metal-organic compounds
Chlorido[2,2′-[1,2-phenylenebis(nitrilomethanylylidyne)]diphenolato-κ4O,N,N′,O′]manganese(III) methanol monosolvate
aInstitute of Molecular Engineering and Applied Chemsitry, Anhui University of Technology, Ma'anshan, Anhui 243002, People's Republic of China, and bDepartment of Applied Chemistry, School of Petrochemical Engineering, Changzhou University, Jiangsu 213164, People's Republic of China
*Correspondence e-mail: zhangqf@ahut.edu.cn
In the title complex, [Mn(C20H14N2O2)Cl]·CH3OH, the central MnIII atom displays a distorted square-pyramidal coordination by two N and two O atoms from the tetradentate 2,2′-[1,2-phenylenebis(nitrilomethanylylidyne)]diphenolate ligand and one chloride ligand. The MnIII atom is 0.525 (4) Å out of the square basal N2O2 least-squares plane. The complex molecule is hydrogen bonded to the methanol solvent molecule.
Related literature
For background to manganese and manganese–salen complexes, see: Law et al. (1998); Lenoble et al. (1998); Horner et al. (1999); Asada et al. (2000); Dubois et al. (2003); Gultneh et al. (2003); Mitra et al. (2006). For related structures, see: Pecoraro & Butler (1986); Dang et al. (2005); Martínez et al. (2002); Panja et al. (2003).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536813016450/vn2073sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813016450/vn2073Isup2.hkl
To a solution of the Schiff base ligand (H2salen) (158 mg, 0.5 mmol) in methanol (10 mL) was added Et3N (101 mg, 1.0 mmol), and then a solution of MnCl2.6H2O (117 mg, 0.5 mmol) in distilled water (5 mL) was dropwise added to the above methanol solution. The resulting solution was refluxed for 4 h, and then the mixture was filtered and the filtrate was allowed to evaporate slowly, which led to deposition of a brown solid. The solid was collected by filtration, washed with Et2O and recrystallized from CH3OH-Et2O mixture (1:1). Yield: 111 mg, 58 %. Analysis for C21H18N2O3ClMn: calcd C 57.75, H 4.15, N 6.41 %; found C 57.63, H 4.12, N 6.37 %.
The structure was solved by
and refined by full-matrix least-squares procedure based on F2. All hydrogen atoms on the carbon atoms were placed in geometrically idealized positions and refined isotropically with a riding model for both C-sp2 [C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C)] and C-sp3 [C—H = 0.96—0.97 Å and with Uiso(H) = 1.5Ueq(C)], except the hydrogen position H1S involved in a hydrogen bond interaction and which was refined with a distance restraint.The coordination chemistry of manganese complexes has been the subject of extensive investigation in the past several decades. Most of the studies have aimed to understand the role of manganese in many metallo-enzymes in terms of structure- property relationships (Dubois et al., 2003; Horner et al., 1999). Studies of high
complexes are of special importance because of their potential uses as oxidizing agents, catalysts and electro-catalysts, for the oxidation of compounds such as and water (Gultneh et al., 2003). Of particular interest is the Schiff base complexes of manganese(III) which have been considered to be the simplest models for the reactivity of oxygen-evolving center (OEC) active site of mangano-enzymes (Law et al., 1998). The typical [MnIII(salen)X] (X = Cl, Br, I) complexes (salen = N,N'-bis(salicylideneiminato)ethylene) have been prepared and are soluble in aqueous and methanolic solutions (Mitra et al., 2006). Series of monochloro- and dichloro-manganese(IV) complexes along with acetatomanganese(III) complexes with the salen ligands have been previously synthesized from the mixed aqueous-ethanol or -acetonitrile solutions (Asada et al., 2000; Lenoble et al., 1998; Pecoraro & Butler, 1986). In this paper, we report the synthesis of the manganese(III) complex [MnIII(salen)Cl].CH3OH (salen = N,N'-bis(salicylideneiminato)benzene) in a mixed aqueous-methanol solution and its structural characterization involving an N2O2 Schiff base ligand.The title complex crystallizes in the triclinic P-1
The of the consists of the neutral mononuclear complex [MnIII(salen)Cl] and one methanol molecule in the lattice. A view of the complex is shown in Fig. 1. In this monomeric complex, the central manganese atom is coordinated by two nitrogen and two oxygen atoms from the salen ligand and one chloride atom. Owing to the presence of the chloride atom, the manganese atom is 0.525 (4) Å above the square basal N2O2 plane and the geometry around the metal centre may be better described as distorted square-pyramidal. The average Mn—N and Mn—O bond lengths in the title complex are 2.0992 (16) and 1.8942 (14) Å, respectively, which are compared with those in [Mn(salen)Cl(H2O)].H2O (salen = N,N'- bis(salicylideneiminato)ethylene) [av. Mn—N = 1.984 (17) Å and av. Mn—O = 1.883 (14) Å] (Panja et al., 2003), [MnCl(salen)(H2O)] (salen = 2,2'-[1,2-ethanediylbis- (nitrilomethylidyne)]-diphenolato) [av. Mn—N = 1.980 (5) Å and av. Mn—O = 1.890 (4) Å] (Martínez et al., 2002), and [Mn(L)Cl] (L = N,N'-bis{4-(diethylamino)- salicylideneiminato}-cyclohexane) [av. Mn—N = 1.986 (12) Å and av. Mn—O = 1.872 (12) Å] (Dang et al., 2005). The Mn—Cl bond length of 2.2276 (7) %A in the title complex is obviously shorter than those in [Mn(salen)Cl(H2O)].H2O (salen = N,N'-bis(salicylideneiminato)ethylene) (2.584 (12) %A) (Panja et al., 2003), [MnCl(salen)(H2O)] (salen = 2,2'-[1,2-ethanediylbis-(nitrilomethylidyne)]-diphenolato) (2.468 (2) Å) (Martínez et al., 2002), and [Mn(L)Cl] (L = N,N'-bis{4-(diethylamino)salicylideneiminato}cyclohexane) (2.386 (2) Å) (Dang et al., 2005). The basal bond angles are all approximately close to 90° [O(1)—Mn(1)—O(2), O(1)—Mn(1)—N(1) and O(2)—Mn(1)—N(2) are 91.48 (6)°, 87.99 (6)° and 87.68 (6)°, respectively] except N(1)-Mn(1)-N(2) (76.74 (6)°) which is large smaller than expected (Pecoraro & Butler, 1986). The methanol molecule takes part in one hydrogen-bond involving in H1S with the phenoxo-oxygen O1a from the next unit-cell and the distance O1a···H1S (a: x + 1, y, z) is 2.19 (2) Å (see Fig. 2).For background to manganese and manganese–salen complexes, see: Law et al. (1998); Lenoble et al. (1998); Horner et al. (1999); Asada et al. (2000); Dubois et al. (2003); Gultneh et al. (2003); Mitra et al. (2006); For related structures, see: Pecoraro & Butler (1986); Dang et al. (2005); Martínez et al. (2002); Panja et al. (2003).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Mn(C20H14N2O2)Cl]·CH4O | Z = 2 |
Mr = 436.76 | F(000) = 448 |
Triclinic, P1 | Dx = 1.534 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.4251 (2) Å | Cell parameters from 5729 reflections |
b = 9.8341 (2) Å | θ = 2.4–26.8° |
c = 13.3035 (3) Å | µ = 0.87 mm−1 |
α = 78.803 (1)° | T = 296 K |
β = 83.305 (2)° | Block, pink |
γ = 86.344 (2)° | 0.24 × 0.17 × 0.13 mm |
V = 945.58 (4) Å3 |
Bruker SMART APEXII CCD area-detector diffractometer | 4302 independent reflections |
Radiation source: fine-focus sealed tube | 3311 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
phi and ω scans | θmax = 27.5°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −9→9 |
Tmin = 0.819, Tmax = 0.896 | k = −12→12 |
17011 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.086 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0419P)2 + 0.2015P] where P = (Fo2 + 2Fc2)/3 |
4302 reflections | (Δ/σ)max = 0.001 |
255 parameters | Δρmax = 0.33 e Å−3 |
1 restraint | Δρmin = −0.40 e Å−3 |
[Mn(C20H14N2O2)Cl]·CH4O | γ = 86.344 (2)° |
Mr = 436.76 | V = 945.58 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.4251 (2) Å | Mo Kα radiation |
b = 9.8341 (2) Å | µ = 0.87 mm−1 |
c = 13.3035 (3) Å | T = 296 K |
α = 78.803 (1)° | 0.24 × 0.17 × 0.13 mm |
β = 83.305 (2)° |
Bruker SMART APEXII CCD area-detector diffractometer | 4302 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 3311 reflections with I > 2σ(I) |
Tmin = 0.819, Tmax = 0.896 | Rint = 0.032 |
17011 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 1 restraint |
wR(F2) = 0.086 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.33 e Å−3 |
4302 reflections | Δρmin = −0.40 e Å−3 |
255 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mn1 | 0.06050 (4) | 0.87475 (3) | 0.26112 (2) | 0.03227 (10) | |
Cl1 | 0.30457 (9) | 0.81214 (7) | 0.34473 (5) | 0.06368 (18) | |
N1 | 0.1304 (2) | 1.06118 (16) | 0.16224 (12) | 0.0368 (4) | |
N2 | −0.0670 (2) | 1.02686 (16) | 0.33991 (11) | 0.0345 (4) | |
O1 | 0.0801 (2) | 0.79008 (14) | 0.14311 (10) | 0.0475 (4) | |
O2 | −0.1221 (2) | 0.75440 (15) | 0.32907 (11) | 0.0522 (4) | |
C1 | 0.1710 (3) | 0.8242 (2) | 0.05065 (14) | 0.0388 (4) | |
C2 | 0.2021 (3) | 0.7250 (2) | −0.01285 (16) | 0.0479 (5) | |
H2 | 0.1588 | 0.6364 | 0.0104 | 0.057* | |
C3 | 0.2960 (3) | 0.7574 (3) | −0.10922 (17) | 0.0535 (6) | |
H3 | 0.3169 | 0.6897 | −0.1498 | 0.064* | |
C4 | 0.3601 (3) | 0.8889 (3) | −0.14702 (17) | 0.0537 (6) | |
H4 | 0.4250 | 0.9092 | −0.2119 | 0.064* | |
C5 | 0.3266 (3) | 0.9881 (2) | −0.08765 (16) | 0.0477 (5) | |
H5 | 0.3662 | 1.0772 | −0.1136 | 0.057* | |
C6 | 0.2334 (3) | 0.9589 (2) | 0.01207 (14) | 0.0383 (4) | |
C7 | 0.2019 (3) | 1.0706 (2) | 0.06718 (15) | 0.0394 (4) | |
H7 | 0.2356 | 1.1580 | 0.0320 | 0.047* | |
C8 | 0.1020 (3) | 1.18087 (19) | 0.20795 (14) | 0.0358 (4) | |
C9 | 0.1713 (3) | 1.3105 (2) | 0.16491 (16) | 0.0453 (5) | |
H9 | 0.2440 | 1.3228 | 0.1023 | 0.054* | |
C10 | 0.1317 (3) | 1.4201 (2) | 0.21548 (17) | 0.0485 (5) | |
H10 | 0.1778 | 1.5064 | 0.1867 | 0.058* | |
C11 | 0.0245 (3) | 1.4028 (2) | 0.30831 (18) | 0.0482 (5) | |
H11 | −0.0018 | 1.4779 | 0.3414 | 0.058* | |
C12 | −0.0441 (3) | 1.2757 (2) | 0.35271 (16) | 0.0433 (5) | |
H12 | −0.1157 | 1.2648 | 0.4157 | 0.052* | |
C13 | −0.0057 (3) | 1.16326 (19) | 0.30263 (14) | 0.0344 (4) | |
C14 | −0.1822 (3) | 1.0000 (2) | 0.42216 (14) | 0.0369 (4) | |
H14 | −0.2217 | 1.0734 | 0.4551 | 0.044* | |
C15 | −0.2531 (3) | 0.8672 (2) | 0.46599 (14) | 0.0367 (4) | |
C16 | −0.3650 (3) | 0.8553 (2) | 0.56071 (15) | 0.0427 (5) | |
H16 | −0.3912 | 0.9332 | 0.5906 | 0.051* | |
C17 | −0.4353 (3) | 0.7316 (2) | 0.60900 (16) | 0.0486 (5) | |
H17 | −0.5095 | 0.7254 | 0.6709 | 0.058* | |
C18 | −0.3944 (3) | 0.6145 (2) | 0.56445 (17) | 0.0507 (6) | |
H18 | −0.4384 | 0.5293 | 0.5982 | 0.061* | |
C19 | −0.2902 (3) | 0.6237 (2) | 0.47166 (17) | 0.0501 (5) | |
H19 | −0.2670 | 0.5449 | 0.4425 | 0.060* | |
C20 | −0.2181 (3) | 0.7492 (2) | 0.41977 (15) | 0.0395 (5) | |
C1S | 0.6113 (4) | 0.6064 (3) | 0.1772 (3) | 0.0922 (10) | |
H1S1 | 0.6377 | 0.5284 | 0.2298 | 0.138* | |
H1S2 | 0.5154 | 0.5847 | 0.1411 | 0.138* | |
H1S3 | 0.5742 | 0.6855 | 0.2081 | 0.138* | |
O1S | 0.7639 (3) | 0.6357 (2) | 0.10906 (15) | 0.0848 (6) | |
H1S | 0.8457 (10) | 0.6671 (4) | 0.1397 (4) | 0.127* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.04290 (19) | 0.02961 (15) | 0.02400 (15) | −0.00218 (12) | 0.00435 (11) | −0.00877 (11) |
Cl1 | 0.0695 (4) | 0.0623 (4) | 0.0640 (4) | 0.0191 (3) | −0.0223 (3) | −0.0216 (3) |
N1 | 0.0434 (9) | 0.0363 (8) | 0.0313 (8) | −0.0010 (7) | −0.0008 (7) | −0.0095 (7) |
N2 | 0.0406 (9) | 0.0335 (8) | 0.0296 (8) | 0.0000 (7) | −0.0012 (7) | −0.0082 (7) |
O1 | 0.0711 (10) | 0.0413 (8) | 0.0303 (7) | −0.0094 (7) | 0.0070 (7) | −0.0124 (6) |
O2 | 0.0673 (10) | 0.0460 (8) | 0.0445 (8) | −0.0185 (7) | 0.0193 (7) | −0.0215 (7) |
C1 | 0.0462 (12) | 0.0448 (11) | 0.0256 (9) | 0.0027 (9) | −0.0009 (8) | −0.0105 (8) |
C2 | 0.0654 (15) | 0.0439 (12) | 0.0346 (11) | 0.0005 (10) | 0.0002 (10) | −0.0125 (9) |
C3 | 0.0662 (15) | 0.0590 (14) | 0.0373 (11) | 0.0093 (12) | 0.0022 (10) | −0.0224 (11) |
C4 | 0.0579 (14) | 0.0696 (16) | 0.0329 (11) | −0.0013 (12) | 0.0084 (10) | −0.0159 (11) |
C5 | 0.0521 (13) | 0.0557 (13) | 0.0346 (11) | −0.0075 (10) | 0.0048 (9) | −0.0105 (10) |
C6 | 0.0409 (11) | 0.0442 (11) | 0.0302 (10) | −0.0005 (9) | −0.0001 (8) | −0.0104 (8) |
C7 | 0.0453 (12) | 0.0397 (10) | 0.0319 (10) | −0.0054 (9) | 0.0019 (8) | −0.0062 (8) |
C8 | 0.0445 (11) | 0.0316 (9) | 0.0318 (10) | 0.0000 (8) | −0.0047 (8) | −0.0074 (8) |
C9 | 0.0592 (14) | 0.0397 (11) | 0.0355 (11) | −0.0066 (10) | 0.0010 (10) | −0.0056 (9) |
C10 | 0.0626 (14) | 0.0335 (10) | 0.0486 (13) | −0.0058 (10) | −0.0052 (11) | −0.0046 (9) |
C11 | 0.0559 (14) | 0.0359 (11) | 0.0550 (13) | 0.0026 (10) | −0.0020 (11) | −0.0175 (10) |
C12 | 0.0477 (12) | 0.0402 (11) | 0.0426 (12) | 0.0033 (9) | 0.0008 (9) | −0.0144 (9) |
C13 | 0.0387 (11) | 0.0314 (9) | 0.0333 (10) | 0.0018 (8) | −0.0039 (8) | −0.0080 (8) |
C14 | 0.0405 (11) | 0.0390 (10) | 0.0318 (10) | 0.0024 (8) | 0.0004 (8) | −0.0121 (8) |
C15 | 0.0368 (11) | 0.0409 (10) | 0.0331 (10) | −0.0011 (8) | −0.0009 (8) | −0.0107 (8) |
C16 | 0.0448 (12) | 0.0473 (12) | 0.0353 (10) | −0.0006 (9) | 0.0057 (9) | −0.0131 (9) |
C17 | 0.0493 (13) | 0.0600 (14) | 0.0351 (11) | −0.0083 (11) | 0.0084 (9) | −0.0113 (10) |
C18 | 0.0568 (14) | 0.0497 (13) | 0.0438 (12) | −0.0178 (11) | 0.0059 (10) | −0.0060 (10) |
C19 | 0.0570 (14) | 0.0461 (12) | 0.0493 (13) | −0.0142 (10) | 0.0095 (11) | −0.0192 (10) |
C20 | 0.0409 (11) | 0.0437 (11) | 0.0345 (10) | −0.0069 (9) | 0.0039 (8) | −0.0117 (9) |
C1S | 0.093 (2) | 0.077 (2) | 0.100 (2) | −0.0166 (18) | 0.029 (2) | −0.0218 (18) |
O1S | 0.0820 (14) | 0.1037 (16) | 0.0640 (12) | −0.0195 (12) | 0.0008 (11) | −0.0039 (11) |
Mn1—O2 | 1.8868 (14) | C9—C10 | 1.377 (3) |
Mn1—O1 | 1.9022 (13) | C9—H9 | 0.9300 |
Mn1—N1 | 2.0944 (16) | C10—C11 | 1.376 (3) |
Mn1—N2 | 2.1047 (15) | C10—H10 | 0.9300 |
Mn1—Cl1 | 2.2277 (7) | C11—C12 | 1.377 (3) |
N1—C7 | 1.302 (2) | C11—H11 | 0.9300 |
N1—C8 | 1.420 (2) | C12—C13 | 1.396 (3) |
N2—C14 | 1.303 (2) | C12—H12 | 0.9300 |
N2—C13 | 1.421 (2) | C14—C15 | 1.429 (3) |
O1—C1 | 1.325 (2) | C14—H14 | 0.9300 |
O2—C20 | 1.321 (2) | C15—C20 | 1.412 (3) |
C1—C2 | 1.402 (3) | C15—C16 | 1.415 (3) |
C1—C6 | 1.411 (3) | C16—C17 | 1.365 (3) |
C2—C3 | 1.376 (3) | C16—H16 | 0.9300 |
C2—H2 | 0.9300 | C17—C18 | 1.395 (3) |
C3—C4 | 1.387 (3) | C17—H17 | 0.9300 |
C3—H3 | 0.9300 | C18—C19 | 1.369 (3) |
C4—C5 | 1.364 (3) | C18—H18 | 0.9300 |
C4—H4 | 0.9300 | C19—C20 | 1.398 (3) |
C5—C6 | 1.409 (3) | C19—H19 | 0.9300 |
C5—H5 | 0.9300 | C1S—O1S | 1.374 (3) |
C6—C7 | 1.428 (3) | C1S—H1S1 | 0.9600 |
C7—H7 | 0.9300 | C1S—H1S2 | 0.9600 |
C8—C9 | 1.396 (3) | C1S—H1S3 | 0.9600 |
C8—C13 | 1.398 (3) | O1S—H1S | 0.8725 |
O2—Mn1—O1 | 91.47 (6) | C10—C9—H9 | 120.1 |
O2—Mn1—N1 | 148.62 (7) | C8—C9—H9 | 120.1 |
O1—Mn1—N1 | 87.98 (6) | C11—C10—C9 | 120.50 (19) |
O2—Mn1—N2 | 87.70 (6) | C11—C10—H10 | 119.8 |
O1—Mn1—N2 | 148.11 (7) | C9—C10—H10 | 119.8 |
N1—Mn1—N2 | 76.74 (6) | C10—C11—C12 | 120.75 (19) |
O2—Mn1—Cl1 | 105.95 (6) | C10—C11—H11 | 119.6 |
O1—Mn1—Cl1 | 108.96 (5) | C12—C11—H11 | 119.6 |
N1—Mn1—Cl1 | 103.86 (5) | C11—C12—C13 | 119.64 (19) |
N2—Mn1—Cl1 | 101.87 (5) | C11—C12—H12 | 120.2 |
C7—N1—C8 | 120.67 (16) | C13—C12—H12 | 120.2 |
C7—N1—Mn1 | 124.46 (13) | C12—C13—C8 | 119.69 (17) |
C8—N1—Mn1 | 114.81 (12) | C12—C13—N2 | 125.41 (18) |
C14—N2—C13 | 120.85 (16) | C8—C13—N2 | 114.90 (16) |
C14—N2—Mn1 | 124.04 (13) | N2—C14—C15 | 125.47 (18) |
C13—N2—Mn1 | 114.86 (12) | N2—C14—H14 | 117.3 |
C1—O1—Mn1 | 131.49 (12) | C15—C14—H14 | 117.3 |
C20—O2—Mn1 | 130.62 (12) | C20—C15—C16 | 118.96 (18) |
O1—C1—C2 | 119.31 (18) | C20—C15—C14 | 123.61 (17) |
O1—C1—C6 | 122.27 (17) | C16—C15—C14 | 117.43 (17) |
C2—C1—C6 | 118.39 (18) | C17—C16—C15 | 121.27 (19) |
C3—C2—C1 | 120.6 (2) | C17—C16—H16 | 119.4 |
C3—C2—H2 | 119.7 | C15—C16—H16 | 119.4 |
C1—C2—H2 | 119.7 | C16—C17—C18 | 119.27 (19) |
C2—C3—C4 | 121.3 (2) | C16—C17—H17 | 120.4 |
C2—C3—H3 | 119.4 | C18—C17—H17 | 120.4 |
C4—C3—H3 | 119.4 | C19—C18—C17 | 120.7 (2) |
C5—C4—C3 | 119.0 (2) | C19—C18—H18 | 119.6 |
C5—C4—H4 | 120.5 | C17—C18—H18 | 119.6 |
C3—C4—H4 | 120.5 | C18—C19—C20 | 121.3 (2) |
C4—C5—C6 | 121.6 (2) | C18—C19—H19 | 119.3 |
C4—C5—H5 | 119.2 | C20—C19—H19 | 119.3 |
C6—C5—H5 | 119.2 | O2—C20—C19 | 119.40 (18) |
C5—C6—C1 | 119.06 (18) | O2—C20—C15 | 122.20 (17) |
C5—C6—C7 | 117.27 (18) | C19—C20—C15 | 118.39 (18) |
C1—C6—C7 | 123.63 (17) | O1S—C1S—H1S1 | 109.5 |
N1—C7—C6 | 125.92 (18) | O1S—C1S—H1S2 | 109.5 |
N1—C7—H7 | 117.0 | H1S1—C1S—H1S2 | 109.5 |
C6—C7—H7 | 117.0 | O1S—C1S—H1S3 | 109.5 |
C9—C8—C13 | 119.60 (17) | H1S1—C1S—H1S3 | 109.5 |
C9—C8—N1 | 124.94 (18) | H1S2—C1S—H1S3 | 109.5 |
C13—C8—N1 | 115.45 (16) | C1S—O1S—H1S | 109.5 |
C10—C9—C8 | 119.82 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1S—H1S···O1i | 0.87 | 2.19 | 2.999 (3) | 154 |
Symmetry code: (i) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Mn(C20H14N2O2)Cl]·CH4O |
Mr | 436.76 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 7.4251 (2), 9.8341 (2), 13.3035 (3) |
α, β, γ (°) | 78.803 (1), 83.305 (2), 86.344 (2) |
V (Å3) | 945.58 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.87 |
Crystal size (mm) | 0.24 × 0.17 × 0.13 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.819, 0.896 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17011, 4302, 3311 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.086, 1.02 |
No. of reflections | 4302 |
No. of parameters | 255 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.33, −0.40 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1S—H1S···O1i | 0.87 | 2.19 | 2.999 (3) | 153.7 |
Symmetry code: (i) x+1, y, z. |
Acknowledgements
This project was supported by the Natural Science Foundation of China (90922008).
References
Asada, H., Fujiwara, M. & Matsushita, T. (2000). Polyhedron, 19, 2039–2048. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dang, L.-L., Huo, Y.-Q., Wang, W. & Li, J. (2005). Acta Cryst. E61, m332–m334. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Dubois, L., Xiang, D.-F., Tan, X.-S., Pecaut, J., Jones, P., Baudron, S., Pape, L. L., Latour, J. M., Baffert, C., Noblat, S. C., Collomb, M. N. & Deronzier, A. (2003). Inorg. Chem. 42, 750–760. Web of Science CSD CrossRef PubMed CAS Google Scholar
Gultneh, Y., Yisgedu, T. B., Tesema, Y. T. & Butcher, R. J. (2003). Inorg. Chem. 42, 1857–1867. Web of Science CSD CrossRef PubMed CAS Google Scholar
Horner, O., Mallart, E. A., Charlot, M.-F., Tchertanov, L., Guilhem, J., Mattioli, T. A., Boussac, A. & Girerd, J.-J. (1999). Inorg. Chem. 38, 1222–1232. Web of Science CSD CrossRef PubMed CAS Google Scholar
Law, N. A., Caudle, M. T. & Pecoraro, V. L. (1998). Adv. Inorg. Chem. 46, 305–440. CrossRef CAS Google Scholar
Lenoble, G., Lacroix, P. G., Daran, J. C., Bella, S. D. & Nakatani, K. (1998). Inorg. Chem. 37, 2158–2165. Web of Science CSD CrossRef PubMed CAS Google Scholar
Martínez, D., Motevalli, M. & Watkinson, M. (2002). Acta Cryst. C58, m258–m260. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mitra, K., Biswas, S., Lucas, C. R. & Adhikary, B. (2006). Inorg. Chim. Acta, 359, 1997–2003. Web of Science CrossRef CAS Google Scholar
Panja, A., Shaikh, N., Ali, M., Vojtisek, P. & Banerjee, P. (2003). Polyhedron, 22, 1191–1198. Web of Science CSD CrossRef CAS Google Scholar
Pecoraro, V. L. & Butler, W. M. (1986). Acta Cryst. C42, 1151–1154. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The coordination chemistry of manganese complexes has been the subject of extensive investigation in the past several decades. Most of the studies have aimed to understand the role of manganese in many metallo-enzymes in terms of structure- property relationships (Dubois et al., 2003; Horner et al., 1999). Studies of high oxidation state complexes are of special importance because of their potential uses as oxidizing agents, catalysts and electro-catalysts, for the oxidation of compounds such as alcohols, esters and water (Gultneh et al., 2003). Of particular interest is the Schiff base complexes of manganese(III) which have been considered to be the simplest models for the reactivity of oxygen-evolving center (OEC) active site of mangano-enzymes (Law et al., 1998). The typical [MnIII(salen)X] (X = Cl, Br, I) complexes (salen = N,N'-bis(salicylideneiminato)ethylene) have been prepared and are soluble in aqueous and methanolic solutions (Mitra et al., 2006). Series of monochloro- and dichloro-manganese(IV) complexes along with acetatomanganese(III) complexes with the salen ligands have been previously synthesized from the mixed aqueous-ethanol or -acetonitrile solutions (Asada et al., 2000; Lenoble et al., 1998; Pecoraro & Butler, 1986). In this paper, we report the synthesis of the manganese(III) complex [MnIII(salen)Cl].CH3OH (salen = N,N'-bis(salicylideneiminato)benzene) in a mixed aqueous-methanol solution and its structural characterization involving an N2O2 Schiff base ligand.
The title complex crystallizes in the triclinic P-1 space group. The asymmetric unit of the crystal structure consists of the neutral mononuclear complex [MnIII(salen)Cl] and one methanol molecule in the lattice. A view of the complex is shown in Fig. 1. In this monomeric complex, the central manganese atom is coordinated by two nitrogen and two oxygen atoms from the salen ligand and one chloride atom. Owing to the presence of the chloride atom, the manganese atom is 0.525 (4) Å above the square basal N2O2 plane and the geometry around the metal centre may be better described as distorted square-pyramidal. The average Mn—N and Mn—O bond lengths in the title complex are 2.0992 (16) and 1.8942 (14) Å, respectively, which are compared with those in [Mn(salen)Cl(H2O)].H2O (salen = N,N'- bis(salicylideneiminato)ethylene) [av. Mn—N = 1.984 (17) Å and av. Mn—O = 1.883 (14) Å] (Panja et al., 2003), [MnCl(salen)(H2O)] (salen = 2,2'-[1,2-ethanediylbis- (nitrilomethylidyne)]-diphenolato) [av. Mn—N = 1.980 (5) Å and av. Mn—O = 1.890 (4) Å] (Martínez et al., 2002), and [Mn(L)Cl] (L = N,N'-bis{4-(diethylamino)- salicylideneiminato}-cyclohexane) [av. Mn—N = 1.986 (12) Å and av. Mn—O = 1.872 (12) Å] (Dang et al., 2005). The Mn—Cl bond length of 2.2276 (7) %A in the title complex is obviously shorter than those in [Mn(salen)Cl(H2O)].H2O (salen = N,N'-bis(salicylideneiminato)ethylene) (2.584 (12) %A) (Panja et al., 2003), [MnCl(salen)(H2O)] (salen = 2,2'-[1,2-ethanediylbis-(nitrilomethylidyne)]-diphenolato) (2.468 (2) Å) (Martínez et al., 2002), and [Mn(L)Cl] (L = N,N'-bis{4-(diethylamino)salicylideneiminato}cyclohexane) (2.386 (2) Å) (Dang et al., 2005). The basal bond angles are all approximately close to 90° [O(1)—Mn(1)—O(2), O(1)—Mn(1)—N(1) and O(2)—Mn(1)—N(2) are 91.48 (6)°, 87.99 (6)° and 87.68 (6)°, respectively] except N(1)-Mn(1)-N(2) (76.74 (6)°) which is large smaller than expected (Pecoraro & Butler, 1986). The methanol molecule takes part in one hydrogen-bond involving in H1S with the phenoxo-oxygen O1a from the next unit-cell and the distance O1a···H1S (a: x + 1, y, z) is 2.19 (2) Å (see Fig. 2).