2
N1—C7—H7A109.5C17A—C22A—C21A123 (3)
N1—C7—H7B109.5C17A—C22A—H22A118.5
H7A—C7—H7B109.5C21A—C22A—H22A118.5
N1—C7—H7C109.5N3A—C23A—H23A109.5
H7A—C7—H7C109.5N3A—C23A—H23B109.5
H7B—C7—H7C109.5H23A—C23A—H23B109.5
N1—C8—H8A109.5N3A—C23A—H23C109.5
N1—C8—H8B109.5H23A—C23A—H23C109.5
H8A—C8—H8B109.5H23B—C23A—H23C109.5
N1—C8—H8C109.5N3A—C24A—H24A109.5
H8A—C8—H8C109.5N3A—C24A—H24B109.5
H8B—C8—H8C109.5H24A—C24A—H24B109.5
C1—N1—C7111.9 (4)N3A—C24A—H24C109.5
C1—N1—C8113.8 (4)H24A—C24A—H24C109.5
C7—N1—C8111.3 (5)H24B—C24A—H24C109.5
C1—N1—H1106.5C17A—N3A—C23A112.7 (6)
C7—N1—H1106.5C17A—N3A—C24A112.1 (6)
C8—N1—H1106.5C23A—N3A—C24A112.7 (7)
C10A—C9A—C14A119 (2)C17A—N3A—H3A106.2
C10A—C9A—N2A121.4 (17)C23A—N3A—H3A106.2
C14A—C9A—N2A118 (2)C24A—N3A—H3A106.2
C9A—C10A—C11A120.9 (17)C18B—C17B—C22B125 (4)
C9A—C10A—H10A119.5C18B—C17B—N3B117 (3)
C11A—C10A—H10A119.5C22B—C17B—N3B111 (3)
C12A—C11A—C10A119.2 (18)C17B—C18B—C19B113 (3)
C12A—C11A—H11A120.4C17B—C18B—H18B123.7
C10A—C11A—H11A120.4C19B—C18B—H18B123.7
C11A—C12A—C13A124.0 (19)C20B—C19B—C18B124 (3)
C11A—C12A—H12A118C20B—C19B—H19B117.9
C13A—C12A—H12A118C18B—C19B—H19B118
C14A—C13A—C12A114.5 (17)C19B—C20B—C21B112 (3)
C14A—C13A—H13A122.8C19B—C20B—H20B123.9
C12A—C13A—H13A122.8C21B—C20B—H20B123.9
C9A—C14A—C13A120.6 (17)C20B—C21B—C22B130 (5)
C9A—C14A—H14A119.7C20B—C21B—H21B115
C13A—C14A—H14A119.7C22B—C21B—H21B115
N2A—C15A—H15A109.5C17B—C22B—C21B108 (5)
N2A—C15A—H15B109.5C17B—C22B—H22B126
H15A—C15A—H15B109.5C21B—C22B—H22B126
N2A—C15A—H15C109.5N3B—C23B—H23D109.5
H15A—C15A—H15C109.5N3B—C23B—H23E109.5
H15B—C15A—H15C109.5H23D—C23B—H23E109.5
N2A—C16A—H16A109.5N3B—C23B—H23F109.5
N2A—C16A—H16B109.5H23D—C23B—H23F109.5
H16A—C16A—H16B109.5H23E—C23B—H23F109.5
N2A—C16A—H16C109.5N3B—C24B—H24D109.5
H16A—C16A—H16C109.5N3B—C24B—H24E109.5
H16B—C16A—H16C109.5H24D—C24B—H24E109.5
C9A—N2A—C15A112.1 (7)N3B—C24B—H24F109.5
C9A—N2A—C16A111.6 (6)H24D—C24B—H24F109.5
C15A—N2A—C16A110.5 (7)H24E—C24B—H24F109.5
C9A—N2A—H2A107.5C17B—N3B—C23B113.1 (7)
C15A—N2A—H2A107.5C17B—N3B—C24B112.6 (7)
C16A—N2A—H2A107.5C23B—N3B—C24B113.4 (8)
C10B—C9B—C14B124 (3)C17B—N3B—H3B105.6
C10B—C9B—N2B124 (2)C23B—N3B—H3B105.6
C14B—C9B—N2B109 (3)C24B—N3B—H3B105.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br40.912.473.362 (5)168
N2A—H2A···Br30.912.433.23 (3)146
N2B—H2B···Br30.912.553.43 (4)162
N3A—H3A···Br60.912.43.25 (2)155
N3B—H3B···Br60.912.683.48 (3)148

Experimental details

Crystal data
Chemical formula(C8H12N)3[Sb2Br9]
Mr1329.25
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.7857 (3), 13.7658 (5), 17.0297 (6)
α, β, γ (°)66.581 (4), 78.689 (3), 72.601 (3)
V3)2000.91 (14)
Z2
Radiation typeMo Kα
µ (mm1)10.36
Crystal size (mm)0.58 × 0.29 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur (Sapphire2, large Be window)
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.038, 0.126
No. of measured, independent and
observed [I > 2σ(I)] reflections
29905, 12050, 6232
Rint0.055
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.096, 0.88
No. of reflections12050
No. of parameters398
No. of restraints88
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.33, 0.89

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Berndt, 1999) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Sb1—Br12.6036 (6)Sb2—Br43.1333 (7)
Sb1—Br22.6292 (6)Sb2—Br53.1602 (7)
Sb1—Br32.6925 (6)Sb2—Br63.2393 (7)
Sb1—Br43.1222 (6)Sb2—Br72.6068 (7)
Sb1—Br53.0287 (6)Sb2—Br82.5696 (7)
Sb1—Br62.9558 (7)Sb2—Br92.5713 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br40.912.473.362 (5)167.6
N2A—H2A···Br30.912.433.23 (3)145.7
N2B—H2B···Br30.912.553.43 (4)162.4
N3A—H3A···Br60.912.43.25 (2)154.6
N3B—H3B···Br60.912.683.48 (3)147.5
 

Acknowledgements

The authors gratefully acknowledge the support of the Tunisian Ministry of Higher Education and Scientific Research.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBujak, M. & Angel, R. J. (2005). J. Solid State Chem. 178, 2237–2246.  Web of Science CSD CrossRef CAS Google Scholar
First citationChaabouni, S. & Kamoun, S. (1998). Phase Transitions, 66, 119–127.  Web of Science CrossRef CAS Google Scholar
First citationChaabouni, S., Kamoun, S., Daoud, A. & Jouini, T. (1997). J. Chem. Crystallogr. 27, 401–404.  CrossRef CAS Google Scholar
First citationChaabouni, S., Kamoun, S. & Jaud, J. (1998). Mater. Res. Bull. 33, 377–388.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrystAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds