metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido{1-[(di­methylamino)methyl]ferrocenyl-κ2C2,N}(tri­phenyl­stibine-κSb)palladium(II)

aInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n Ciudad Universitaria, 04510, México D.F., México, and bIngeniería Bioquímica, Instituto Tecnológico Superior de Atlixco, Atlixco, Puebla, México
*Correspondence e-mail: pankajsh@unam.mx

(Received 23 May 2013; accepted 31 May 2013; online 8 June 2013)

In the title compound, [FePdCl(C5H5)(C8H11N)(C18H15Sb)], obtained by reaction of diphen­yl(N,N-di­methyl­amino­methyl­ferrocen­yl)stibine with sodium tetra­chlorido­palladate(II) in acetone, the PdII atom is coordinated in a slightly distorted square-planar geometry by a C atom of the ferrocenyl ring, and by N, Cl and Sb atoms. The Sb and N atoms are trans to each other.

Related literature

For the use of 1,2-disubstituted ferrocenylphosphines as catalytic precursors, see: Sokolov et al. (2005[Sokolov, M. N., Chubarova, E. V., Hernández-Molina, R., Clausen, M., Naumov, D., Vincent, C., Lusar, R. & Vladimir, P. (2005). Eur. J. Inorg. Chem. 11, 2139-2146.]); Zirakzadeh et al. (2012[Zirakzadeh, A., Schuecker, R., Gorgas, N., Mereiter, K., Spindler, F. & Weissensteiner, W. (2012). Organometallics, 31, 4241-4250.]). For Pd—Sb bond lengths in related compounds, see: Mentes & Fawcett (2005[Mentes, A. & Fawcett, J. (2005). Inorg. Chim. Acta. C358, 1279-1283.]).

[Scheme 1]

Experimental

Crystal data
  • [FePdCl(C5H5)(C8H11N)(C18H15Sb)]

  • Mr = 737.02

  • Monoclinic, P 21 /c

  • a = 10.3138 (6) Å

  • b = 19.8865 (12) Å

  • c = 13.7584 (9) Å

  • β = 92.984 (1)°

  • V = 2818.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.21 mm−1

  • T = 291 K

  • 0.36 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: analytical (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.490, Tmax = 0.797

  • 23494 measured reflections

  • 5158 independent reflections

  • 4107 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.063

  • S = 0.93

  • 4963 reflections

  • 327 parameters

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected bond lengths (Å)

Sb1—C14 2.127 (4)
Sb1—C20 2.120 (4)
Sb1—C26 2.119 (4)
Sb1—Pd1 2.4853 (4)
Pd1—C1 1.973 (4)
Pd1—Cl1 2.3952 (10)
Pd1—N1 2.174 (3)

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,2-disubstituted ferrocenylphosphines are used as catalytic precursors (Sokolov et al., 2005; Zirakzadeh et al., 2012). In an attempt to synthesize cis-dichloro[diphenyl(2-N,N-dimethylaminomethyl ferrocenyl)-stibino-N,Sb)]palladium(II), [PdCl(C10H8Fe)(C3H8N)(C18H15Sb)] was obtained. This paper describes the crystal structure of a new compound viz. chloro-(2-N,N-dimethylaminomethylferrocenyl)-(triphenylstibino) palladium (II), (Fig. 1), which was grown from CHCl3 and hexane at room temperature. In the crystal structure, palladium is in a slightly distorted square-planar environment bound to a chlorine, the antimony, the nitrogen and the C(1) atom of the ferocenyl unit. The compound contains a bicyclic system, which is formed by the substituted pentagonal ring of the ferrocenyl fragment and a five-membered palladacycle which has an envelope-like conformation. The Pd—Sb bond length in this compound is 2.4853 (4) Å which compares well with the literature values for similar complexes of palladium (Mentes & Fawcett, 2005). The cis angles at Pd are close to the expected value of 90°, with the most noticeable distortion being the N—Pd—Cl angle of 93.71 (7)°, as a result of chelation (Fig. 1). The distance between the Fe and the Pd is 3.4836 (7)° for this compound, thus suggesting that there is interaction between the two metals. The two pentagonal rings of the ferrocenyl moiety are nearly parallel (tilt angle 1.74°).

Related literature top

For the use of 1,2-disubstituted ferrocenylphosphines as catalytic precursors, see: Sokolov et al. (2005); Zirakzadeh et al. (2012). For Pd—Sb bond distances in related compounds, see: Mentes & Fawcett (2005).

Experimental top

The title compound was obtained as follows: a solution of sodium tetrachloropalladate (0.294 g, 1 mmol) in acetone-water mixture (5 ml, 50–50%) is added to a solution of diphenyl(N,N-dimethyl aminomethylferrocenyl)stibine (0.519 g, 1 mmol) in acetone(10 ml). The mixture was stirred overnight. A red powder was obtained, which after recrystallization from a chloroform-hexane solvent mixture afforded chloro-(2-N,N-dimethylaminomethylferrocenyl)(triphenylstibino) palladium (II) as red crystals in 40% yield.

Refinement top

The H-atoms were placed geometrically (C—H = 0.93–0.98 Å), and refined using a riding model with Uiso(H) = 1.2Ueq of the carrier atom.

Structure description top

1,2-disubstituted ferrocenylphosphines are used as catalytic precursors (Sokolov et al., 2005; Zirakzadeh et al., 2012). In an attempt to synthesize cis-dichloro[diphenyl(2-N,N-dimethylaminomethyl ferrocenyl)-stibino-N,Sb)]palladium(II), [PdCl(C10H8Fe)(C3H8N)(C18H15Sb)] was obtained. This paper describes the crystal structure of a new compound viz. chloro-(2-N,N-dimethylaminomethylferrocenyl)-(triphenylstibino) palladium (II), (Fig. 1), which was grown from CHCl3 and hexane at room temperature. In the crystal structure, palladium is in a slightly distorted square-planar environment bound to a chlorine, the antimony, the nitrogen and the C(1) atom of the ferocenyl unit. The compound contains a bicyclic system, which is formed by the substituted pentagonal ring of the ferrocenyl fragment and a five-membered palladacycle which has an envelope-like conformation. The Pd—Sb bond length in this compound is 2.4853 (4) Å which compares well with the literature values for similar complexes of palladium (Mentes & Fawcett, 2005). The cis angles at Pd are close to the expected value of 90°, with the most noticeable distortion being the N—Pd—Cl angle of 93.71 (7)°, as a result of chelation (Fig. 1). The distance between the Fe and the Pd is 3.4836 (7)° for this compound, thus suggesting that there is interaction between the two metals. The two pentagonal rings of the ferrocenyl moiety are nearly parallel (tilt angle 1.74°).

For the use of 1,2-disubstituted ferrocenylphosphines as catalytic precursors, see: Sokolov et al. (2005); Zirakzadeh et al. (2012). For Pd—Sb bond distances in related compounds, see: Mentes & Fawcett (2005).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with numbering scheme. The displacement ellipsoids are shown at the 50% probability level.
Chlorido{1-[(dimethylamino)methyl]ferrocenyl-κ2C1,N}(triphenylstibine-κSb)palladium(II) top
Crystal data top
[FePdCl(C5H5)(C8H11N)(C18H15Sb)]F(000) = 1456
Mr = 737.02Dx = 1.737 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.3138 (6) ÅCell parameters from 5485 reflections
b = 19.8865 (12) Åθ = 2.2–30.8°
c = 13.7584 (9) ŵ = 2.21 mm1
β = 92.984 (1)°T = 291 K
V = 2818.1 (3) Å3Prism, red
Z = 40.36 × 0.12 × 0.10 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5158 independent reflections
Radiation source: fine-focus sealed tube4107 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 0.83 pixels mm-1θmax = 25.4°, θmin = 1.8°
ω scansh = 1212
Absorption correction: analytical
(SADABS; Bruker, 2007)
k = 2323
Tmin = 0.490, Tmax = 0.797l = 1616
23494 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.027P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max = 0.002
4963 reflectionsΔρmax = 0.77 e Å3
327 parametersΔρmin = 0.31 e Å3
Crystal data top
[FePdCl(C5H5)(C8H11N)(C18H15Sb)]V = 2818.1 (3) Å3
Mr = 737.02Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.3138 (6) ŵ = 2.21 mm1
b = 19.8865 (12) ÅT = 291 K
c = 13.7584 (9) Å0.36 × 0.12 × 0.10 mm
β = 92.984 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5158 independent reflections
Absorption correction: analytical
(SADABS; Bruker, 2007)
4107 reflections with I > 2σ(I)
Tmin = 0.490, Tmax = 0.797Rint = 0.048
23494 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 0.93Δρmax = 0.77 e Å3
4963 reflectionsΔρmin = 0.31 e Å3
327 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb10.76605 (2)0.06765 (2)0.80847 (2)0.03930 (8)
Pd10.63076 (3)0.12392 (2)0.67766 (2)0.03893 (9)
Fe10.83892 (6)0.11299 (3)0.48685 (4)0.04535 (15)
Cl10.55085 (11)0.20492 (5)0.78865 (8)0.0617 (3)
N10.5010 (3)0.15681 (15)0.5573 (2)0.0436 (8)
C10.7077 (4)0.06914 (18)0.5758 (3)0.0404 (9)
C20.6501 (4)0.08030 (19)0.4804 (3)0.0468 (10)
C30.7239 (4)0.0457 (2)0.4126 (3)0.0539 (11)
H30.70620.04470.34190.065*
C40.8258 (4)0.01262 (19)0.4639 (3)0.0525 (11)
H40.89180.01560.43530.063*
C50.8176 (4)0.02703 (18)0.5641 (3)0.0442 (10)
H50.87730.01070.61660.053*
C60.8900 (5)0.2057 (2)0.5419 (4)0.0734 (14)
H60.85250.22750.59780.088*
C70.8440 (5)0.2115 (2)0.4449 (4)0.0740 (15)
H70.76990.23860.42040.089*
C80.9262 (5)0.1721 (2)0.3882 (3)0.0718 (14)
H80.91910.16690.31730.086*
C91.0205 (4)0.1429 (2)0.4515 (4)0.0644 (13)
H91.09110.11330.43290.077*
C100.9961 (5)0.1630 (2)0.5460 (4)0.0690 (13)
H101.04690.14990.60520.083*
C110.5280 (4)0.1194 (2)0.4671 (3)0.0677 (13)
H11A0.45640.08920.45060.081*
H11B0.53520.15090.41380.081*
C120.5130 (5)0.2297 (2)0.5424 (3)0.0702 (13)
H12A0.59930.24000.52400.105*
H12B0.49620.25280.60170.105*
H12C0.45140.24380.49180.105*
C130.3667 (4)0.1431 (3)0.5849 (4)0.0756 (14)
H13A0.35150.16520.64520.113*
H13B0.35500.09550.59240.113*
H13C0.30640.15960.53500.113*
C140.7714 (4)0.03917 (18)0.8157 (3)0.0402 (9)
C150.8309 (4)0.0706 (2)0.8955 (3)0.0578 (12)
H150.86870.04480.94570.069*
C160.8350 (5)0.1400 (2)0.9019 (3)0.0670 (13)
H160.87660.16080.95540.080*
C170.7766 (4)0.1780 (2)0.8279 (3)0.0637 (13)
H170.78040.22470.83110.076*
C180.7138 (4)0.1479 (2)0.7506 (3)0.0611 (12)
H180.67170.17390.70240.073*
C190.7122 (4)0.07832 (19)0.7435 (3)0.0498 (10)
H190.67090.05790.68950.060*
C200.7170 (4)0.08795 (19)0.9533 (3)0.0446 (10)
C210.8071 (4)0.1086 (2)1.0237 (3)0.0597 (12)
H210.89380.11271.00920.072*
C220.7691 (7)0.1234 (2)1.1168 (3)0.0816 (16)
H220.83060.13841.16370.098*
C230.6431 (7)0.1163 (3)1.1405 (4)0.0837 (18)
H230.61870.12591.20310.100*
C240.5537 (6)0.0950 (3)1.0711 (4)0.0837 (16)
H240.46770.08961.08680.100*
C250.5888 (4)0.0814 (2)0.9785 (3)0.0634 (12)
H250.52600.06750.93180.076*
C260.9668 (4)0.09096 (19)0.8159 (3)0.0405 (9)
C271.0016 (4)0.1584 (2)0.8228 (3)0.0579 (11)
H270.93740.19130.82200.069*
C281.1312 (5)0.1770 (2)0.8310 (3)0.0716 (14)
H281.15360.22220.83630.086*
C291.2254 (5)0.1295 (3)0.8311 (3)0.0741 (14)
H291.31230.14220.83660.089*
C301.1933 (4)0.0630 (3)0.8233 (4)0.0746 (14)
H301.25840.03060.82360.090*
C311.0645 (4)0.0436 (2)0.8149 (3)0.0592 (12)
H311.04350.00170.80860.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.03905 (15)0.04112 (15)0.03734 (15)0.00225 (12)0.00182 (11)0.00163 (12)
Pd10.03648 (17)0.04065 (17)0.03923 (17)0.00368 (14)0.00218 (13)0.00211 (14)
Fe10.0529 (4)0.0395 (3)0.0439 (3)0.0023 (3)0.0053 (3)0.0017 (3)
Cl10.0681 (7)0.0604 (7)0.0565 (7)0.0136 (6)0.0026 (6)0.0131 (5)
N10.0372 (18)0.0446 (19)0.048 (2)0.0038 (15)0.0076 (15)0.0045 (16)
C10.044 (2)0.040 (2)0.038 (2)0.0006 (18)0.0023 (18)0.0011 (18)
C20.052 (3)0.042 (2)0.045 (2)0.002 (2)0.008 (2)0.0012 (19)
C30.070 (3)0.050 (3)0.042 (2)0.003 (2)0.004 (2)0.011 (2)
C40.063 (3)0.036 (2)0.059 (3)0.007 (2)0.013 (2)0.001 (2)
C50.051 (2)0.037 (2)0.045 (2)0.0072 (19)0.0011 (19)0.0036 (18)
C60.084 (4)0.047 (3)0.092 (4)0.013 (3)0.026 (3)0.011 (3)
C70.067 (3)0.044 (3)0.112 (5)0.000 (2)0.014 (3)0.027 (3)
C80.094 (4)0.067 (3)0.055 (3)0.019 (3)0.010 (3)0.019 (3)
C90.059 (3)0.056 (3)0.080 (4)0.004 (2)0.021 (3)0.005 (3)
C100.070 (3)0.063 (3)0.075 (4)0.018 (3)0.004 (3)0.004 (3)
C110.063 (3)0.084 (3)0.054 (3)0.018 (3)0.017 (2)0.014 (3)
C120.084 (4)0.059 (3)0.067 (3)0.003 (3)0.006 (3)0.016 (2)
C130.040 (3)0.098 (4)0.088 (4)0.007 (3)0.011 (2)0.006 (3)
C140.042 (2)0.041 (2)0.038 (2)0.0042 (19)0.0008 (18)0.0003 (18)
C150.069 (3)0.050 (3)0.053 (3)0.006 (2)0.017 (2)0.000 (2)
C160.079 (3)0.055 (3)0.064 (3)0.003 (3)0.019 (3)0.017 (2)
C170.078 (3)0.041 (2)0.073 (3)0.003 (2)0.011 (3)0.006 (2)
C180.080 (3)0.047 (3)0.055 (3)0.008 (2)0.007 (2)0.005 (2)
C190.059 (3)0.050 (3)0.040 (2)0.007 (2)0.005 (2)0.004 (2)
C200.052 (3)0.040 (2)0.042 (2)0.007 (2)0.001 (2)0.0006 (18)
C210.062 (3)0.069 (3)0.048 (3)0.000 (2)0.002 (2)0.001 (2)
C220.129 (5)0.073 (4)0.041 (3)0.006 (4)0.015 (3)0.006 (3)
C230.131 (6)0.072 (4)0.050 (3)0.031 (4)0.024 (4)0.011 (3)
C240.090 (4)0.082 (4)0.083 (4)0.017 (3)0.044 (4)0.013 (3)
C250.057 (3)0.073 (3)0.061 (3)0.002 (2)0.006 (2)0.001 (2)
C260.042 (2)0.046 (2)0.033 (2)0.005 (2)0.0040 (17)0.0003 (18)
C270.059 (3)0.050 (3)0.065 (3)0.002 (2)0.008 (2)0.000 (2)
C280.075 (4)0.060 (3)0.080 (4)0.029 (3)0.006 (3)0.002 (3)
C290.052 (3)0.106 (4)0.065 (3)0.021 (3)0.008 (2)0.001 (3)
C300.044 (3)0.086 (4)0.094 (4)0.010 (3)0.005 (3)0.006 (3)
C310.050 (3)0.053 (3)0.074 (3)0.000 (2)0.002 (2)0.003 (2)
Geometric parameters (Å, º) top
Sb1—C142.127 (4)C11—H11B0.9700
Sb1—C202.120 (4)C12—H12A0.9600
Sb1—C262.119 (4)C12—H12B0.9600
Sb1—Pd12.4853 (4)C12—H12C0.9600
Pd1—C11.973 (4)C13—H13A0.9600
Pd1—Cl12.3952 (10)C13—H13B0.9600
Pd1—N12.174 (3)C13—H13C0.9600
Fe1—C42.024 (4)C14—C151.378 (5)
Fe1—C32.029 (4)C14—C191.380 (5)
Fe1—C52.031 (4)C15—C161.383 (6)
Fe1—C102.035 (5)C15—H150.9300
Fe1—C82.040 (4)C16—C171.380 (6)
Fe1—C72.044 (4)C16—H160.9300
Fe1—C92.048 (4)C17—C181.356 (6)
Fe1—C22.051 (4)C17—H170.9300
Fe1—C62.051 (4)C18—C191.387 (5)
Fe1—C12.065 (4)C18—H180.9300
N1—C121.470 (5)C19—H190.9300
N1—C131.481 (5)C20—C211.370 (5)
N1—C111.485 (5)C20—C251.391 (6)
C1—C51.426 (5)C21—C221.391 (6)
C1—C21.429 (5)C21—H210.9300
C2—C31.413 (5)C22—C231.363 (7)
C2—C111.484 (5)C22—H220.9300
C3—C41.400 (5)C23—C241.360 (7)
C3—H30.9800C23—H230.9300
C4—C51.414 (5)C24—C251.370 (6)
C4—H40.9800C24—H240.9300
C5—H50.9800C25—H250.9300
C6—C101.384 (6)C26—C311.380 (5)
C6—C71.398 (7)C26—C271.391 (5)
C6—H60.9800C27—C281.385 (6)
C7—C81.418 (6)C27—H270.9300
C7—H70.9800C28—C291.356 (6)
C8—C91.398 (6)C28—H280.9300
C8—H80.9800C29—C301.366 (6)
C9—C101.395 (6)C29—H290.9300
C9—H90.9800C30—C311.382 (6)
C10—H100.9800C30—H300.9300
C11—H11A0.9700C31—H310.9300
C26—Sb1—C20101.15 (15)Fe1—C6—H6125.7
C26—Sb1—C14101.14 (14)C6—C7—C8107.3 (5)
C20—Sb1—C1498.81 (14)C6—C7—Fe170.3 (3)
C26—Sb1—Pd1116.53 (10)C8—C7—Fe169.5 (2)
C20—Sb1—Pd1116.27 (10)C6—C7—H7126.4
C14—Sb1—Pd1119.72 (10)C8—C7—H7126.4
C1—Pd1—N183.09 (14)Fe1—C7—H7126.4
C1—Pd1—Cl1171.20 (11)C9—C8—C7107.7 (4)
N1—Pd1—Cl193.71 (9)C9—C8—Fe170.3 (3)
C1—Pd1—Sb191.96 (11)C7—C8—Fe169.9 (3)
N1—Pd1—Sb1170.67 (8)C9—C8—H8126.2
Cl1—Pd1—Sb192.29 (3)C7—C8—H8126.2
C4—Fe1—C340.42 (15)Fe1—C8—H8126.2
C4—Fe1—C540.83 (14)C10—C9—C8107.9 (4)
C3—Fe1—C568.41 (16)C10—C9—Fe169.5 (3)
C4—Fe1—C10126.1 (2)C8—C9—Fe169.7 (3)
C3—Fe1—C10163.0 (2)C10—C9—H9126.0
C5—Fe1—C10107.91 (18)C8—C9—H9126.0
C4—Fe1—C8119.50 (19)Fe1—C9—H9126.0
C3—Fe1—C8108.15 (18)C6—C10—C9108.6 (5)
C5—Fe1—C8153.73 (19)C6—C10—Fe170.8 (3)
C10—Fe1—C867.3 (2)C9—C10—Fe170.5 (3)
C4—Fe1—C7154.6 (2)C6—C10—H10125.7
C3—Fe1—C7120.8 (2)C9—C10—H10125.7
C5—Fe1—C7163.7 (2)Fe1—C10—H10125.7
C10—Fe1—C767.2 (2)C2—C11—N1110.7 (3)
C8—Fe1—C740.63 (18)C2—C11—H11A109.5
C4—Fe1—C9107.67 (17)N1—C11—H11A109.5
C3—Fe1—C9126.17 (18)C2—C11—H11B109.5
C5—Fe1—C9119.59 (18)N1—C11—H11B109.5
C10—Fe1—C939.96 (17)H11A—C11—H11B108.1
C8—Fe1—C940.01 (18)N1—C12—H12A109.5
C7—Fe1—C967.51 (19)N1—C12—H12B109.5
C4—Fe1—C267.99 (16)H12A—C12—H12B109.5
C3—Fe1—C240.53 (15)N1—C12—H12C109.5
C5—Fe1—C268.11 (15)H12A—C12—H12C109.5
C10—Fe1—C2155.11 (18)H12B—C12—H12C109.5
C8—Fe1—C2127.22 (19)N1—C13—H13A109.5
C7—Fe1—C2109.27 (18)N1—C13—H13B109.5
C9—Fe1—C2163.79 (19)H13A—C13—H13B109.5
C4—Fe1—C6163.2 (2)N1—C13—H13C109.5
C3—Fe1—C6155.6 (2)H13A—C13—H13C109.5
C5—Fe1—C6126.6 (2)H13B—C13—H13C109.5
C10—Fe1—C639.61 (18)C15—C14—C19118.7 (4)
C8—Fe1—C667.3 (2)C15—C14—Sb1119.9 (3)
C7—Fe1—C639.92 (19)C19—C14—Sb1121.4 (3)
C9—Fe1—C666.82 (19)C14—C15—C16120.9 (4)
C2—Fe1—C6121.72 (19)C14—C15—H15119.5
C4—Fe1—C168.63 (15)C16—C15—H15119.5
C3—Fe1—C168.64 (16)C17—C16—C15119.2 (4)
C5—Fe1—C140.73 (14)C17—C16—H16120.4
C10—Fe1—C1120.16 (17)C15—C16—H16120.4
C8—Fe1—C1164.44 (19)C18—C17—C16120.6 (4)
C7—Fe1—C1126.83 (18)C18—C17—H17119.7
C9—Fe1—C1154.07 (18)C16—C17—H17119.7
C2—Fe1—C140.64 (14)C17—C18—C19119.9 (4)
C6—Fe1—C1108.92 (17)C17—C18—H18120.0
C12—N1—C13107.7 (3)C19—C18—H18120.0
C12—N1—C11110.8 (3)C14—C19—C18120.6 (4)
C13—N1—C11109.9 (3)C14—C19—H19119.7
C12—N1—Pd1110.5 (2)C18—C19—H19119.7
C13—N1—Pd1107.2 (2)C21—C20—C25118.0 (4)
C11—N1—Pd1110.6 (2)C21—C20—Sb1122.4 (3)
C5—C1—C2106.4 (3)C25—C20—Sb1119.5 (3)
C5—C1—Pd1139.1 (3)C20—C21—C22120.2 (5)
C2—C1—Pd1113.8 (3)C20—C21—H21119.9
C5—C1—Fe168.3 (2)C22—C21—H21119.9
C2—C1—Fe169.1 (2)C23—C22—C21121.0 (5)
Pd1—C1—Fe1119.20 (17)C23—C22—H22119.5
C3—C2—C1108.6 (3)C21—C22—H22119.5
C3—C2—C11131.0 (4)C24—C23—C22119.0 (5)
C1—C2—C11120.3 (4)C24—C23—H23120.5
C3—C2—Fe168.9 (2)C22—C23—H23120.5
C1—C2—Fe170.2 (2)C23—C24—C25120.8 (5)
C11—C2—Fe1129.6 (3)C23—C24—H24119.6
C4—C3—C2108.2 (4)C25—C24—H24119.6
C4—C3—Fe169.6 (2)C24—C25—C20120.9 (5)
C2—C3—Fe170.6 (2)C24—C25—H25119.5
C4—C3—H3125.9C20—C25—H25119.5
C2—C3—H3125.9C31—C26—C27118.2 (4)
Fe1—C3—H3125.9C31—C26—Sb1124.2 (3)
C3—C4—C5108.3 (4)C27—C26—Sb1117.5 (3)
C3—C4—Fe170.0 (2)C28—C27—C26120.5 (4)
C5—C4—Fe169.8 (2)C28—C27—H27119.8
C3—C4—H4125.8C26—C27—H27119.8
C5—C4—H4125.8C29—C28—C27120.2 (4)
Fe1—C4—H4125.8C29—C28—H28119.9
C4—C5—C1108.5 (3)C27—C28—H28119.9
C4—C5—Fe169.3 (2)C28—C29—C30120.3 (5)
C1—C5—Fe170.9 (2)C28—C29—H29119.9
C4—C5—H5125.7C30—C29—H29119.9
C1—C5—H5125.7C29—C30—C31120.3 (5)
Fe1—C5—H5125.7C29—C30—H30119.9
C10—C6—C7108.5 (5)C31—C30—H30119.9
C10—C6—Fe169.5 (3)C26—C31—C30120.6 (4)
C7—C6—Fe169.8 (3)C26—C31—H31119.7
C10—C6—H6125.7C30—C31—H31119.7
C7—C6—H6125.7
C5—C1—C2—C30.1 (4)C7—C6—C10—Fe159.0 (3)
Pd1—C1—C2—C3172.1 (3)C8—C9—C10—C61.6 (5)
Fe1—C1—C2—C358.4 (3)Fe1—C9—C10—C660.9 (3)
C5—C1—C2—C11176.5 (4)C8—C9—C10—Fe159.3 (3)
Pd1—C1—C2—C1111.3 (5)C3—C2—C11—N1169.5 (4)
Fe1—C1—C2—C11125.0 (4)C1—C2—C11—N114.8 (6)
C5—C1—C2—Fe158.4 (2)Fe1—C2—C11—N173.8 (5)
Pd1—C1—C2—Fe1113.7 (2)C12—N1—C11—C2112.3 (4)
C1—C2—C3—C40.5 (5)C13—N1—C11—C2128.8 (4)
C11—C2—C3—C4175.6 (4)Pd1—N1—C11—C210.6 (4)
Fe1—C2—C3—C459.7 (3)C19—C14—C15—C162.1 (6)
C1—C2—C3—Fe159.2 (3)Sb1—C14—C15—C16179.7 (3)
C11—C2—C3—Fe1124.7 (5)C14—C15—C16—C171.1 (7)
C2—C3—C4—C50.8 (5)C15—C16—C17—C181.2 (7)
Fe1—C3—C4—C559.5 (3)C16—C17—C18—C192.6 (7)
C2—C3—C4—Fe160.3 (3)C15—C14—C19—C180.7 (6)
C3—C4—C5—C10.8 (4)Sb1—C14—C19—C18178.3 (3)
Fe1—C4—C5—C160.3 (3)C17—C18—C19—C141.6 (7)
C3—C4—C5—Fe159.6 (3)C25—C20—C21—C221.1 (6)
C2—C1—C5—C40.4 (4)Sb1—C20—C21—C22177.9 (3)
Pd1—C1—C5—C4169.4 (3)C20—C21—C22—C231.5 (7)
Fe1—C1—C5—C459.4 (3)C21—C22—C23—C240.6 (8)
C2—C1—C5—Fe158.9 (3)C22—C23—C24—C250.6 (8)
Pd1—C1—C5—Fe1110.1 (4)C23—C24—C25—C201.0 (8)
C10—C6—C7—C81.1 (5)C21—C20—C25—C240.2 (7)
Fe1—C6—C7—C860.0 (3)Sb1—C20—C25—C24179.1 (4)
C10—C6—C7—Fe158.9 (3)C31—C26—C27—C281.6 (6)
C6—C7—C8—C90.1 (5)Sb1—C26—C27—C28178.0 (3)
Fe1—C7—C8—C960.4 (3)C26—C27—C28—C290.8 (7)
C6—C7—C8—Fe160.5 (3)C27—C28—C29—C300.0 (8)
C7—C8—C9—C100.9 (5)C28—C29—C30—C310.1 (8)
Fe1—C8—C9—C1059.2 (3)C27—C26—C31—C301.7 (6)
C7—C8—C9—Fe160.1 (3)Sb1—C26—C31—C30177.8 (3)
C7—C6—C10—C91.7 (5)C29—C30—C31—C261.0 (7)
Fe1—C6—C10—C960.7 (3)

Experimental details

Crystal data
Chemical formula[FePdCl(C5H5)(C8H11N)(C18H15Sb)]
Mr737.02
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)10.3138 (6), 19.8865 (12), 13.7584 (9)
β (°) 92.984 (1)
V3)2818.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.21
Crystal size (mm)0.36 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionAnalytical
(SADABS; Bruker, 2007)
Tmin, Tmax0.490, 0.797
No. of measured, independent and
observed [I > 2σ(I)] reflections
23494, 5158, 4107
Rint0.048
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.063, 0.93
No. of reflections4963
No. of parameters327
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.31

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Sb1—C142.127 (4)Pd1—C11.973 (4)
Sb1—C202.120 (4)Pd1—Cl12.3952 (10)
Sb1—C262.119 (4)Pd1—N12.174 (3)
Sb1—Pd12.4853 (4)
 

Acknowledgements

The authors thank the Dirección General de Asuntos del Personal Académico-UNAM project No. IN-223013 for financial support.

References

First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMentes, A. & Fawcett, J. (2005). Inorg. Chim. Acta. C358, 1279–1283.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSokolov, M. N., Chubarova, E. V., Hernández-Molina, R., Clausen, M., Naumov, D., Vincent, C., Lusar, R. & Vladimir, P. (2005). Eur. J. Inorg. Chem. 11, 2139–2146.  Web of Science CSD CrossRef Google Scholar
First citationZirakzadeh, A., Schuecker, R., Gorgas, N., Mereiter, K., Spindler, F. & Weissensteiner, W. (2012). Organometallics, 31, 4241–4250.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds