metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Bis(O-methyl­di­thio­carbonato-κ2S,S′)bis­­(tri­phenyl­phosphane-κP)ruthenium(II)

aInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México, D.F., 04510, Mexico
*Correspondence e-mail: damor@unam.mx

(Received 8 June 2013; accepted 16 June 2013; online 22 June 2013)

In the title compound, [Ru(CH3OCS2)2(C18H15P)2], the RuII atom is in a distorted octa­hedral coordination by two xanthate anions (CH3OCS2) and two tri­phenyl­phosphane (PPh3) ligands. Both bidentate xanthate ligands coordinate the RuII atom with two slightly different Ru—S bond lengths but with virtually equal bite angles [71.57 (4) and 71.58 (3)°]. The packing of the complexes is assured by C—H⋯O and C—H⋯π inter­actions.

Related literature

For complexes with metal-S and metal-P bonds, see: Lu et al. (2003[Lu, X. L., Ng, S. Y., Vittal, J. J., Tan, G. K., Goh, Y. L. & Hor, T. S. A. (2003). J. Organomet. Chem. 688, 100-111.]); Wang et al. (2010[Wang, X.-Y., Li, Y., Ma, Q. & Zhang, Q.-F. (2010). Organometallics, 29, 2752-2760.]). For ruthenium complexes with di­thiol­ate ligands, see: Bag et al. (1990[Bag, N., Lahiri, G. K. & Chakravorty, A. (1990). J. Chem. Soc. Dalton Trans. pp. 1557-1561.]); Liu et al. (2005[Liu, X., Zhang, Q.-F. & Leung, W.-H. (2005). J. Coord. Chem. 58, 1299-1305.]); Noda et al. (2006[Noda, K., Ohuchi, Y., Hashimoto, A., Fujiki, M., Itoh, S., Iwatsuki, S., Noda, T., Suzuki, T., Kashiwabara, K. & Tagagi, H. D. (2006). Inorg. Chem. 45, 1349-1355.]); Wu et al. (2009[Wu, F.-H., Duan, T., Lu, L., Zhang, Q.-F. & Leung, W.-H. (2009). J. Organomet. Chem. 694, 3844-3851.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(C2H3OS2)2(C18H15P)2]

  • Mr = 839.94

  • Orthorhombic, P b c a

  • a = 10.7285 (3) Å

  • b = 18.5470 (4) Å

  • c = 38.0785 (9) Å

  • V = 7576.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 298 K

  • 0.32 × 0.21 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.665, Tmax = 0.745

  • 31337 measured reflections

  • 6924 independent reflections

  • 4970 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.097

  • S = 1.03

  • 6924 reflections

  • 444 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Selected bond lengths (Å)

Ru1—P1 2.3180 (9)
Ru1—P2 2.3493 (9)
Ru1—S1 2.4015 (10)
Ru1—S2 2.4530 (10)
Ru1—S3 2.3981 (9)
Ru1—S4 2.4426 (9)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C25–C30 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O5i 0.93 2.51 3.387 (5) 157
C40—H40⋯Cgii 0.93 2.85 3.521 (4) 130
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Complexes containing metal-S and metal-P bonds are of great interest due to their potential role in homogeneous catalysis (Lu et al., 2003; Wang et al., 2010). In this context, complexes with Ru—S bonds may serve in hydrotreating processes of different fractions of oil and as functional models for Fe—S proteins. Some common sulfur-ligands used to coordinate RuII are dithiolates as dithiocarbamates (R2NCS2-), xanthates (ROCS2-) and dithiophosphates ((RO)2PS2-). Examples of Ru(II) complexes with dithiolates reported previously include trans-[Ru(PPh3)2(S2COPr)2], cis-[Ru(PPh3)2(S2COPr)2], cis-[Ru(PPh3)2(S2COiPr)2] (Wu et al., 2009; Bag et al., 1990), cis-[Ru(PPh3)2(S2COEt)2] (Noda et al., 2006) and cis-[Ru(PPh3)2(S2P(OEt)2)2] (Liu et al., 2005).

We report here the crystal structure of cis-bis(O-Methyldithiocarbonato)-bis(triphenylphosphane)ruthenium (II) cis-[Ru(PPh3)2(S2COMe)2] of which the molecular structure is shown in Fig. 1.

The title complex is mononuclear and the ruthenium center is found in a distorted octahedral geometry. The coordination sphere is composed of two triphenylphosphane ligands (PPh3) and two xanthate ligands (S2COMe) arranged in a cis conformation. The two xanthate ligands coordinate the RuII atom in a bidentated manner with Ru—S distances of 2.4015 (10) and 2.4528 (11) Å for one ligand, and 2.3982 (10) and 2.4425 (11) Å for the other. Such slightly different Ru-S distances for the bidentate xanthate ligand are also found in the analogue compounds cis-[Ru(PPh3)2(S2COiPr)2] (Wu et al., 2009) and cis-[Ru(PPh3)2(S2COEt)2] (Noda et al., 2006). The two bite angles of the chelating xanthate ligands are nearly the same: 71.57 (4)° for S1—Ru1—S2 and 71.58 (4)° for S3—Ru1—S4. The two PPh3 ligands are arranged in a cis conformation with a P1—Ru1—P2 angle of 100.95 (3)°. The Ru—P distances are 2.3180 (8) Å for Ru1—P1 and 2.3494 (8) Å for Ru1—P2, respectively. These distances are similar to those found in related compounds. There are weak non-covalent interactions [C11—H11···O5 and C40—H40···π], which produce a layer arrangement parallel to the ac plane (Fig. 2).

Related literature top

For complexes with metal-S and metal-P bonds, see: Lu et al. (2003); Wang et al. (2010). For ruthenium complexes with dithiolate ligands, see: Bag et al. (1990); Liu et al. (2005); Noda et al. (2006); Wu et al. (2009).

Experimental top

A mixture of carbon disulfide CS2 (0.06 ml) and sodium hydroxide KOH (0.003 g, 0.052 mmol) in methanol (30 ml) was stirred a room temperature overnight. Then [RuHCl(CO)(PPh3)3] (0.050 g, 0.052 mmol) was added and the yellow solution was set to reflux for 3 h. Brown crystals suitable for single-crystal X-ray diffraction analysis were obtained by slow evaporation of the solvent from a saturated solution of the title compound.1H RMN (300 MHz, CDCl3) δ: 1.18 (s, 6H, –CH3), 7.0–7.6 (m, PPh3). 31P {1H} NMR (121 MHz, CDCl3) δ: 43.33 (s).

Refinement top

H atoms were included in calculated position (C—H = 0.93 Å for aromatic H, and C—H = 0.96 Å for methyl H), and refined using a riding model with Uiso(H) = 1.2 Ueq of the carrier atoms. 5 badly fitting reflections were omitted from the final refinement.

Structure description top

Complexes containing metal-S and metal-P bonds are of great interest due to their potential role in homogeneous catalysis (Lu et al., 2003; Wang et al., 2010). In this context, complexes with Ru—S bonds may serve in hydrotreating processes of different fractions of oil and as functional models for Fe—S proteins. Some common sulfur-ligands used to coordinate RuII are dithiolates as dithiocarbamates (R2NCS2-), xanthates (ROCS2-) and dithiophosphates ((RO)2PS2-). Examples of Ru(II) complexes with dithiolates reported previously include trans-[Ru(PPh3)2(S2COPr)2], cis-[Ru(PPh3)2(S2COPr)2], cis-[Ru(PPh3)2(S2COiPr)2] (Wu et al., 2009; Bag et al., 1990), cis-[Ru(PPh3)2(S2COEt)2] (Noda et al., 2006) and cis-[Ru(PPh3)2(S2P(OEt)2)2] (Liu et al., 2005).

We report here the crystal structure of cis-bis(O-Methyldithiocarbonato)-bis(triphenylphosphane)ruthenium (II) cis-[Ru(PPh3)2(S2COMe)2] of which the molecular structure is shown in Fig. 1.

The title complex is mononuclear and the ruthenium center is found in a distorted octahedral geometry. The coordination sphere is composed of two triphenylphosphane ligands (PPh3) and two xanthate ligands (S2COMe) arranged in a cis conformation. The two xanthate ligands coordinate the RuII atom in a bidentated manner with Ru—S distances of 2.4015 (10) and 2.4528 (11) Å for one ligand, and 2.3982 (10) and 2.4425 (11) Å for the other. Such slightly different Ru-S distances for the bidentate xanthate ligand are also found in the analogue compounds cis-[Ru(PPh3)2(S2COiPr)2] (Wu et al., 2009) and cis-[Ru(PPh3)2(S2COEt)2] (Noda et al., 2006). The two bite angles of the chelating xanthate ligands are nearly the same: 71.57 (4)° for S1—Ru1—S2 and 71.58 (4)° for S3—Ru1—S4. The two PPh3 ligands are arranged in a cis conformation with a P1—Ru1—P2 angle of 100.95 (3)°. The Ru—P distances are 2.3180 (8) Å for Ru1—P1 and 2.3494 (8) Å for Ru1—P2, respectively. These distances are similar to those found in related compounds. There are weak non-covalent interactions [C11—H11···O5 and C40—H40···π], which produce a layer arrangement parallel to the ac plane (Fig. 2).

For complexes with metal-S and metal-P bonds, see: Lu et al. (2003); Wang et al. (2010). For ruthenium complexes with dithiolate ligands, see: Bag et al. (1990); Liu et al. (2005); Noda et al. (2006); Wu et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing 30% probability displacement ellipsoids. The hydrogen atoms have been omitted for clarity
[Figure 2] Fig. 2. Layer arrangement generated by C—H···O and C—H···π interactions. Hydrogen bond interactions are shown by dashed lines.
cis-Bis(O-methyldithiocarbonato-κ2S,S')bis(triphenylphosphane-κP)ruthenium(II) top
Crystal data top
[Ru(C2H3OS2)2(C18H15P)2]Dx = 1.473 Mg m3
Mr = 839.94Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 4576 reflections
a = 10.7285 (3) Åθ = 2.3–22.7°
b = 18.5470 (4) ŵ = 0.75 mm1
c = 38.0785 (9) ÅT = 298 K
V = 7576.9 (3) Å3Prism, brown
Z = 80.32 × 0.21 × 0.18 mm
F(000) = 3440
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4970 reflections with I > 2σ(I)
Detector resolution: 0.83 pixels mm-1Rint = 0.048
ω scansθmax = 25.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1212
Tmin = 0.665, Tmax = 0.745k = 2211
31337 measured reflectionsl = 4544
6924 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0395P)2 + 3.2859P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
6924 reflectionsΔρmax = 0.45 e Å3
444 parametersΔρmin = 0.52 e Å3
Crystal data top
[Ru(C2H3OS2)2(C18H15P)2]V = 7576.9 (3) Å3
Mr = 839.94Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.7285 (3) ŵ = 0.75 mm1
b = 18.5470 (4) ÅT = 298 K
c = 38.0785 (9) Å0.32 × 0.21 × 0.18 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6924 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4970 reflections with I > 2σ(I)
Tmin = 0.665, Tmax = 0.745Rint = 0.048
31337 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.03Δρmax = 0.45 e Å3
6924 reflectionsΔρmin = 0.52 e Å3
444 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.49018 (2)0.22296 (2)0.12872 (2)0.03379 (10)
S10.53986 (10)0.34881 (5)0.13361 (3)0.0530 (3)
S20.65542 (9)0.23693 (6)0.17272 (3)0.0584 (3)
S30.51741 (8)0.09579 (5)0.12028 (2)0.0433 (2)
S40.66125 (9)0.20447 (5)0.08736 (3)0.0510 (3)
P10.36233 (8)0.23769 (5)0.08017 (2)0.0360 (2)
P20.34169 (8)0.20338 (5)0.17305 (2)0.0349 (2)
C10.6547 (3)0.3238 (2)0.16107 (10)0.0559 (11)
O20.7348 (3)0.3757 (2)0.17080 (9)0.0946 (11)
C30.8371 (5)0.3540 (3)0.19023 (15)0.123 (2)
H3A0.80950.33020.21120.185*
H3B0.88610.39540.19640.185*
H3C0.88680.32140.17650.185*
C40.6404 (3)0.1166 (2)0.09494 (9)0.0465 (9)
O50.7202 (3)0.06898 (15)0.08116 (8)0.0700 (8)
C60.6966 (5)0.0058 (2)0.08750 (13)0.0940 (17)
H6A0.69170.01420.11230.141*
H6B0.76300.03410.07770.141*
H6C0.61910.01930.07670.141*
C70.4101 (3)0.30357 (18)0.04616 (9)0.0411 (8)
C80.5228 (4)0.3396 (2)0.04596 (10)0.0560 (11)
H80.57940.33180.06410.067*
C90.5527 (4)0.3872 (2)0.01924 (11)0.0688 (12)
H90.62900.41100.01960.083*
C100.4715 (5)0.3995 (2)0.00764 (12)0.0671 (12)
H100.49200.43170.02550.081*
C110.3592 (4)0.3641 (2)0.00824 (10)0.0633 (12)
H110.30380.37200.02660.076*
C120.3284 (4)0.3168 (2)0.01837 (9)0.0531 (10)
H120.25180.29330.01780.064*
C130.3449 (3)0.15609 (18)0.05361 (9)0.0404 (8)
C140.2740 (3)0.09938 (19)0.06594 (10)0.0506 (10)
H140.22950.10490.08670.061*
C150.2675 (4)0.0341 (2)0.04797 (12)0.0623 (11)
H150.21830.00330.05650.075*
C160.3334 (4)0.0255 (2)0.01798 (14)0.0738 (14)
H160.32970.01810.00600.089*
C170.4059 (4)0.0807 (3)0.00510 (12)0.0733 (13)
H170.45070.07430.01560.088*
C180.4124 (4)0.1461 (2)0.02284 (10)0.0555 (10)
H180.46180.18310.01410.067*
C190.2034 (3)0.27155 (17)0.08636 (9)0.0382 (8)
C200.1884 (3)0.33041 (18)0.10886 (10)0.0473 (9)
H200.25750.34980.12020.057*
C210.0722 (4)0.3602 (2)0.11449 (11)0.0633 (11)
H210.06300.39940.12950.076*
C220.0300 (4)0.3315 (2)0.09773 (13)0.0683 (13)
H220.10870.35070.10200.082*
C230.0170 (4)0.2751 (2)0.07487 (12)0.0617 (12)
H230.08630.25690.06320.074*
C240.0991 (3)0.2452 (2)0.06914 (9)0.0477 (9)
H240.10740.20690.05350.057*
C250.2161 (3)0.14138 (17)0.15982 (8)0.0363 (8)
C260.2377 (3)0.06684 (18)0.15944 (9)0.0432 (9)
H260.31240.04870.16810.052*
C270.1490 (4)0.0200 (2)0.14633 (9)0.0525 (10)
H270.16520.02920.14590.063*
C280.0367 (4)0.0455 (2)0.13385 (10)0.0571 (11)
H280.02270.01370.12520.069*
C290.0132 (3)0.1184 (2)0.13428 (10)0.0534 (10)
H290.06270.13580.12610.064*
C300.1019 (3)0.16590 (19)0.14680 (9)0.0433 (9)
H300.08520.21510.14660.052*
C310.2568 (3)0.27645 (17)0.19566 (9)0.0409 (8)
C320.3135 (4)0.34300 (18)0.19887 (9)0.0524 (10)
H320.39070.35110.18850.063*
C330.2549 (5)0.3980 (2)0.21766 (11)0.0728 (14)
H330.29230.44320.21900.087*
C340.1448 (5)0.3869 (3)0.23398 (12)0.0763 (14)
H340.10700.42390.24650.092*
C350.0896 (4)0.3207 (3)0.23186 (12)0.0719 (13)
H350.01490.31240.24350.086*
C360.1439 (4)0.2660 (2)0.21249 (10)0.0573 (11)
H360.10390.22170.21070.069*
C370.4031 (3)0.15415 (17)0.21204 (9)0.0390 (8)
C380.3472 (4)0.1590 (2)0.24458 (10)0.0571 (11)
H380.27920.18950.24750.068*
C390.3904 (4)0.1191 (2)0.27324 (10)0.0664 (12)
H390.35120.12360.29490.080*
C400.4892 (4)0.0738 (2)0.26969 (11)0.0567 (11)
H400.51720.04680.28870.068*
C410.5467 (4)0.0685 (2)0.23786 (11)0.0586 (11)
H410.61530.03830.23530.070*
C420.5037 (3)0.1079 (2)0.20913 (10)0.0538 (10)
H420.54350.10310.18760.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.03219 (16)0.03129 (16)0.03787 (17)0.00165 (12)0.00045 (12)0.00142 (12)
S10.0552 (6)0.0367 (5)0.0671 (7)0.0079 (4)0.0044 (5)0.0017 (5)
S20.0481 (6)0.0714 (7)0.0557 (6)0.0006 (5)0.0137 (5)0.0007 (5)
S30.0465 (5)0.0367 (5)0.0467 (5)0.0009 (4)0.0086 (4)0.0022 (4)
S40.0430 (5)0.0498 (6)0.0601 (6)0.0041 (4)0.0154 (5)0.0044 (5)
P10.0370 (5)0.0336 (5)0.0375 (5)0.0023 (4)0.0007 (4)0.0014 (4)
P20.0361 (5)0.0301 (5)0.0384 (5)0.0001 (4)0.0011 (4)0.0007 (4)
C10.046 (2)0.062 (3)0.060 (3)0.021 (2)0.006 (2)0.016 (2)
O20.064 (2)0.118 (3)0.102 (3)0.024 (2)0.013 (2)0.027 (2)
C30.094 (4)0.177 (7)0.099 (5)0.028 (4)0.015 (4)0.028 (4)
C40.042 (2)0.051 (2)0.046 (2)0.0094 (18)0.0093 (17)0.0016 (18)
O50.076 (2)0.0558 (18)0.079 (2)0.0093 (15)0.0323 (16)0.0025 (15)
C60.128 (5)0.052 (3)0.103 (4)0.019 (3)0.038 (3)0.007 (3)
C70.047 (2)0.0374 (19)0.039 (2)0.0040 (17)0.0030 (17)0.0055 (16)
C80.059 (3)0.057 (3)0.051 (2)0.012 (2)0.003 (2)0.013 (2)
C90.073 (3)0.068 (3)0.066 (3)0.021 (2)0.006 (3)0.019 (2)
C100.095 (4)0.051 (3)0.055 (3)0.001 (2)0.017 (3)0.018 (2)
C110.080 (3)0.063 (3)0.047 (2)0.012 (2)0.001 (2)0.015 (2)
C120.057 (2)0.055 (2)0.048 (2)0.001 (2)0.000 (2)0.0090 (19)
C130.040 (2)0.039 (2)0.043 (2)0.0040 (16)0.0096 (17)0.0039 (16)
C140.059 (2)0.043 (2)0.050 (2)0.0051 (19)0.004 (2)0.0008 (18)
C150.062 (3)0.042 (2)0.082 (3)0.001 (2)0.016 (2)0.008 (2)
C160.071 (3)0.049 (3)0.102 (4)0.009 (2)0.015 (3)0.028 (3)
C170.068 (3)0.077 (3)0.074 (3)0.015 (3)0.005 (3)0.033 (3)
C180.050 (2)0.056 (3)0.061 (3)0.0053 (19)0.005 (2)0.011 (2)
C190.040 (2)0.0341 (19)0.041 (2)0.0022 (16)0.0011 (16)0.0051 (16)
C200.049 (2)0.038 (2)0.054 (2)0.0010 (17)0.0020 (19)0.0007 (18)
C210.063 (3)0.050 (2)0.077 (3)0.011 (2)0.004 (2)0.008 (2)
C220.049 (3)0.064 (3)0.092 (4)0.015 (2)0.001 (2)0.010 (3)
C230.040 (2)0.066 (3)0.078 (3)0.005 (2)0.005 (2)0.004 (2)
C240.042 (2)0.051 (2)0.051 (2)0.0043 (18)0.0016 (18)0.0041 (19)
C250.043 (2)0.0320 (19)0.0342 (19)0.0030 (15)0.0059 (16)0.0031 (15)
C260.049 (2)0.034 (2)0.046 (2)0.0004 (17)0.0036 (18)0.0013 (16)
C270.072 (3)0.037 (2)0.049 (2)0.012 (2)0.008 (2)0.0025 (18)
C280.065 (3)0.045 (2)0.062 (3)0.024 (2)0.006 (2)0.000 (2)
C290.045 (2)0.060 (3)0.056 (3)0.0115 (19)0.0045 (19)0.005 (2)
C300.045 (2)0.041 (2)0.044 (2)0.0026 (17)0.0035 (18)0.0046 (17)
C310.047 (2)0.0355 (19)0.040 (2)0.0033 (16)0.0017 (17)0.0010 (16)
C320.074 (3)0.039 (2)0.045 (2)0.0085 (19)0.008 (2)0.0022 (17)
C330.125 (4)0.036 (2)0.057 (3)0.002 (3)0.003 (3)0.010 (2)
C340.099 (4)0.061 (3)0.069 (3)0.028 (3)0.013 (3)0.013 (2)
C350.057 (3)0.077 (3)0.081 (3)0.016 (2)0.016 (2)0.018 (3)
C360.056 (2)0.051 (2)0.065 (3)0.003 (2)0.008 (2)0.010 (2)
C370.045 (2)0.0334 (19)0.039 (2)0.0050 (16)0.0016 (17)0.0014 (16)
C380.052 (2)0.064 (3)0.055 (3)0.013 (2)0.003 (2)0.009 (2)
C390.070 (3)0.086 (3)0.043 (2)0.011 (3)0.002 (2)0.010 (2)
C400.069 (3)0.057 (3)0.044 (2)0.002 (2)0.013 (2)0.0102 (19)
C410.064 (3)0.056 (3)0.056 (3)0.014 (2)0.009 (2)0.006 (2)
C420.064 (3)0.053 (2)0.044 (2)0.016 (2)0.002 (2)0.0012 (19)
Geometric parameters (Å, º) top
Ru1—P12.3180 (9)C17—H170.9300
Ru1—P22.3493 (9)C18—H180.9300
Ru1—S12.4015 (10)C19—C241.386 (4)
Ru1—S22.4530 (10)C19—C201.397 (5)
Ru1—S32.3981 (9)C20—C211.381 (5)
Ru1—S42.4426 (9)C20—H200.9300
S1—C11.681 (4)C21—C221.375 (6)
S2—C11.672 (4)C21—H210.9300
S3—C41.680 (4)C22—C231.368 (6)
S4—C41.670 (4)C22—H220.9300
P1—C131.830 (3)C23—C241.381 (5)
P1—C191.833 (3)C23—H230.9300
P1—C71.853 (3)C24—H240.9300
P2—C251.841 (3)C25—C301.398 (4)
P2—C311.846 (3)C25—C261.402 (4)
P2—C371.863 (3)C26—C271.382 (5)
C1—O21.342 (4)C26—H260.9300
O2—C31.384 (6)C27—C281.379 (5)
C3—H3A0.9600C27—H270.9300
C3—H3B0.9600C28—C291.374 (5)
C3—H3C0.9600C28—H280.9300
C4—O51.337 (4)C29—C301.381 (5)
O5—C61.430 (5)C29—H290.9300
C6—H6A0.9600C30—H300.9300
C6—H6B0.9600C31—C321.382 (5)
C6—H6C0.9600C31—C361.384 (5)
C7—C81.382 (5)C32—C331.396 (5)
C7—C121.396 (5)C32—H320.9300
C8—C91.385 (5)C33—C341.350 (6)
C8—H80.9300C33—H330.9300
C9—C101.364 (6)C34—C351.365 (6)
C9—H90.9300C34—H340.9300
C10—C111.372 (6)C35—C361.383 (5)
C10—H100.9300C35—H350.9300
C11—C121.381 (5)C36—H360.9300
C11—H110.9300C37—C381.379 (5)
C12—H120.9300C37—C421.382 (5)
C13—C141.381 (5)C38—C391.397 (5)
C13—C181.390 (5)C38—H380.9300
C14—C151.393 (5)C39—C401.360 (5)
C14—H140.9300C39—H390.9300
C15—C161.353 (6)C40—C411.363 (5)
C15—H150.9300C40—H400.9300
C16—C171.376 (6)C41—C421.394 (5)
C16—H160.9300C41—H410.9300
C17—C181.389 (5)C42—H420.9300
P1—Ru1—P2100.95 (3)C17—C16—H16119.7
P1—Ru1—S394.66 (3)C16—C17—C18120.3 (4)
P2—Ru1—S391.54 (3)C16—C17—H17119.9
P1—Ru1—S194.51 (3)C18—C17—H17119.9
P2—Ru1—S1104.18 (3)C17—C18—C13120.0 (4)
S3—Ru1—S1159.93 (4)C17—C18—H18120.0
P1—Ru1—S486.97 (3)C13—C18—H18120.0
P2—Ru1—S4162.01 (3)C24—C19—C20118.2 (3)
S3—Ru1—S471.58 (3)C24—C19—P1124.7 (3)
S1—Ru1—S491.13 (3)C20—C19—P1117.0 (3)
P1—Ru1—S2163.72 (4)C21—C20—C19120.8 (4)
P2—Ru1—S290.89 (4)C21—C20—H20119.6
S3—Ru1—S296.16 (4)C19—C20—H20119.6
S1—Ru1—S271.57 (4)C22—C21—C20119.5 (4)
S4—Ru1—S284.96 (4)C22—C21—H21120.2
C1—S1—Ru186.74 (13)C20—C21—H21120.2
C1—S2—Ru185.26 (13)C23—C22—C21120.7 (4)
C4—S3—Ru186.94 (13)C23—C22—H22119.7
C4—S4—Ru185.69 (12)C21—C22—H22119.7
C13—P1—C19105.04 (15)C22—C23—C24120.0 (4)
C13—P1—C7100.79 (16)C22—C23—H23120.0
C19—P1—C796.96 (15)C24—C23—H23120.0
C13—P1—Ru1113.81 (11)C23—C24—C19120.8 (4)
C19—P1—Ru1119.25 (11)C23—C24—H24119.6
C7—P1—Ru1118.13 (12)C19—C24—H24119.6
C25—P2—C31103.00 (15)C30—C25—C26117.5 (3)
C25—P2—C3799.82 (14)C30—C25—P2122.4 (3)
C31—P2—C3799.36 (15)C26—C25—P2119.9 (3)
C25—P2—Ru1113.33 (11)C27—C26—C25120.7 (3)
C31—P2—Ru1123.81 (11)C27—C26—H26119.7
C37—P2—Ru1114.11 (11)C25—C26—H26119.7
O2—C1—S2128.0 (3)C28—C27—C26120.7 (4)
O2—C1—S1116.3 (3)C28—C27—H27119.7
S2—C1—S1115.7 (2)C26—C27—H27119.7
C1—O2—C3116.6 (4)C29—C28—C27119.6 (4)
O2—C3—H3A109.5C29—C28—H28120.2
O2—C3—H3B109.5C27—C28—H28120.2
H3A—C3—H3B109.5C28—C29—C30120.3 (4)
O2—C3—H3C109.5C28—C29—H29119.8
H3A—C3—H3C109.5C30—C29—H29119.8
H3B—C3—H3C109.5C29—C30—C25121.2 (3)
O5—C4—S4119.4 (3)C29—C30—H30119.4
O5—C4—S3125.2 (3)C25—C30—H30119.4
S4—C4—S3115.4 (2)C32—C31—C36118.0 (3)
C4—O5—C6117.4 (3)C32—C31—P2118.7 (3)
O5—C6—H6A109.5C36—C31—P2123.1 (3)
O5—C6—H6B109.5C31—C32—C33120.0 (4)
H6A—C6—H6B109.5C31—C32—H32120.0
O5—C6—H6C109.5C33—C32—H32120.0
H6A—C6—H6C109.5C34—C33—C32121.2 (4)
H6B—C6—H6C109.5C34—C33—H33119.4
C8—C7—C12117.4 (3)C32—C33—H33119.4
C8—C7—P1124.4 (3)C33—C34—C35119.3 (4)
C12—C7—P1118.2 (3)C33—C34—H34120.3
C7—C8—C9121.1 (4)C35—C34—H34120.3
C7—C8—H8119.5C34—C35—C36120.6 (4)
C9—C8—H8119.5C34—C35—H35119.7
C10—C9—C8120.6 (4)C36—C35—H35119.7
C10—C9—H9119.7C35—C36—C31120.9 (4)
C8—C9—H9119.7C35—C36—H36119.6
C9—C10—C11119.6 (4)C31—C36—H36119.6
C9—C10—H10120.2C38—C37—C42116.8 (3)
C11—C10—H10120.2C38—C37—P2122.0 (3)
C10—C11—C12120.2 (4)C42—C37—P2121.1 (3)
C10—C11—H11119.9C37—C38—C39121.5 (4)
C12—C11—H11119.9C37—C38—H38119.2
C11—C12—C7121.2 (4)C39—C38—H38119.2
C11—C12—H12119.4C40—C39—C38120.5 (4)
C7—C12—H12119.4C40—C39—H39119.7
C14—C13—C18118.2 (3)C38—C39—H39119.7
C14—C13—P1119.9 (3)C39—C40—C41119.0 (4)
C18—C13—P1121.6 (3)C39—C40—H40120.5
C13—C14—C15121.5 (4)C41—C40—H40120.5
C13—C14—H14119.2C40—C41—C42120.7 (4)
C15—C14—H14119.2C40—C41—H41119.7
C16—C15—C14119.4 (4)C42—C41—H41119.7
C16—C15—H15120.3C37—C42—C41121.4 (4)
C14—C15—H15120.3C37—C42—H42119.3
C15—C16—C17120.6 (4)C41—C42—H42119.3
C15—C16—H16119.7
Ru1—S2—C1—O2171.8 (4)C19—C20—C21—C220.0 (6)
Ru1—S2—C1—S17.8 (2)C20—C21—C22—C231.8 (7)
Ru1—S1—C1—O2171.7 (3)C21—C22—C23—C241.7 (7)
Ru1—S1—C1—S27.9 (2)C22—C23—C24—C190.1 (6)
S2—C1—O2—C36.5 (6)C20—C19—C24—C231.8 (5)
S1—C1—O2—C3173.1 (4)P1—C19—C24—C23178.6 (3)
Ru1—S4—C4—O5173.8 (3)C31—P2—C25—C3040.4 (3)
Ru1—S4—C4—S35.8 (2)C37—P2—C25—C30142.5 (3)
Ru1—S3—C4—O5173.6 (3)Ru1—P2—C25—C3095.7 (3)
Ru1—S3—C4—S45.9 (2)C31—P2—C25—C26145.7 (3)
S4—C4—O5—C6178.2 (3)C37—P2—C25—C2643.6 (3)
S3—C4—O5—C62.2 (5)Ru1—P2—C25—C2678.1 (3)
C13—P1—C7—C8118.0 (3)C30—C25—C26—C270.6 (5)
C19—P1—C7—C8135.2 (3)P2—C25—C26—C27173.6 (3)
Ru1—P1—C7—C86.6 (4)C25—C26—C27—C281.0 (5)
C13—P1—C7—C1260.5 (3)C26—C27—C28—C290.4 (6)
C19—P1—C7—C1246.3 (3)C27—C28—C29—C300.7 (6)
Ru1—P1—C7—C12174.9 (2)C28—C29—C30—C251.1 (6)
C12—C7—C8—C90.3 (6)C26—C25—C30—C290.5 (5)
P1—C7—C8—C9178.8 (3)P2—C25—C30—C29174.4 (3)
C7—C8—C9—C100.2 (7)C25—P2—C31—C32158.7 (3)
C8—C9—C10—C110.3 (7)C37—P2—C31—C3298.9 (3)
C9—C10—C11—C120.5 (6)Ru1—P2—C31—C3228.6 (3)
C10—C11—C12—C70.4 (6)C25—P2—C31—C3627.6 (3)
C8—C7—C12—C110.0 (6)C37—P2—C31—C3674.8 (3)
P1—C7—C12—C11178.6 (3)Ru1—P2—C31—C36157.7 (3)
C19—P1—C13—C1459.5 (3)C36—C31—C32—C332.1 (6)
C7—P1—C13—C14159.8 (3)P2—C31—C32—C33176.2 (3)
Ru1—P1—C13—C1472.7 (3)C31—C32—C33—C342.3 (6)
C19—P1—C13—C18127.7 (3)C32—C33—C34—C350.4 (7)
C7—P1—C13—C1827.4 (3)C33—C34—C35—C361.7 (7)
Ru1—P1—C13—C18100.1 (3)C34—C35—C36—C311.8 (7)
C18—C13—C14—C151.2 (5)C32—C31—C36—C350.1 (6)
P1—C13—C14—C15174.2 (3)P2—C31—C36—C35173.8 (3)
C13—C14—C15—C160.9 (6)C25—P2—C37—C3881.6 (3)
C14—C15—C16—C170.3 (7)C31—P2—C37—C3823.5 (3)
C15—C16—C17—C180.1 (7)Ru1—P2—C37—C38157.2 (3)
C16—C17—C18—C130.4 (6)C25—P2—C37—C4295.0 (3)
C14—C13—C18—C170.9 (6)C31—P2—C37—C42159.9 (3)
P1—C13—C18—C17173.9 (3)Ru1—P2—C37—C4226.2 (3)
C13—P1—C19—C249.2 (3)C42—C37—C38—C390.1 (6)
C7—P1—C19—C2494.0 (3)P2—C37—C38—C39176.8 (3)
Ru1—P1—C19—C24138.3 (3)C37—C38—C39—C400.3 (6)
C13—P1—C19—C20173.9 (3)C38—C39—C40—C410.8 (6)
C7—P1—C19—C2082.9 (3)C39—C40—C41—C421.1 (6)
Ru1—P1—C19—C2044.9 (3)C38—C37—C42—C410.3 (5)
C24—C19—C20—C211.7 (5)P2—C37—C42—C41177.1 (3)
P1—C19—C20—C21178.8 (3)C40—C41—C42—C370.9 (6)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C25–C30 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11···O5i0.932.513.387 (5)157
C40—H40···Cgii0.932.853.521 (4)130
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Ru(C2H3OS2)2(C18H15P)2]
Mr839.94
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)10.7285 (3), 18.5470 (4), 38.0785 (9)
V3)7576.9 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.32 × 0.21 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.665, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
31337, 6924, 4970
Rint0.048
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.097, 1.03
No. of reflections6924
No. of parameters444
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.52

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Ru1—P12.3180 (9)Ru1—S22.4530 (10)
Ru1—P22.3493 (9)Ru1—S32.3981 (9)
Ru1—S12.4015 (10)Ru1—S42.4426 (9)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C25–C30 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11···O5i0.932.513.387 (5)157
C40—H40···Cgii0.932.853.521 (4)130
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y, z+1/2.
 

Acknowledgements

CVC would like to thank CONACYT for a postdoctoral scholarship (290679-UNAM). Support of this research by CONACYT (CB2010–154732) and PAPIIT (IN201711–3) is gratefully acknowledged.

References

First citationBag, N., Lahiri, G. K. & Chakravorty, A. (1990). J. Chem. Soc. Dalton Trans. pp. 1557–1561.  CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLiu, X., Zhang, Q.-F. & Leung, W.-H. (2005). J. Coord. Chem. 58, 1299–1305.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, X. L., Ng, S. Y., Vittal, J. J., Tan, G. K., Goh, Y. L. & Hor, T. S. A. (2003). J. Organomet. Chem. 688, 100–111.  Web of Science CSD CrossRef CAS Google Scholar
First citationNoda, K., Ohuchi, Y., Hashimoto, A., Fujiki, M., Itoh, S., Iwatsuki, S., Noda, T., Suzuki, T., Kashiwabara, K. & Tagagi, H. D. (2006). Inorg. Chem. 45, 1349–1355.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-Y., Li, Y., Ma, Q. & Zhang, Q.-F. (2010). Organometallics, 29, 2752–2760.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, F.-H., Duan, T., Lu, L., Zhang, Q.-F. & Leung, W.-H. (2009). J. Organomet. Chem. 694, 3844–3851.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds